Electron. J. Diff. Eqns., Vol. 2005(2005), No. 147, pp. 1-25.

Quasistatic evolution of damage in an elastic-viscoplastic material

Kenneth Kuttler

Abstract:
The mathematical theory of quasistatic elastic viscoplastic models with damage is studied. The existence of the unique local weak solution is established by using approximate problems and a priori estimates. Pointwise estimates on the damage are obtained using a new comparison technique which removes the necessity of including a subgradient term in the equation for damage.

Submitted September 16, 2005. Published December 12, 2005.
Math Subject Classifications: 74D10, 74R99, 74C10, 35K50, 35K65, 35Q72, 35B05.
Key Words: Existence and uniqueness; damage; comparison theorems; elastic viscoplastic materials.

Show me the PDF file (321K), TEX file, and other files for this article.

Kenneth Kuttler
Department of Mathematics
Brigham Young University
Provo, UT 84602, USA
email: klkuttle@math.byu.edu

Return to the EJDE web page