Electron. J. Diff. Eqns., Vol. 2004(2004), No. 61, pp. 1-15.

Asymptotically almost periodic and almost periodic solutions for a class of evolution equations

Eduardo Hernandez M, Mauricio L. Pelicer, & Jose P. C. dos Santos

Abstract:
In this paper we study the existence of asymptotically almost periodic and almost periodic solutions for the partial evolution equation
$$ \frac{d}{dt} (x(t)+g(t,x(t))=Ax(t)+f(t,Bx(t)),
  $$
where $A$ is the infinitesimal generator of an analytic semigroup on a Banach space $X$, $B$ is a closed linear operator, and $f$, $g$ are given functions.

Submitted February 20, 2004. Published April 21, 2004.
Math Subject Classifications: 34K14, 34K30.
Key Words: Almost periodic, asymptotically almost periodic, semigroup of linear operators.

Show me the PDF file (281K), TEX file, and other files for this article.

Eduardo Hernandez M.
Departamento de Matematica
Instituto de Ciencias Matematicas de Sao Carlos
Universidade de Sao Paulo, Caixa Postal 668
13560-970 Sao Carlos, SP. Brazil
email: lalohm@icmc.sc.usp.br
Mauricio L. Pelicer
Departamento de Matematica
Instituto de Ciencias Matematicas de Sao Carlos
Universidade de Sao Paulo, Caixa Postal 668
13560-970 Sao Carlos, SP. Brazil
email: mpelicer@icmc.sc.usp.br
Jose P. C. dos Santos
Departamento de Matematica
Instituto de Ciencias Matematicas de Sao Carlos
Universidade de Sao Paulo, Caixa Postal 668
13560-970 Sao Carlos, SP. Brazil
email: zepaulo@icmc.sc.usp.br

Return to the EJDE web page