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ON CLASSICAL SOLUTIONS OF THE RELATIVISTIC
VLASOV-KLEIN-GORDON SYSTEM

MICHAEL KUNZINGER, GERHARD REIN, ROLAND STEINBAUER, GERALD TESCHL

Abstract. We consider a collisionless ensemble of classical particles coupled
with a Klein-Gordon field. For the resulting nonlinear system of partial differ-

ential equations, the relativistic Vlasov-Klein-Gordon system, we prove local-

in-time existence of classical solutions and a continuation criterion which says
that a solution can blow up only if the particle momenta become large. We

also show that classical solutions are global in time in the one-dimensional

case.

1. Introduction

In kinetic theory one often considers collisionless ensembles of classical parti-
cles which interact only by fields which they create collectively. This situation is
commonly referred to as the mean field limit of a many particle system. Such sys-
tems have been studied extensively. In the case of non-relativistic, gravitational or
electrostatic fields the corresponding system of partial differential equations is the
Vlasov-Poisson system, in the case of relativistic electrodynamics it is the Vlasov-
Maxwell system and in the case of general relativistic gravity the Vlasov-Einstein
system.

On the other hand the coupling of a single particle to a classical or quantum
field has been studied. In case of the Maxwell field this is a classical problem [1],
but the actual dynamics and asymptotics of such systems is still an active area
of research [6, 7, 8, 9]. In [5] the case of a single classical particle coupled to a
quantum mechanical Klein-Gordon field was investigated.

In the present paper we consider a collisionless ensemble of particles moving at
relativistic speeds, coupled to a Klein-Gordon field. This is a natural generalization
of the one-particle situation just described. Let f = f(t, x, v) ≥ 0 denote the density
of the particles in phase space, ρ = ρ(t, x) their density in space, and u = u(t, x)
a scalar Klein-Gordon field; t ∈ R, x ∈ R3, and v ∈ R3 denote time, position, and
momentum, respectively. The system then reads as follows:

∂tf + v̂ · ∂xf − ∂xu · ∂vf = 0, (1.1)

∂2
t u−∆u + u = −ρ, (1.2)
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ρ(t, x) =
∫

f(t, x, v) dv. (1.3)

Here we have set all physical constants as well as the rest mass of the particles to
unity, and

v̂ =
v√

1 + |v|2
(1.4)

denotes the relativistic velocity of a particle with momentum v. This system is
called the relativistic Vlasov-Klein-Gordon system. It is supplemented by initial
data

f(0) =
◦
f , u(0) = ◦

u1, ∂tu(0) = ◦
u2. (1.5)

The study of this system was initiated in [11] where the existence of global weak
solutions for initial data satisfying a size restriction was proved. This size restriction
was necessary because the energy of the system is indefinite so that conservation
of energy does not lead to a-priory bounds for general data. A natural next step
in the study of the Vlasov-Klein-Gordon system is the existence theory of classical
solutions, locally and if possible globally in time. This is the topic of the present
investigation.

Another motivation for studying this system of partial differential equations is
an intrinsically mathematical one. Since the field equation is hyperbolic the system
resembles the relativistic Vlasov-Maxwell system, for which the quest for global-in-
time classical general solutions is still open. One might hope that studying related
systems can help in understanding these open problems more thoroughly. In fact in
this work we follow the general outline of the existence proof of Glassey and Strauss
[3] for the Vlasov-Maxwell system. Note, however, that the existence theory of weak
solutions of the two systems is quite different [2, 11, 13].

The paper proceeds as follows. In Section 2 we prove some a-priori estimates
necessary for the proof of our main result. These estimates rely on representation
formulas for the first and second order derivatives of the Klein-Gordon field u, cf.
Lemmas 2.1 and 2.2. Note that in contrast to the corresponding parts in [3] we
also need to bound the mixed second order derivatives of the field. In Section 3 we
prove our main results, a local-in-time existence and uniqueness result for classical
solutions and a continuation criterion which says that such solutions can blow up
in finite time only if the support of f in momentum space becomes unbounded, cf.
Thms 3.1 and 3.3. We also discuss conservation of mass, energy and momentum.
In Section 4 we briefly show that the continuation criterion is indeed satisfied in the
one-dimensional situation where x, v ∈ R so that we obtain global classical solutions
in that case. Finally some material on the (inhomogeneous) Vlasov equation is
collected in an appendix as well as some unpleasant technical aspects of the proof
of the local existence result, which often have been omitted in the treatment of
related systems.

2. A-priori estimates

Although our notation is mostly standard or self-explaining we mention the
following conventions: For a function h = h(t, x, v) or h = h(t, x) we denote for
given t by h(t) the corresponding function of the remaining variables. For a function
h depending on the variables x, v we denote its gradient by ∂(x,v)h. By ‖ . ‖p we
denote the usual Lp-norm for p ∈ [1,∞]. The subscript c in function spaces refers
to compactly supported functions. Sometimes we write z = (x, v) ∈ R3 × R3.
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One main ingredient of our analysis are representation formulas for u and its
derivatives, which will allow us to establish the necessary a-priori bounds. As point
of departure we recall that the solution of (1.2) is given by

u(t, x) = uhom(t, x) + uinh(t, x), t ≥ 0, x ∈ R3, (2.1)

where

uhom(t, x) =
1

4πt2

∫
|x−y|=t

◦
u1(y) dSy −

1
4πt2

∫
|x−y|=t

(∂x

◦
u1)(y) · y dSy

− 1
8π

∫
|x−y|=t

◦
u1(y) dSy −

1
4π

∫
|x−y|≤t

◦
u1(y)

(
J1(ξ)

ξ

)′
t

ξ
dy

+
1

4πt

∫
|x−y|=t

◦
u2(y) dSy −

1
4π

∫
|x−y|≤t

◦
u2(y)

J1(ξ)
ξ

dy,

is the solution of the homogeneous Klein-Gordon equation with initial data as in
(1.5) and ξ :=

√
t2 − |x− y|2, and

uinh(t, x) = − 1
4π

∫ t

0

∫
|x−y|=t−s

ρ(s, y) dSy
ds

t− s
+

1
4π

∫ t

0

∫
|x−y|≤t−s

ρ(s, y)
J1(ξ)

ξ
dy ds

with ξ :=
√

(t− s)2 − |x− y|2 is the solution of the inhomogeneous Klein-Gordon
equation with vanishing initial data, cf. [12] or [14]; Jk denotes the Bessel function.
To derive formulas for the derivatives of u the differential operators

S = ∂t + v̂ · ∂x, T = −ω∂t + ∂x; ω =
x− y

|x− y|
,

which are adapted to our system and have first been introduced in [3] in connection
with the Vlasov-Maxwell system turn out to be useful.

Lemma 2.1 (Representation of ∂u). Suppose u ∈ C2 is a solution of the Klein-
Gordon equation (1.2) with ρ given by (1.3) for some f ∈ C1. Then

∂ku(t, x) = F k
0 (t, x) + F k

S (t, x) + F k
T (t, x) + F k

R(t, x) + F k
J (t, x), k ∈ {1, 2, 3, t}

where F k
0 is a linear functional of the initial data only, and

F k
S (t, x) = − 1

4π

∫
|x−y|≤t

∫
ωk

1 + ω · v̂
(Sf)(t− |x− y|, y, v) dv

dy

|x− y|
,

F k
T (t, x) =

1
4π

∫
|x−y|≤t

∫
ak(ω, v̂)f(t− |x− y|, y, v) dv

dy

|x− y|2
,

F k
R(t, x) =

1
8π

∫
|x−y|≤t

ρ(t− |x− y|, y)ωkdy,

F k
J (t, x) = − 1

4π

∫ t

0

∫
|x−y|≤t−s

ρ(s, y)
J2(ξ)

ξ2
(xk − yk) dy ds,

F t
S(t, x) = − 1

4π

∫
|x−y|≤t

∫
1

1 + ω · v̂
(Sf)(t− |x− y|, y, v) dv

dy

|x− y|
,

F t
T (t, x) =

1
4π

∫
|x−y|≤t

∫
at(ω, v̂)f(t− |x− y|, y, v) dv

dy

|x− y|2
,

F t
R(t, x) =

1
8
√

2π

∫
|x−y|≤t

ρ(t− |x− y|, y)dy,
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F t
J(t, x) = − 1

4π

∫ t

0

∫
|x−y|≤t−s

ρ(s, y)
J2(ξ)

ξ2
(t− s)dyds.

Here ξ =
√

(t− s)2 − |x− y|2 and the kernels ak and at are

ak(ω, v̂) = − v̂k

1 + ω · v̂
− ωk

(1 + |v|2)(1 + ω · v̂)2
, at(ω, v̂) =

|v̂|2 + ω · v̂
(1 + ω · v̂)2

.

Proof. The proof is a straightforward calculation using

∂xk
=

ωk

1 + ω · v̂
S +

3∑
j=1

(
δjk −

ωkv̂j

1 + ω · v̂

)
Tj , ∂t =

1
1 + ω · v̂

(S − v̂ · T )

where δjj = 1 and δjk = 0 for j 6= k. Terms involving only the initial data are
collected in F k

0 and terms involving Tf are integrated by parts, using the identity
(Tf)(t− |x− y|, y, v) = ∂y(f(t− |x− y|, y, v)). �

Next we turn to the second order derivatives.

Lemma 2.2 (Representation of ∂2u). Suppose u ∈ C2 is a solution of the Klein-
Gordon equation (1.2) with ρ given by (1.3) for some f ∈ C2. Then we have for
k, ` ∈ {1, 2, 3, t}

∂k`u(t, x) = F k`
0 + F k`

SS + F k`
ST + F k`

TS + F k`
TT + F k`

RS + F k`
RT + F k`

JR + F k`
JJ ,

where F k`
0 are linear functionals of the initial data only, and

F k`
SS =

−1
4π

∫
|x−y|≤t

∫
ck`(ω, v̂)(S2f)(t− |x− y|, y, v) dv

dy

|x− y|
, |ck`| ≤ C

(1 + ω · v̂)2

F k`
ST =

1
4π

∫
|x−y|≤t

∫
bk`
1 (ω, v̂)(Sf)(t− |x− y|, y, v) dv

dy

|x− y|2
, |bk`

1 | ≤
C

(1 + ω · v̂)3

F k`
TS =

1
4π

∫
|x−y|≤t

∫
bk`
2 (ω, v̂)(Sf)(t− |x− y|, y, v) dv

dy

|x− y|2
, |bk`

2 | ≤
C

(1 + ω · v̂)3

F k`
TT =

−1
4π

∫
|x−y|≤t

∫
ak`(ω, v̂)f(t− |x− y|, y, v) dv

dy

|x− y|3
,

∫
|ω|=1

ak`(ω, v̂)dω = 0,

F k`
RS =

1
8π

∫
|x−y|≤t

∫
dk`(ω, v̂)(Sf)(t− |x− y|, y, v) dv dy, |dk`| ≤ C

1 + ω · v̂

F k`
RT =

1
8π

∫
|x−y|≤t

∫
ek`(ω, v̂)f(t− |x− y|, y, v) dv

dy

|x− y|
, |ek`| ≤ C

(1 + ω · v̂)2

F k`
JR =

−1
32π

(
1−

√
2− 1√

2
(δkt + δ`t − δktδ`t)

) ∫
|x−y|≤t

ρ(t− |x− y|, y)ωkω`|x− y| dy,

F k`
JJ =

2(δkt + δ`t − δktδ`t)− 1
4π

×
∫ t

0

∫
|x−y|≤t−s

ρ(s, y)
(J3(ξ)

ξ3
(xk − yk)(x` − y`) + (1− δkt − δ`t)

J2(ξ)
ξ2

)
dy ds.

Here we have set xt = t, yt = s, and ωt = 1 for notational convenience.

Proof. The proof is a long and tedious calculation similar to the previous lemma.
The critical part is, of course, to prove that the kernels ak` appearing in the singular
TT -terms vanish when integrated over the unit sphere. To give some flavor of the
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respective calculations we outline them in the case of the (most complicated) kernel
ak` for 1 ≤ k, ` ≤ 3. We have

ak` = −3
ω` · v̂k + ωk · v̂`

(1 + |v|2)(1 + ω · v̂)3
− 3ωkω`

(1 + |v|2)2(1 + ω · v̂)4

− 2v̂kv̂`

(1 + ω · v̂)2
+

δk`

(1 + |v|2)(1 + ω · v̂)2

=: ak`
1 + ak`

2 + ak`
3 + ak`

4 .

Using ∂vi

(
(
√

1 + |v|2 + ω · v)−2
)

= −2(v̂i + ωi) (
√

1 + |v|2 + ω · v)−3 we find

vk

∫
|ω|=1

ω` dω

(
√

1 + |v|2 + ω · v)3
= −vk

2
∂v`

∫
|ω|=1

dω

(
√

1 + |v|2 + ω · v)2

− vkv̂`

∫
|ω|=1

dω

(
√

1 + |v|2(1 + ω · v̂))3
= −4πvkv`.

Hence
∫
|ω|=1

ak`
1 dω = 24πvkv`. By the identity

∂vk

(
∂v`

1
(
√

1 + |v|2 + ω · v)2
+

2v̂`

(
√

1 + |v|2 + ω · v)3

)
= 6

ω`(v̂k + ωk)
(
√

1 + |v|2 + ω · v)4

we obtain

−
∫
|ω|=1

ω`v̂k dω

(
√

1 + |v|2 + ω · v)4

+
1
6
∂vk

∫
|ω|=1

(
∂v`

1
(
√

1 + |v|2 + ω · v)2
+

2v̂`

(
√

1 + |v|2 + ω · v)3

)
dω

=
16π

3
v`vk +

4π

3
δ`k,

which implies
∫
|ω|=1

ak`
2 dω = −16πvkv` − 4πδk`. The remaining two terms can be

integrated directly to yield∫
|ω|=1

ak`
3 dω = −8πvkv`,

∫
|ω|=1

ak`
4 dω = 4πδk`.

Summing up we obtain the desired result∫
|ω|=1

ak` dω = 0.

The computations for the kernels

atk =
2v̂k(ω · v̂ + |v̂|2)

(1 + ω · v̂)3
+

3ωk(ω · v̂ + |v̂|2)
(1 + |v|2)(1 + ω · v̂)4

− v̂k

(1 + |v|2)(1 + ω · v̂)3

att =
1

(1 + ω · v̂)4
(
3|v̂|4 − (ω · v̂)2|v̂|2 − |v̂|2 + 3(ω · v̂)2 + 4ω · v̂|v̂|2

)
(1 ≤ k ≤ 3) along the same lines. �

Note that in contrast to the corresponding analysis of the Vlasov-Maxwell system
[3] we also need to provide the mixed second order derivatives of the field. The fact
that the averaging property of corresponding the TT -kernel holds is a pleasant
surprise in so far as the mixed derivatives do not appear in the field equation.
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We can now use these formulas to derive the necessary estimates on the deriva-
tives of u. Constants denoted by C are positive and may change their value from
line to line. If they depend on the initial data this is explicitly mentioned.

Lemma 2.3 (Estimates on ∂f , ∂u, ∂2u).

(i) Suppose that f ∈ C1 is a solution of the Vlasov equation

Sf(t, x, v) = F (t, x)∂vf(t, x, v), f(0, x, v) =
◦
f (x, v), t ∈ [0, T [,

for some F ∈ C1. Then we have, with z = (x, v),

‖∂zf(t)‖∞ ≤ ‖∂z

◦
f‖∞ + C

∫ t

0

(1 + ‖∂xF (s)‖∞)‖∂zf(s)‖∞ds.

(ii) In addition, assume there exists an increasing function P (t) such that
f(t, x, v) = 0 for |v| ≥ P (t), and suppose u is the solution (2.1) of the
Klein-Gordon equation for t ∈ [0, T [. Then u ∈ C2, and

‖∂(t,x)u(t)‖∞ ≤ C
(
(1 + t)5(1 + P (t))5 +

∫ t

0

(t− s)(1 + P (s))6‖F (s)‖∞ds
)
,

where the constant C depends on the norms of the initial data.
(iii) On any bounded time interval on which F and P are bounded we have

‖∂2
(t,x)u(t)‖∞ ≤ C

(
1 + log∗( sup

0≤s≤t
‖∂xf(s)‖∞) +

∫ t

0

‖∂(t,x)F (s)‖∞ds
)
,

where log∗(s) = s for 0 ≤ s ≤ 1 and log∗(s) = 1 + log(s) for 1 ≥ s, and C
depends on the time interval, the bounds for P and F , and the initial data.

Proof. The assertion in (i) follows directly from (5.3) below with g = 0 and G(t, z) =
(v̂, F (t, x)). As to (ii), the estimate of ∂u is a straightforward consequence of
Lemma 2.1 by using Sf = F∂vf and getting rid of the v derivatives via integration
by parts. Then we estimate each term individually using ‖f(t)‖∞ = ‖

◦
f ‖∞, cf.

(5.2) with g ≡ 0, the estimate

1
1 + ω · v̂

≤ 2(1 + |v|2),

and the fact that the v-integration is only over a finite ball of radius P (t).
To prove (iii) we use the same procedure with Lemma 2.2 replacing Lemma 2.1.

First we need to get rid of the second derivative (i.e., the S2f term in F k`
SS). So let

us first assume Sf ∈ C1 and consider

F k`
SS =

−1
4π

∫
|x−y|≤t

∫ ∫
ck`(ω, v̂)(S2f)(t− |x− y|, y, v) dv

dy

|x− y|
.

Observe that

S2f = (SF ) · ∂vf + F · ∂v(F · ∂vf)− Fc(v)∂xf, cjk(v) = ∂vj
v̂k.

Inserting this into F k`
SS and removing all v derivatives using integration by parts

we end up with an expression involving only first order derivatives of f , which also
holds without the Sf ∈ C1 assumption by a standard approximation argument, in
particular, u ∈ C2.
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Now we can estimate each term as before except for the TT -kernel which is the
most critical one, i.e.,

F k`
TT =

1
4π

∫
|x−y|≤t

∫
ak`(ω, v̂)f(t− |x− y|, y, v) dv

dy

|x− y|3

=
∫ t

0

1
t− s

∫
|ω|=1

∫
akl(ω, v̂)f(s, x + (t− s)ω, v)dv dω ds,

where we split the s-integral into two parts, I over [0, t − τ ] and II over [t − τ, t].
The first of these can be estimated directly by C log(t/τ). For the second one we
use the averaging property of ak` to write it as

II =
∫ t

t−τ

1
t− τ

∫
|ω|=1

∫
ak`(ω, v̂)

(
f(s, x + (t− s)ω, v)− f(s, x, v)dvdω

)
ds.

Hence by the mean value theorem

|II| ≤ C τ sup
t−τ≤s≤t

‖∂xf(s)‖∞.

Summing up we obtain the estimate

|F k`
TT (t)| ≤ C(log(t/τ) + τN(t)), 0 ≤ t ≤ T,

where N(t) = sup0≤s≤t ‖∂xf(s)‖∞. For N(t) ≤ t−1 we can choose the optimal
value τ = N(t)−1, otherwise we choose τ = t, and this yields

|F k`
TT (t)| ≤ C log∗(tN(t)).

Combining these estimates the remaining claim follows. �

3. Existence of classical solutions

We now have collected all ingredients to show existence and uniqueness of local
classical solutions of the relativistic Vlasov-Klein-Gordon system.

Theorem 3.1 (Local existence of classical solutions). Let
◦
f ∈ C1

c (R6), ◦
u1 ∈

C3
b (R3), ◦

u2 ∈ C2
b (R3). Then there exists a unique classical solution

f ∈ C1([0, T [×R6), u ∈ C2([0, T [×R3)

of the relativistic Vlasov-Klein-Gordon system (1.1)–(1.3) for some T > 0, satisfy-
ing the initial conditions (1.5). Moreover,

f(t, x, v) = 0 for |x| ≥
◦
R + t or |v| ≥ P (t)

where
◦
R is determined by

◦
f and P is a positive continuous function on [0, T [.

Proof. We begin with the uniqueness part which relies only on Lemma 2.1. Let
(f (1), u(1)), (f (2), u(2)) be two solutions satisfying the same initial conditions, and on
any compact time interval [0, T0] on which both solutions exist define f = f (1)−f (2)

and u = u(1) − u(2). Then u satisfies (1.2) with (1.3), and f satisfies

Sf = ∂xu(1)∂vf (1) − ∂xu(2)∂vf (2) = ∂xu∂vf (1) + ∂xu(2)∂vf.

Proceeding on a term-by-term basis using the representation from Lemma 2.1 and
replacing the Sf term via the Vlasov equation and integrating by parts we obtain
the estimate

‖∂xu(t)‖∞ ≤ C

∫ t

0

(
‖f(s)‖∞ + ‖∂xu(s)‖∞‖f (1)(s)‖∞ + ‖∂xu(2)(s)‖∞‖f(s)‖∞

)
ds.
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Using the boundedness of f (1) and ∂xu(2) this implies

‖∂xu(t)‖∞ ≤ C

∫ t

0

(‖f(s)‖∞ + ‖∂xu(s)‖∞) ds.

On the other hand, by (5.2)

f(s, x, v) =
∫ t

0

(∂xu ∂vf (1))(s, Z(2)(s, t, x, v)) ds,

where Z(2)(s, t, x, v) is the solution of the characteristic system corresponding to
u(2). Hence we obtain, using the boundedness of ∂vf (1),

‖f(t)‖∞ ≤ C

∫ t

0

‖∂xu(s)‖∞ds.

Combining both estimates gives

‖f(t)‖∞ + ‖∂xu(t)‖∞ ≤ C

∫ t

0

(‖f(s)‖∞ + ‖∂xu(s)‖∞) ds

and Gronwall’s lemma implies f(t) = u(t) = 0, proving uniqueness.

Next we turn to existence. To this end we set up an iterative scheme and
prove its convergence to a solution. Let f (0) =

◦
f , u(0) = ◦

u1 and define f (n) ∈
C1([0,∞[×R6)), u(n) ∈ C2([0,∞[×R3) recursively via

Sf (n) − ∂xu(n−1)∂vf (n) = 0, f (n)(0) =
◦
f

and
∂2

t u(n) −∆u(n) + u(n) = −ρ(n), u(n)(0) = ◦
u1, ∂tu

(n)(0) = ◦
u2

where
ρ(n)(t, x) =

∫
f (n)(t, x, v) dv;

notice that f (n) satisfies a support estimate as the one asserted for the solution f ,
but for all t ≥ 0 and with the increasing function

P (n)(t) := sup
{
|v| | f (n)(τ, x, v) 6= 0, 0 ≤ τ ≤ t, x ∈ R3

}
instead of P .
Step 1 (Uniform bounds on P (n) and ∂u(n)):
By Lemma 2.3 (ii) and (5.2) we have

‖∂(t,x)u
(n)(t)‖∞ ≤ C

(
(1 + t)5(1 + P (n))5 +

∫ t

0

s2P (n)(s)6‖∂(t,x)u
(n−1)(s)‖∞ds

)
and

P (n)(t) ≤
◦
P +

∫ t

0

‖∂xu(n−1)(s)‖∞ds,

where
◦
P bounds the v-support of the data.

Define Q(n)(t) := max0≤k≤n ‖∂(t,x)u
(k)(t)‖∞. Then

Q(n)(t) ≤ C
(
(1 + t)5(1 + P (n)(t))5 +

∫ t

0

(t− s)(1 + P (n)(s))6Q(n)(s) ds
)
,

and by Gronwall’s lemma,

Q(n)(t) ≤ C
(
(1 + t)5(1 + P (n)(t))5 exp

(
t2(1 + P (n)(t))6

))
.
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If we insert this into the estimate for P (n) we find that

P (n)(t) ≤
◦
P + C

∫ t

0

(1 + s)5(1 + P (n)(s))5 exp
(
s2(1 + P (n)(s))6

)
ds, t ≥ 0. (3.1)

Hence by induction, P (n)(t) ≤ P (t), n ∈ N, t ∈ [0, T [, where P is the maximal
solution of the integral equation corresponding to (3.1), which exists on some time
interval [0, T [ whose length is determined by

◦
P and the norms of the initial data

entering the constant C. In addition, ∂(t,x)u
(n)(t) are bounded in terms of P (t) on

that interval.
For the rest of the proof we now argue on a bounded, arbitrary, but fixed time

interval [0, T0] ⊂ [0, T [. Constants denoted by C may now depend on T0 and the
bounds established in Step 1.
Step 2 (Uniform bounds on ∂2u(n) and ∂zf

(n)):
By Lemma 2.3 (i) and (iii),

‖∂zf
(n)(t)‖∞ ≤ C

(
1 +

∫ t

0

(
1 + ‖∂2

(t,x)u
(n−1)(s)‖∞‖∂zf

(n)(s)‖∞
)
ds

)
, (3.2)

‖∂2
(t,x)u

(n)(t)‖∞ ≤ C
(
(1 + log∗( sup

0≤t≤T0

‖∂xf (n)(t)‖∞) +
∫ t

0

‖∂2
(t,x)u

(n−1)(s)‖∞ds
)
.

(3.3)
Applying Gronwall’s lemma to (3.2) yields

‖∂zf
(n)(t)‖∞ ≤ C exp

(
C

∫ t

0

(1 + ‖∂2
(t,x)u

(n−1)(s)‖∞)ds
)
. (3.4)

Inserting this into (3.3) we obtain

‖∂2
(t,x)u

(n)(t)‖∞ ≤ C + C

∫ t

0

(1 + ‖∂2
(t,x)u

(n−1)(s)‖∞)ds,

and by induction,
‖∂2

(t,x)u
(n)(t)‖∞ ≤ CeCT0 .

The bound on ‖∂zf
(n)(t)‖∞ now follows from (3.4).

Step 3 (Uniform Cauchy property of f (n)(t) and ∂xu(n)(t)):
Introduce

fm,n = f (m) − f (n), um,n = u(m) − u(n)

and note that

Sfm,n = (∂xu(n−1))∂vfm,n + ∂xum−1,n−1∂vf (m).

As in the uniqueness part we derive the estimates

‖∂xum,n(t)‖∞ ≤ C

∫ t

0

(‖∂xum−1,n−1(s)‖∞ + ‖fm,n(s)‖∞)ds

and

‖fm,n(t)‖∞ ≤ C

∫ t

0

‖∂xum−1,n−1(s)‖∞ds.

Combining these we obtain

‖∂xum,n(t)‖∞ ≤ C

∫ t

0

‖∂xum−1,n−1(s)‖∞ds,



10 M. KUNZINGER, G. REIN, R. STEINBAUER, G. TESCHL EJDE-2005/01

and hence by induction,

‖∂xum,n(t)‖∞ ≤ C
(Ct)k

k!
, k = min(m,n).

So ∂xu(n)(t) is a uniform Cauchy sequence, and the same is true for f (n)(t).
Step 4 (Uniform Cauchy property of ∂zf

(n)(t) and ∂2
(t,x)u

(n)(t)):
We begin by establishing a bound on ‖∂2

(t,x)u
m,n(t)‖∞. Using the representation of

Lemma 2.2, proceeding on a term-by-term basis and again using a splitting as in
the uniqueness part we obtain

‖∂2
(t,x)u

m,n(t)‖∞ ≤ C

∫ t

0

(
‖∂2

(t,x)u
m−1,n−1(s)‖∞ + ‖∂zf

m,n(s)‖∞
)

ds. (3.5)

Here the critical TT -kernel is estimated as in the proof of Lemma 2.3 letting τ →
t. For the other terms we use the boundedness assertions as well as the Cauchy
properties already obtained for the lower derivatives.

Next we prove that the characteristics converge uniformly. Writing Z(n)(s, t, z) =
(X(n)(s, t, z), V (n)(s, t, z)), z = (x, v), where we omit the arguments if there is no
danger of misinterpretation, we find

∣∣ d

ds
(X(n) −X(m))

∣∣ ≤ |V (n) − V (m)|,∣∣ d

ds
(V (n) − V (m))

∣∣ = |∂xu(n−1)(X(n))− ∂xu(m−1)(X(m))|

≤ |∂xu(n−1)(X(n))− ∂xu(n−1)(X(m))|

+ |∂xu(n−1)(X(m))− ∂xu(m−1)(X(m))|

≤ C |X(n) −X(m)|+ δm,n.

Here the expression δm,n converges to zero if m,n → ∞ by the Cauchy property
of ∂xu(n) and we have used the boundedness of ∂2

xu(n). Combining these two
estimates and again using Gronwall’s lemma we obtain the claimed convergence
of the characteristics, i.e., Z(n)(s, t, z) converges uniformly for 0 ≤ s ≤ T0; the
convergence is also uniform w.r.t. the parameters t and z.

Writing Z(n)(s) for Z(n)(s, t, z) the analog of equation (5.3) for iterates and
vanishing g implies

∂zf(t, z) = ∂z

◦
f (Z(n)(0))−

∫ t

0

∂zf
(n)(s, Z(n)(s)) ∂2

xu(n−1)(s,X(n)(s)) ds,

and hence

|∂zf
m,n(t, z)| ≤ |∂z

◦

f (Z(m)(0))− ∂z

◦

f (Z(n)(0))|

+
∫ t

0

∣∣∣∂zf
(m)(s, Z(m)(s)) ∂2

xu(m−1)(s,X(m)(s))

− ∂zf
(n)(s, Z(n)(s)) ∂2

xu(n−1)(s,X(n)(s))
∣∣∣ ds.
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The first term vanishes in the limit m,n → ∞, and we split the second term into
the following four parts:∫ t

0

(
|∂zf

(m)(s, Z(m)(s))− ∂zf
(m)(s, Z(n)(s))| |∂2

xu(m−1)(s,X(m)(s))|

+ |∂zf
(m)(s, Z(n)(s))| |∂2

xu(m−1)(s,X(m)(s))− ∂2
xu(m−1)(s,X(n)(s))|

+ |∂zf
(m)(s, Z(n)(s))− ∂zf

(n)(s, Z(n)(s))| |∂2
xu(m−1)(s,X(n)(s))|

+ |∂zf
(n)(s, Z(n)(s))| |∂2

xu(m−1)(s,X(n)(s))− ∂2
xu(n−1)(s,X(n)(s))|

)
ds.

(3.6)

The first two vanish in the limit m,n → ∞ by Lemma 3.2 below while the latter
two may be estimated due to the boundedness of ∂2

xu(n) and ∂zf
(n). Hence

‖∂zf
m,n(t, z)‖∞ ≤ δm,n + C

∫ t

0

(
‖∂zf

m,n(s)‖∞ + ‖∂2
xum−1,n−1(s)‖∞

)
ds,

where again δm,n → 0 if m,n →∞. Another application of Gronwall’s lemma gives

‖∂zf
n,m(t, z)‖∞ ≤ δm,n + C

∫ t

0

‖∂2
xum−1,n−1(s)‖∞ds. (3.7)

We finally insert the last inequality into equation (3.5) to obtain

‖∂2
(t,x)u

m,n‖∞ ≤ δm,n + C

∫ t

0

‖∂2
(t,x)u

m−1,n−1(s)‖∞ds

and, by iteration for each l ∈ N

‖∂2
(t,x)u

m,n‖∞ ≤ δm,n eC +
BClT l

0

l!
,

on [0, T0], where B is a bound for ‖∂2
(t,x)u

m‖∞. This proves the required Cauchy
property for ‖∂2

(t,x)u
n‖∞ while the one for ‖∂zf

n(s)‖∞ follows from equation (3.7),
thereby finishing the proof. �

It remains to show that the first two terms in (3.6) indeed vanish if m,n →∞,
which amounts to showing that ∂zf

(n) as well as ∂2
(t,x)u

(n) are uniformly continuous,
with modulus of continuity uniform in n. One could be tempted to use the mean
value theorem but suitable estimates on the second order derivatives of f (n) and
the third order derivatives of u(n) are not available. We begin by defining

δn(t, η) := sup
{
|∂zf

(n)(t, z)− ∂zf
(n)(t, z′)| | z, z′ ∈ R6, |z − z′| ≤ η

}
,

θn(t, η) := sup
{
|∂2

(t,x)u
(n−1)(t, x)− ∂2

(t,x)u
(n−1)(t, y)| | x, y ∈ R3, |x− y| ≤ η

}
.

Note that both δn and θn are bounded uniformly in n. Our desired result now is

Lemma 3.2. On any time interval [0, T0] on which the iterates satisfy the bounds
established in Steps 1 and 2 in the proof of Thm. 3.1 the following is true: For all
ε > 0 there exist η0 > 0 and n0 ∈ N such that for all n ≥ n0

δn(t, η0), θn(t, η0) ≤ ε, t ∈ [0, T0].

We defer the rather technical proof of this lemma to Appendix 6. We now
establish a continuation criterion for the solutions obtained in Thm. 3.1:
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Theorem 3.3 (Continuation criterion). Let (f, u) be a solution of the relativistic
Vlasov-Klein-Gordon system on [0, T [ as in Theorem 3.1. Then the function

P (t) := sup
{
|v| |f(τ, x, v) 6= 0, 0 ≤ τ ≤ t, x ∈ R3

}
is bounded on [0, T [ iff ‖∂xu(t)‖∞ is bounded on [0, T [. Moreover, if T is chosen
maximally then any of these bounds implies that the solution is global, i.e., T = ∞.

Proof. To prove that a bound on ∂xu implies a bound on P we integrate the v-
component of the characteristic system. For the reverse direction we note that we
can estimate ∂xu in terms of P exactly as we did for the iterates in Step 1 of the
proof of Thm. 3.1, using Lemma 2.1.

Assume now that T is chosen maximally, that P is bounded on [0, T [, and T < ∞.
For any t0 ∈ [0, T [ we can use the arguments from the proof of Thm. 3.1 to show
that a solution with data f(t0), u(t0), ∂tu(t0) prescribed at t = t0 exists on some
time interval [t0, t0 +δ[, except that there is one technical catch here: u(t0), ∂tu(t0)
are not sufficiently regular to qualify as initial data in the context of Thm. 3.1. But
since we already have the solution on [0, t0] we can define the iterates used to obtain
the extended solution as follows: For (f0, u0) we take a global extension of the
existing solution with the required regularity and with ‖f (0)(t)‖∞, ‖∂zf

(0)(t)‖∞,
‖∂(t,x)u

(0)‖∞, ‖∂2
(t,x)u

(0)‖∞ bounded in t. Given the (n− 1)st iterate we define the
nth iterate exactly as before on [0,∞[. Then all these iterates coincide with the
solution on [0, t0], the data term in the formulas for the field, from which the loss
of derivatives arises, is the one determined by the data at t = 0, and it is straight
forward to repeat the arguments from the proof of Thm. 3.1 to extend the solution
to some time interval [0, t0 + δ[. The crucial point now is that the uniform bound
on the momenta implies that δ > 0 can be chosen independently of t0, cf. (3.1) and
the lines that follow. For t0 close enough to T this contradicts the maximality of
T . �

To conclude this section we briefly discuss conservation laws for the solutions
just obtained. Conservation of mass takes the ususal form, i.e.,

∂tρ + div j = 0

where the current is defined by j(t, x) :=
∫

v̂f(t, x, v)dv. The same holds true for
the energy of the system (cf. [11], (1.5)): in local form, we have

∂te + div η = 0

where the density resp. the flux is defined by e(t, x) =
∫ √

1 + v2fdv + 1
2 ((∂tu)2 +

(∂xu)2 + u2) + ρu resp. η(t, x) =
∫

fvdv + uj − ∂tu∂xu. On the other hand,
conservation of momentum seems not to be available in the expected form.

4. The one-dimensional case

In this section we illustrate that our continuation criterion from Thm. 3.3 holds
and hence classical solutions are global in the one dimensional case, where x, v ∈ R.
To do so we first need to derive the representation formulas for u and its derivatives
in this situation. The standard trick to do this is to observe that u(t, x) solves the
Klein-Gordon equation (1.2) iff w(t, x, ξ) = u(t, x)e−iξ solves the wave equation

(∂2
t − ∂2

x − ∂2
ξ )w = −e−iξρ
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with initial data transformed accordingly. This leads to

u(t, x) = uhom(t, x) + uinh(t, x), t ≥ 0, x ∈ R,

where uhom(t, x) is the solution of the homogeneous equation and depends only on
the initial data for u, and

uinh(t, x) = −1
2

∫ t

0

∫ x+(t−s)

x−(t−s)

ρ(s, y) J0(
√

(t− s)2 − |x− y|2) dy ds.

Hence

∂xuinh(t, x) = −1
2

∫ t

0

(ρ(s, x + (t− s))− ρ(s, x− (t− s))) ds

− 1
2

∫ t

0

∫ x+(t−s)

x−(t−s)

ρ(s, y)
J1(

√
(t− s)2 − |x− y|2)√

(t− s)2 − |x− y|2
(x− y) dy ds.

(4.1)
Assume now that we have a (local) solution of the Vlasov-Klein-Gordon system in
the one-dimensional case, with f(t) compactly supported for all t. As before,

P (t) := sup {|v| | f(τ, x, v) 6= 0, 0 ≤ τ ≤ t, x ∈ R} .

Since f is constant along characteristics of the Vlasov equation,

ρ(t, x) ≤ 2‖
◦
f‖∞P (t).

Integrating the Vlasov equation w.r.t. x and v implies that ‖f(t)‖1 = ‖ρ(t)‖1 =
‖
◦
f‖1, and since J1(ξ)/ξ is bounded on ξ > 0, (4.1) implies that

‖∂xu(t)‖∞ ≤ C(1 + t2 + tP (t)).

Integrating the v-component of the characteristic system implies that

P (t) ≤
◦
P + C(1 + t)3 + C

∫ t

0

sP (s) ds (4.2)

so that by Gronwall’s lemma P can not blow up on any bounded time interval.
Indeed, these estimates could be repeated for iterates defined as in the proof of

Thm. 3.1. Controlling first order derivatives of f (n) and second order ones of u(n)

would be much easier than in the three dimensional case, as should be obvious from
comparing Eqn. (4.1) with Lemma 2.1. Hence:

Theorem 4.1. Let
◦
f ∈ C1

c (R2), ◦
u1 ∈ C3

b (R), ◦
u2 ∈ C2

b (R). Then there exists a
unique classical solution

f ∈ C1([0,∞[×R2), u ∈ C2([0,∞[×R)

of the one-dimensional relativistic Vlasov-Klein-Gordon system, satisfying the ini-
tial conditions (1.5). If P denotes the solution of the integral equation corresponding
to (4.2) then

f(t, x, v) = 0 for |x| ≥
◦
R + t or |v| ≥ P (t)

with
◦
R determined by

◦
f .
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5. Appendix: Some facts on the Vlasov equation

In this appendix we collect some useful facts on the (inhomogeneous) Vlasov
equation for easy reference. As before, we combine x and v to one variable z =
(x, v), and we consider the initial value problem

∂tf(t, z) + G(t, z)∂zf(t, z) = g(t, z), f(0, z) =
◦
f (z),

where
◦
f , G g ∈ C1 and G is such that the solutions of the corresponding charac-

teristic system

ż(s) = G(s, z(s))

exist on the time interval on which G is defined. Denote by s 7→ Z(s, t, z) the
solution corresponding to the initial condition Z(t, t, z) = z and recall that

Z(s, t, z) = Z(s, r, Z(r, t, z))

and

∂tZ(s, t, z) + ∂zZ(s, t, z)G(t, z) = 0;

the second equation follows from the first by differentiating z0 = Z(s, t, Z(t, s, z0))
with respect to t and then choosing z0 = Z(s, t, z). The partial derivative ∂zZ(s, t, z)
satisfies the first variational equation

∂zŻ(s, t, z) = (∂zG)(s, Z(s, t, z)) ∂zZ(s, t, z),

with ∂zZ(s, s, z) = I the unit matrix, or equivalently,

∂zZ(s, t, z) = I +
∫ s

t

(∂zG)(r, Z(r, t, z))∂zZ(r, t, z)dr.

In addition, there is also the less obvious equation

∂zZ(s, t, z) = I +
∫ s

t

∂zZ(s, r, Z(r, s, z))(∂zG)(r, Z(r, t, z)) dr, (5.1)

which holds because the right hand side solves the first variational equation. How-
ever, note that the integrands in the last two equations are not equal.

We now apply these results to the Vlasov equation. Clearly the solution is given
by

f(t, z) =
◦
f (Z(0, t, z)) +

∫ t

0

g(s, Z(s, t, z)) ds. (5.2)

Moreover, ∂zf(t, z) exists and satisfies

∂zf(t, z) = (∂z

◦

f )(Z(0, t, z))−
∫ t

0

(∂zf)(s, Z(s, t, z)(∂zG)(s, Z(s, t, z))ds

+
∫ t

0

(∂zg)(s, Z(s, t, z) ds.

(5.3)

This can be seen by a straightforward calculation using equation (5.1). We should
remark that the usual way of deriving this equation is by differentiating the Vlasov
equation with respect to z and viewing the resulting equation as an inhomogeneous
Vlasov equation for ∂zf . This requires

◦
f , g ∈ C2 which was not necessary here.
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6. Proof of Lemma 3.2

We split the proof into several steps, following the approach used in [10, pp.
78–90] in the case of the Vlasov-Maxwell system. Throughout we argue on a time
interval [0, T0] on which the iterates satisfy all the bounds established in Steps 1
and 2 of the proof of Thm. 3.1.

Lemma 6.1. (Estimate on θn in terms of θn−1, δn−1)
There exists C > 0 such that ∀ε > 0 ∃η0 > 0 ∀η ∈ [0, η0] ∀t ∈ [0, T0] ∀n ∈ N,

θn(t, η) ≤ ε + C

(
η +

∫ t

0

(
θn−1(s, η) + δn−1(s, η)

)
ds

)
.

Proof. Using once more the representation formulas of Lemma 2.2 we proceed as
in Steps 1 and 2 of the proof of Theorem 3.1. �

Lemma 6.2. (Estimate on δn in terms of θn)
There exists C > 0 such that ∀ε > 0 ∃η0 > 0 ∀η ∈ [0, η0] ∀t ∈ [0, T0] ∀n ∈ N,

δn(t, η) ≤ ε + C

∫ t

0

θn(s, η)ds.

To prove Lemma 6.2 we need some additional information on the derivatives of
the characteristics which is provided by the following lemma.

Lemma 6.3 (Estimates on the derivatives of the characteristics). (i) There ex-
ists C > 0 such that ∀s, t ∈ [0, T0] ∀z, z′ ∈ R6 ∀n ∈ N

|Z(n)(s, t, z)− Z(n)(s, t, z′)| ≤ C|z − z′|
(ii) There exists C > 0 such that ∀s, t ∈ [0, T0], s ≤ t, ∀z, z′ ∈ R6 ∀n ∈ N

|∂zZ
(n)(s, t, z)− ∂zZ

(n)(s, t, z′)|

≤ C|z − z′|+
∫ t

s

∣∣∣∂2
xu(n−1)(τ,X(n)(τ, t, z))− ∂2

xu(n−1)(τ,X(n)(τ, t, z′))
∣∣∣ dτ.

Proof. Part (i) follows immediately from equation (5.1). As to (ii), we only treat the
terms involving x-derivatives; the ∂v-terms may be estimated in the same fashion.
So we start with the term |∂xiX

(n)(s, t, z) − ∂xiX
(n)(s, t, z′)|, 1 ≤ i ≤ 3. By an

elementary calculation, cf. [10, pp. 83–85], we obtain

|∂s∂xi
X(n)(s, t, z)− ∂s∂xi

X(n)(s, t, z′)|

≤ 2|∂xiV
(n)(s, t, z)− ∂xiV

(n)(s, t, z′)|

+ 5|∂xi
V (n)(s, t, z)− ∂xi

V (n)(s, t, z′)| |V (n)(s, t, z)− V (n)(s, t, z′)|.

(6.1)

Using

∂s∂xi
V (n)(s, t, z) = −∂xi

∂xu(n−1)(s,X(n)(s, t, z)) ∂xi
X(n)(s, t, z)

we obtain
|∂s∂xi

V (n)(s, t, z)− ∂s∂xi
V (n)(s, t, z′)|

≤ |∂2
xu(n−1)(s,X(n)(s, t, z))− ∂2

xu(n−1)(s,X(n)(s, t, z′))| |∂xiX
(n)(s, t, z)|

+ |∂2
xu(n−1)(s,X(n)(s, t, z′))| |∂xi

X(n)(s, t, z)− ∂xi
X(n)(s, t, z′)|.

(6.2)

Using (i) and equations (6.1) and (6.2), we obtain

|∂xiZ
(n)(s, t, z)− ∂xiZ

(n)(s, t, z′)|
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≤ C
(
|z − z′|+

∫ t

s

|∂xiZ
(n)(τ, t, z)− ∂xiZ

(n)(τ, t, z′)|dτ

+
∫ t

s

|∂2
xu(n−1)(τ,X(n)(τ, t, z))− ∂2

xu(n−1)(τ,X(n)(τ, t, z′))|dτ
)
.

Another appeal to Gronwall’s lemma completes the proof of the lemma. �

Proof of Lemma 6.2. We only treat the ∂vf1(n)-terms; the ∂xf (n)-terms can be
estimated analogously. Again writing z = (x, v) respectively z′ = (y, w) we find

∂vf (n)(t, z)− ∂vf (n)(t, z′)|

≤ |∂z

◦

f (Z(n)(0, t, z))| |∂vZ(n)(0, t, z)− ∂vZ(n)(0, t, z′)|

+ |∂vZ(n)(0, t, z′)| |∂z

◦

f (Z(n)(0, t, z))− ∂z

◦

f (Z(n)(0, t, z′))|.

(6.3)

The second term in the above estimate is bounded by ε for large n, t ∈ [0, T0] and
|z − z′| suitably small by the fact that ∂zZ

(n) is uniformly (in n) bounded, the
uniform continuity of the data ∂z

◦
f and Lemma 6.3 (i).

By Lemma 6.3 (ii) and the fact that the characteristics are uniformly bounded
the first term in equation (6.3) may be estimated by

C1|z − z′|+ C1

∫ t

0

∣∣∣∂2
xu(n−1)(τ,X(n)(τ, t, z))− ∂2

xu(n−1)(τ,X(n)(τ, t, z′))
∣∣∣ dτ.

Denote by C2 the maximum of C1 and C from Lemma 6.3 (i). Set C = (d2C2e+1)C1

where dre denotes the smallest integer bigger or equal to r. We claim that this
constant verifies the assertion. Indeed, let ε > 0, and η ∈ [0, η0] with η0 :=
ε/(2C1 + 1). Let z, z′ ∈ R6 with |z − z′| ≤ η, n ∈ N and τ, t ∈ [0, T0]. Then by
Lemma 6.3 (i)

|Z(n)(τ, t, z)− Z(n)(τ, t, z′)| ≤ 2C2η.

Together with the fact that θn(τ, kη) = kθn(τ, η) for all k ∈ N this gives

|∂2
xu(n−1)(τ,X(n)(τ, t, z))− ∂2

xu(n−1)(τ,X(n)(τ, t, z′))|
≤ θn(τ, 2C2η) ≤ θn(τ, (1 + d2C2e)η)

≤ (1 + d2C2e)θn(τ, η).

Summing up we obtain

|∂vf (n)(t, z)− ∂vf (n)(t, z′)| ≤ ε + C

∫ t

0

θn(τ, η) dτ.

�

Proof of Lemma 3.2. Combining Lemma 6.1 and Lemma 6.2 we obtain:

∀ε > 0 ∃η0 > 0 ∀η ∈ [0, η0], t ∈ [0, T0], n ∈ N : θn(t, η) ≤ C
(
ε +

∫ t

0

θn−1(s, η)ds
)
,

which by iteration shows that

∀ε > 0 ∃η0 > 0 ∃n0 ∈ N ∀n ≥ n0, t ∈ [0, T ] : θn(t, η0) ≤ ε.

The claim concerning δn now immediately follows from Lemma 6.2. �
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