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DAMPED SECOND ORDER LINEAR DIFFERENTIAL
EQUATION WITH DEVIATING ARGUMENTS: SHARP

RESULTS IN OSCILLATION PROPERTIES

LEONID BEREZANSKY & YURY DOMSHLAK

Abstract. This article presents a new approach for investigating the oscil-
lation properties of second order linear differential equations with a damped
term containing a deviating argument

x′′(t)− [P (t)x(r(t))]′ + Q(t)x(l(t)) = 0, r(t) ≤ t.

To study this equation, a specially adapted version of Sturmian Comparison
Method is developed and the following results are obtained:
(a) A comprehensive description of all critical (threshold) states with respect
to its oscillation properties for a linear autonomous delay differential equation

y′′(t)− py′(t− τ) + qy(t− σ) = 0, τ > 0, ∞ < σ <∞.

(b) Two versions of Sturm-Like Comparison Theorems. Based on these The-
orems, sharp conditions under which all solutions are oscillatory for specific

realizations of P (t), r(t) and l(t) are obtained. These conditions are formu-
lated as the unimprovable analogues of the classical Knezer Theorem which is

well-known for ordinary differential equations (P (t) = 0, l(t) = t).
(c) Upper bounds for intervals, where any solution has at least one zero.

1. Introduction

It is well-known that many results for second order linear ordinary differential
equations were obtained for the equation

y′′(t) + a(t)y(t) = 0, (1.1)

but not for the equation

x′′(t)− (P (t)x(t)))′ + Q(t)x(t) = 0 (1.2)

with damping term (P (t)x(t)))′. The reason is the following: it is easy to transform
(1.2) into (1.1) by the substitution

x(t) = y(t) exp
{1

2

∫
P (t)dt

}
, (1.3)

where a(t) := Q(t) − 1
4P 2(t) − 1

2P ′(t). After this transformation the solutions of
(1.2) and (1.1) have the same zeros.
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Consider now a second order linear delay differential equation without delay in
the damping part

(lx)(t) := x′′(t)− (P (t)x(t)))′ + Q(t)x(l(t)) = 0. (1.4)

The substitution (1.3) transforms (1.4) into the following equation

y′′(t) + a(t)y(t) + b(t)y(l(t)) = 0, (1.5)

where

a(t) = −1
4
P 2(t)− 1

2
P ′(t), b(t) = Q(t) exp

{
− 1

2

∫ t

l(t)

P (s)ds
}
.

Hence every result on oscillation properties of (1.5) without a damping term implies
the corresponding result for (1.4).

The situation is dramatically changed for an equation with delay in the damping
term:

(lx)(t) := x′′(t)− (P (t)x(r(t)))′ + Q(t)x(l(t)) = 0. (1.6)
There is no good substitution which transforms (1.6) into an equation without a
damping term. Hence we have to investigate (1.6) itself.

It is important to note that the delay in the damping term significantly changes
oscillating properties of this equation. Consider, for example, an autonomous equa-
tion

x′′(t)− px′(t) + qx(t− σ) = 0, −∞ < σ < ∞, t ≥ t0. (1.7)

It is well known that for every −∞ < p < ∞ and q > p2

4 all solutions of (1.7) are
oscillatory.

On the other hand, an equation with a delay in the damping term

x′′(t)− px′(t− τ) + qx(t− σ) = 0, τ > 0, σ ≤ τ, p < 0 (1.8)

has a nonoscillatory solution for any q.
Oscillation properties of damping equations were studied in [7, 8, 9, 10, 11]

in which very general nonlinear differential equations with delay were considered.
Unfortunately, in [7, 8, 9, 10, 11] there are no new results on (1.6) and even for
(1.4). The purpose of the present paper is to obtain such results.

Our main tool is Sturmian Comparison Method (SCM) which was developed in
[1] by one of the authors of this paper for various classes of differential and difference
equations. For delay differential equations of the first and the second order this
method was described in details in [1, Chap.4]. The further development of SCM
for various kinds of differential equations one can find in the papers [2, 3, 4, 5].

We will explain here the main idea of this method. One of the most important
results in the qualitative theory of ordinary differential equations is the classical

Theorem 1.1 (Sturmian Comparison Theorem). Suppose there exists a positive
solution of the inequality

l̃y := y′′(t) + a(t)y(t) ≥ 0, t ∈ (t1, t2), (1.9)

such that y(t1) = y(t2) = 0 and b(t) ≥ a(t), t ∈ (t1, t2). Then the inequality

lx := x′′(t) + b(t)x(t) ≤ 0 (1.10)

has no positive solutions on (t1, t2).

The above theorem implies the following result.
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Theorem 1.2 (Sturmian Oscillation Comparison Theorem). Suppose b(t) ≥ a(t),
t ∈ (t0,∞), and all solutions of the equation l̃y = 0 are oscillatory. Then all
solutions of the equation lx = 0 are also oscillatory.

There are several investigations devoted to extensions of Theorem 1.2 to various
classes of functional differential equations, including nonlinear differential equations
with delays. We will not follow this direction, since SCM is concerned with the
generalization just of Theorem 1.1 but not of Theorem 1.2 for various classes of
functional differential equations.

It is worth to note that Theorem 1.1 is formulated for a finite interval (t1, t2),
but not for a semiaxis. Thus it allows not only to obtain conditions of oscillation
of all solutions but also to estimate the length of a sign-preservation interval.

The most important advantage of SCM is the fact, that for the application of
this method it is sufficient to construct only one solution of (1.9) (“Testing inequal-
ity”), satisfying some required properties. Thus to the best of our knowledge this
approach is the unique constructive method in the oscillation theory of functional
differential equations.

We present here a version of SCM which is specially adapted to second order
delay damped differential equation (1.6). However first we consider oscillation prop-
erties of (1.4) without delay in the damping term. To this end we do not need to
develop a new theory.

2. Oscillation Properties of (1.4)

Consider (1.4) with monotone increasing delay argument l(t) < t and denote by
k(t) the inverse function of l(t). A classification of oscillation properties of (1.4) is
based on the following statement which was published long time ago.

Theorem 2.1 ([1, Lemma 4.4 , Theorem 6.2.4]). Let be l(t2) > t1, ϕ(t) > 0,
z(t) ≥ 0, ϕ, z ∈ C2[l(t1), k(t2)],∫ t2

t1

ϕ(s)ds = π, 0 <

∫ t

l(t)

ϕ(s)ds <
π

2
, t ∈ [t1, k(t2)]. (2.1)

If

a(t) ≥ ã(t) := ϕ2(t) +
ϕ′′(t)
2ϕ(t)

− 3
4

(
ϕ′(t)
ϕ(t)

)2

+ z′(t)− z2(t)

− z(t)
ϕ′(t)
ϕ(t)

− 2ϕ(t)z(t) cot
∫ k(t)

t

ϕ(s)ds

(2.2)

and

b(t) ≥ b̃(t) := 2l′(t)z[l(t)]
√

ϕ(t)ϕ[l(t)] csc
∫ t

l(t)

ϕ(s)ds exp
{ ∫ t

l(t)

z(s)ds
}
, (2.3)

then (1.5) has no positive solution on [l(t1), t2] .

Corollary 2.2. Suppose

ϕ(t) > 0;
∫ ∞

ϕ(t)dt = +∞,

∫ t

l(t)

ϕ(s)ds <
π

2
; z(t) ≥ 0

and (2.2)-(2.3) hold on (t0,∞). Then all solutions of (1.5) are oscillatory and,
moreover, every solution of (1.5) has at least one zero on any interval (l(t1), k(t2))
when l(t2) > t1 and

∫ t2
t1

ϕ(t)dt = π.
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As was mentioned in Introduction, the substitution (1.3) in (1.4) does not change
the oscillation properties of (1.4) and transforms it into (1.5), where

a(t) := −1
4
P 2(t)− 1

2
P ′(t), b(t) := Q(t) exp

{
− 1

2

∫ t

l(t)

P (s)ds
}
.

Thus (2.1)–(2.3) represent easily verified conditions formulated in terms of (1.4)
only.

One can illustrate the quality of these conditions by the following example.

Example 2.3. Let in (1.4) P (t) := p
t , p = const, l(t) := t

µ , µ > 1 and so k(t) = µt.
Let in Theorem 2.1 ϕ(t) := ν

t , ν > 0, z(t) := s
t , s = const > 0. Then

t2ã(t) :=
1
4

+ ν2 − s2 − 2νs cot(ν lnµ),

t2b̃(t) := 2νsµs+ 1
2 csc(ν lnµ),

exp
{
− 1

2

∫ t

l(t)

P (s)ds
}

= µ−
p
2 ; t2a(t) = −p2

4
+

p

2
.

Conditions (2.2)–(2.3) take a form

−p2

4
+

p

2
≥ 1

4
+ ν2 − s2 − 2νs cot(ν lnµ),

t2Q(t)µ−
p
2 ≥ 2νsµs+ 1

2 csc(ν lnµ).
(2.4)

Denote by sν the positive root of a quadratic equation

s2 + 2νs cot(ν lnµ)− 1
4
(p− 1)2 − ν2 = 0, (2.5)

which exists for all µ > 1 and ν > 0 is sufficiently small. Then (2.4)1 and (2.4)2
turn into an equality and into the following inequality

t2Q(t) ≥ 2νsν
µs+ 1+p

2

sin(ν lnµ)
, ∀t (2.6)

respectively. Suppose

s0 := lim
ν→0

sν =
(p− 1)2 lnµ

2
√

4 + (p− 1)2 ln2 µ + 4
.

Let t1 = T in Theorem 2.1 be sufficiently large. By (2.1) we have∫ t2

T

ϕ(s)ds = π ⇐⇒ t2 = T exp
π

ν
.

Then (l(t1), t2) = (µT, T exp π
ν ), and we have the following statement.

Corollary 2.4. Let

lim inf
t→∞

t2Q(t) = C >
2s0µ

1+p
2 +s0

lnµ
:= B(p). (2.7)

Then all solutions of the equation

x′′(t)−
[p

t
x(t)

]′
+ Q(t)x

(
t

µ

)
= 0 (2.8)

are oscillatory. Moreover, there exists ν > 0 such that every solution of (2.8) has
at least one zero on any interval (T

µ , T e
π
ν ) for sufficiently large T .
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Remark. Condition (2.7) is the best possible for every p in the following sense. By
direct calculations one can check, that (2.8) with Q(t) := B(p)

t2 has a nonoscillatory
solution x(t) = ts0+

1+p
2 . Let us notice, that for p = 0 (i.e. for the equation without

a damping term) this fact was mentioned in [1, p.177].

3. Critical states of the second order damped autonomous equation

Instead of (1.8) without loss of generality we will consider here the equation

x′′(t)− px′(t− 1) + qx(t− σ) = 0, −∞ < σ < ∞, t ≥ 0, (3.1)

since one can transform (1.8) into (3.1) by rescaling.

Definition. We will say that (3.1) is in a critical state (CS) with respect to its
oscillation properties if there exists an eventually positive solution x(t) > 0, t ≥ t0
of (3.1), while an equation

z′′(t)− pz′(t− 1) + (q + ε)z(t− σ) = 0

has no such solution for every ε > 0. In this case the pair of numbers {p; q} is said
to be a critical pair.

It is well known that for a wide class of autonomous linear differential equations
with deviating arguments, in particular, for (3.1), the following statement holds:

All solutions of the equation are oscillatory if and only if its char-
acteristic quasipolynomial does not change its sign for every λ ∈
(−∞,∞).

In particular, all solutions of (3.1) are oscillatory if and only if its characteristic
quasipolynomial is eventually positive:

Fp,q(λ) := F (λ) = λ2 − pλe−λ + qe−λσ > 0, λ ∈ (−∞,∞).

On the other hand, (3.1) is in CS if and only if the following conditions hold

F (λ) ≥ 0 ∀λ ∈ (−∞,∞)

∃λ̄ : F (λ̄) = 0.
(3.2)

Indeed, (3.2)2 implies that (3.1) has a solution x(t) = eλ̄t, and (3.2)1 provides that
Fp,q+ε(λ) > 0, for all λ.

Hence CS {p; q} implies that λ̄ is a solution of the system

F (λ) = 0

F ′(λ) = 0.
(3.3)

Note that the existence of a solution of (3.3) for some pair {p, q} does not imply
that this pair is critical.

Rewrite (3.3) in the form

pe−λλ− qe−λσ − λ2 = 0

pe−λ(1− λ) + qe−λσσ − 2λ = 0.
(3.4)
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Then the pair {p, q} (which may or may not be critical) can be presented in the
parametric form

p =
λ(2 + λσ)

1 + λ(σ − 1)
eλ

q =
λ2(1 + λ)

1 + λ(σ − 1)
eλσ

(3.5)

where −∞ < λ < ∞. The pair {p, q} belongs to the quadrant {p ≥ 0, q ≥ 0} if

0 ≤ λ <
1

1− σ
, when −∞ < σ < 1,

0 < λ < ∞, when σ ≥ 1.
(3.6)

The pair {p, q} represented by (3.5) cannot be in CS if

lim
λ→−∞

F (λ) = −∞; lim
λ→∞

F (λ) = ∞. (3.7)

A pair {p < 0, q > 0} cannot be in CS. For −∞ < σ ≤ 1 this fact follows from
(3.7). For σ > 1 this fact follows from the boundedness of F (λ) from below.

Suppose (3.3) is solvable for two pairs {p, q1} and {p, q2}, where q1 < q2. Then
the first pair is not a CS, but the second one may be CS.

Let us give without additional explanations the full description of CS for (3.1):
(1) −∞ < σ < 1: A pair {p, q} is a critical one if λ ∈ [0, 1

1−σ ) in (3.5). In this case

q = q(p) ≈

{
p2

4 , 0 < p � 1
1

(1−σ)ep + 3−2σ
(1−σ)2 e

σ
1−σ + o(1), p → +∞.

(3.8)

The last expression is the right asymptote for q = q(p).
(2) σ = 1: A pair {p, q} is a critical one if λ ∈ [0,∞) in (3.5). In this case (3.8)1
holds and also q(p) ≈ p ln p as p →∞ (i.e. λ →∞).
(3) 1 < σ < 2: A pair {p, q} is a critical one if λ ∈ (−∞,− 1

σ−1 )
⋃

[0,∞) in (3.5). In
this case (3.8)2 holds for p → −∞ (i.e. λ → − 1

σ−1 − 0). This is the left asymptote,
(3.8)1 holds and, in addition,

q = q(p) ≈

{
|p|σ| ln |p||2−σ, p → 0− 0
pσ(ln p)2−σ, p → +∞ (i.e. λ → +∞).

(3.9)

(4) σ = 2: A pair {p, q} is a critical one if λ ∈ (∞,∞) and q(p) = p2

4 .
(5) σ > 2: A pair {p, q} is a critical one if λ ∈ (− 1

σ−1 ,∞) in (3.5). In this case
q = q(p) has the same left asymptote as in the case (3), and

q(p) ≈

{
p2

4 , p → 0 (i.e.λ → 0)
pσ(ln p)2−σ, p → +∞.

4. The Sturm-like comparison theorems

Consider the inequality

(lx)(t) := x′′(t)− [P (t)x(r(t))]′ + Q(t)x(l(t)) ≤ 0, t ∈ (a, b), (4.1)

where r(t), l(t) are monotone increasing continuous differentiable functions,

lim
t→∞

r(t) = lim
t→∞

l(t) = ∞, r(t) ≤ t.
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(We do not assume that l(t) ≤ t). Denote

eext := {t∈̄(a, b) : l(t) ∈ (a, b)}, eint := {t ∈ (a, b) : l(t)∈̄(a, b)}.

In particular, if l(t) ≤ t, then eext = (b, k(b)), eint = (a, k(a)). If l(t) ≥ t, then
eext = (k(a), a), eint = (k(b), b). Here k(t) and q(t) are the inverse functions for l(t)
and r(t), respectively. Consider also the inequality

(l̃y)(t) := y′′(t) + q′(t)P [q(t)]y′(q(t)) + k′(t)Q̃[k(t)]y[k(t)] ≥ 0, t ∈ (a, b). (4.2)

For arbitrary continuous on (a, q(b))
⋃

eext and possesing all needed derivatives
function y(t), we have the following equalities:∫ b

a

x′′(t)y(t)dt = x′(b)y(b)− x′(a)y(a)− x(b)y′(b) + x(a)y′(b) +
∫ b

a

y′′(t)x(t)dt,∫ b

a

Q(t)x(l(t))y(t)dt =
∫

(a,b)\eint

[Q(t)− Q̃(t)]x(l(t))y(t)dt +
∫

eint

Q(t)x(l(t))y(t)dt

−
∫

eext

Q̃(t)x(l(t))y(t)dt +
∫ b

a

k′(t)Q̃(k(t))y(k(t))x(t)dt,

−
∫ b

a

[P (t)x(r(t))]′ y(t)dt = −P (b)y(b)x(r(b)) + P (a)y(a)x(r(a))

+
∫ q(a)

a

P (t)x(r(t))y′(t)dt−
∫ q(b)

b

P (t)x(r(t))y′(t)dt

+
∫ b

a

q′(t)P (q(t))y′(q(t))x(t)dt.

These equalities imply the Main Identity-1:∫ b

a

(lx)(t)y(t)dt =
∫ b

a

(l̃y)(t)x(t)dt + [x′(b)− P (b)x(r(b))] y(b)

− [x′(a)− P (a)x(r(a))] y(a) + x(a)y′(a)− x(b)y′(b)

+
∫ q(a)

a

P (t)x(r(t))y′(t)dt−
∫ q(b)

b

P (t)x(r(t))y′(t)dt

+
∫

(a,b)\eint

[Q(t)− Q̃(t)]x(l(t))y(t)dt +
∫

eint

Q(t)x(l(t))y(t)dt

−
∫ b

a

Q̃(t)x(l(t))y(t)dt.

(4.3)
This Identity is a basis of the first Sturm-like Comparison Theorem for Damped
equation.

Theorem 4.1. Let be b > max{q(a); k(a)} and assume that:

(1) P (t) ≥ 0, t ∈ (a, q(a))
⋃

(b, q(b)).
(2) Q(t) ≥ 0, t ∈ eint.
(3) Q̃(t) ≥ 0, t ∈ eext.
(4)

Q(t) ≥ Q̃(t), t ∈ (a, b) \ eint. (4.4)
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(5) Inequality (4.2) has a solution y(t) such that

y(a) = y(b) = 0; y(t) > 0, t ∈ (a, b); y(t) ≤ 0, t ∈ eext; (4.5)

y′(t) ≥ 0, t ∈ (a, q(a)); y′(t) ≤ 0, t ∈ (b, q(b)). (4.6)

(6) At least one of the inequalities (4.4)-(4.6) is strong on some subinterval.
Then there is no positive solution of (4.1) on (r(a), b)

⋃
eext.

Proof. Suppose (4.1) has a positive solution on (r(a), b)
⋃

eext. Then the left hand-
side of (4.3) is zero but all terms of the right hand-side are nonnegative and at least
one is positive. We have a contradiction. �

Remark. For the case P (t) ≡ 0 (i.e. without the damping term) this Theorem
was published in [1, Theorem 6.2.4, p.112].

Now, we state one more version of Sturm-like Comparison Theorem for (4.1),
which is based on another Main Identity-2 which differs from (4.3). We will employ
the preceding notation and the following:

ēext := {t∈̄(a, b) : l[q(t)] ∈ (a, b)},
ēint := {t ∈ (a, b) : l[q(t)]∈̄(a, b)},

lq(t) := l[q(t)].
(4.7)

The last notion will be applied to some other double superpositions.
In particular case l(t) ≤ r(t) ≤ t we have

ēint = (a, rk(a)), ēext = (b, rk(b)). (4.8)

If l(t) ≥ r(t), then

ēint = (rk(b), b), ēext = (rk(a), a). (4.9)

An important particular case for us is r(t) := t − 1, l(t) := t − σ, q(t) = t + 1,
k(t) = t + σ, −∞ < σ < ∞ and

ēint = (a, a + σ − 1), ēext = (b, b + σ − 1) for σ ≥ 1,

ēint = (b + σ − 1, b), ēext = (a + σ − 1, a) for −∞ < σ ≤ 1.

We introduce an operator ˜̃
ly and the corresponding inequality

(˜̃ly)(t) := [r′(t)y′(r(t))]′ + P (q(t))y′(t) + k′(t)Q̃(k(t))y(rk(t)) ≥ 0, t ∈ (a, b).
(4.10)

Let y(t) be an arbitrary smooth function, such that y(a) = y(b) = 0. Then∫ q(b)

q(a)

x′′(t)y(r(t))dt

=
∫ b

a

[r′(t)y′(r(t))]′ x(t)dt + y′(a)
x(q(a))
q′(a)

− y′(b)
x(q(b))
q′(b)

−
∫ a

r(a)

q′(t)
[
y′(t)
q′(t)

]′
x(q(t))dt +

∫ b

r(b)

q′(t)
[
y′(t)
q′(t)

]′
x(q(t))dt.

(4.11)

−
∫ q(b)

q(a)

[P (t)x(r(t))]′y(r(t))dt =
∫ b

a

P (q(t))y′(t)x(t)dt. (4.12)
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∫ q(b)

q(a)

Q(t)x(l(t))y(r(t))dt

=
∫ b

a

k′(t)Q̃(k(t))y(rk(t))x(t)dt

+
∫

(a,b)\ēint

q′(t)
{

Q(q(t))− Q̃(q(t))
}

x(lq(t))y(t)dt

+
∫

ēint

q′(t)Q(q(t))x(lq(t))y(t)dt−
∫

ēext

q′(t)Q̃(q(t))x(lq(t))y(t)dt.

(4.13)

Equalities (4.11)-(4.13) imply Main Identity-2:∫ q(b)

q(a)

(lx)(t)y(r(t))dt

=
∫ b

a

(˜̃ly)(t)x(t)dt + y′(a)
x(q(a))
q′(a)

− y′(b)
x(q(b))
q′(b)

−
∫ a

r(a)

q′(t)
[
y′(t)
q′(t)

]′
x(q(t))dt +

∫ b

r(b)

q′(t)
[
y′(t)
q′(t)

]′
x(q(t))dt

+
∫

(a,b)\ēint

q′(t)
{

Q(q(t))− Q̃(q(t))
}

x(lq(t))y(t)dt

+
∫

ēint

q′(t)Q(q(t))x(lq(t))y(t)dt−
∫

ēext

q′(t)Q̃(q(t))x(lq(t))y(t)dt.

(4.14)
Now we can formulate the second version of a Sturm-like Comparison Theorem for
(4.1)

Theorem 4.2. Let b > max{q(a), k(a)} and the following conditions hold:

(1)

Q(q(t)) ≥ 0, t ∈ ēint, Q̃(q(t)) ≥ 0, t ∈ ēext. (4.15)

(2)

Q(q(t)) ≥ Q̃(q(t)), t ∈ (a, b) \ ēint. (4.16)

(3) Inequality (4.10) has a solution y(t) such that

y(a) = y(b) = 0; y(t) > 0, t ∈ (a, b); y(t) ≤ 0, t ∈ ēext, (4.17)[y′(t)
q′(t)

]′ ≤ 0, t ∈ (r(a), a);
[y′(t)
q′(t)

]′ ≥ 0, t ∈ (r(b), b). (4.18)

(4) At least one of the inequalities (4.15)-(4.18) is strong on one of the subin-
tervals.

Then (4.1) has no positive solution x(t) on (r(a), b)
⋃

ēext.

Remark. This Theorem, in contrast to Theorem 4.1 , does not impose any re-
striction on the sign of P (t).
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5. Testing Inequalities

In both Sturm-like Comparison Theorems there exists a requirement that an
“associated inequality” has a solution satisfying several conditions. In this chapter
we will construct the such inequalities ((4.2) and (4.10) in an explicit form. Later
we will employ these inequalities as testing inequalities in applications of Sturm-like
Comparison Theorems.

We will look for the solution of (4.2) in the form

y(t) = exp
{ ∫ t

a

z(s)ds
}

sin
∫ t

a

ϕ(s)ds, t ∈ (a, b). (5.1)

Here

ϕ(t) > 0,

∫ b

a

ϕ(s)ds = π,

∫ p(a)

a

ϕ(s)ds <
π

2
,

∫ p(b)

b

ϕ(s)ds <
π

2
, (5.2)

where p(t) = max{q(t), k(t)}. Then

y′(t) = exp
{ ∫ t

a

z(s)ds
}{

z(t) sin
∫ t

a

ϕ(s)ds + ϕ(t) cos
∫ t

a

ϕ(s)ds
}
,

y′(q(t)) = exp
{ ∫ t

a

z(s)ds
}

exp
{ ∫ q(t)

t

z(s)ds
}

×
{[

z(q(t)) cos
∫ q(t)

t

ϕ(s)ds− ϕ(q(t)) sin
∫ q(t)

t

ϕ(s)ds
]
sin

∫ t

a

ϕ(s)ds

+
[
z(q(t)) sin

∫ q(t)

t

ϕ(s)ds + ϕ(q(t)) cos
∫ q(t)

t

ϕ(s)ds
]
cos

∫ t

a

ϕ(s)ds
}
,

y′′(t) = exp
{ ∫ t

a

z(s)ds
}{

A(t) sin
∫ t

a

ϕ(s)ds + B(t) cos
∫ t

a

ϕ(s)ds
}
,

(5.3)
where

A(t) := z2(t) + z′(t)− ϕ2(t), B(t) := ϕ′(t) + 2ϕ′(t)z(t),

y(k(t)) = exp
{ ∫ t

a

z(s)ds
}

exp
{ ∫ k(t)

t

z(s)ds
}

×
{

cos
∫ k(t)

t

ϕ(s)ds sin
∫ t

a

ϕ(s)ds + sin
∫ k(t)

t

ϕ(s)ds cos
∫ t

a

ϕ(s)ds
}
.

Hence on the interval (a, b) we have

(l̃y)(t) ≥ 0 ⇐⇒ S(t) sin
∫ t

a

ϕ(s)ds + R(t) cos
∫ t

a

ϕ(s)ds ≥ 0



EJDE-2004/59 DAMPED SECOND ORDER LINEAR DIFFERENTIAL EQUATION 11

if and only if

S(t) := A(t) + q′(t)P (q(t)) exp
{ ∫ q(t)

t

z(s)ds
}

×
[
z(q(t)) cos

∫ q(t)

t

ϕ(s)ds− ϕ(q(t)) sin
∫ q(t)

t

ϕ(s)ds
]

+ k′(t)Q̃(k(t)) exp
{ ∫ k(t)

t

z(s)ds
}

cos
∫ k(t)

t

ϕ(s)ds ≥ 0,

R(t) := B(t) + q′(t)P (q(t)) exp

{∫ q(t)

t

z(s)ds

}

×
[
z(q(t)) sin

∫ q(t)

t

ϕ(s)ds + ϕ(q(t)) cos
∫ q(t)

t

ϕ(s)ds
]

+ k′(t)Q̃(k(t)) exp
{ ∫ k(t)

t

z(s)ds
}

sin
∫ k(t)

t

ϕ(s)ds = 0.

(5.4)

If sin
∫ k(t)

t
ϕ(s)ds is a positive or a negative function, then (5.4) can be transformed

into one of two equivalent systems on (a, b):

Q̃(k(t)) ≥ M(k(t)), R(t) = 0 (5.5)

or
Z(t) ≥ 0, R(t) = 0 (5.6)

where

Z(t) := A(t) sin
∫ k(t)

t

ϕ(s)ds−B(t) cos
∫ k(t)

t

ϕ(s)ds

+ q′(t)P (q(t)) exp
{ ∫ q(t)

t

z(s)ds
}

×
[
z(q(t)) sin

∫ k(t)

q(t)

ϕ(s)ds− ϕ(q(t)) cos
∫ k(t)

q(t)

ϕ(s)ds
]
,

k′(t)M(k(t)) := − exp
{
−

∫ k(t)

t

z(s)ds
}{

A(t) cos
∫ k(t)

t

ϕ(s)ds

+ B(t) sin
∫ k(t)

t

ϕ(s)ds + +q′(t)P (q(t)) exp
{ ∫ q(t)

t

z(s)ds
}

×
[
z(q(t)) cos

∫ k(t)

q(t)

ϕ(s)ds + ϕ(q(t)) sin
∫ k(t)

q(t)

ϕ(s)ds
]}

.

Thus if Q̃(t) and z(t) satisfy (5.4) (or (5.5), or (5.6), then (4.2) has a solution y(t)
of the form (5.1) for which (4.5)-(4.6) hold.

In case l(t) ≡ t, (5.4) changes its character because in this version (5.4)2 does
not contain Q̃(t) and turns into the equation in z(t) only:

R(t) := B(t) + q′(t)P [q(t)] exp
∫ q(t)

t

z(s)ds

×
[
z(q(t)) sin

∫ q(t)

t

ϕ(s)ds + ϕ(q(t)) cos
∫ q(t)

t

ϕ(s)ds
]

= 0.

(5.7)
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For (4.10), let us repeat all calculations done for (4.2). We will look for a solution
of (4.10) of the same form (5.1), where ϕ(t) and z(t) satisfy the same conditions
(5.2). After some calculations we have the following system on (a, b):

S̃(t) := r′′(t)
[
z(r(t)) cos

∫ t

r(t)

ϕ(s)ds + ϕ(r(t)) sin
∫ t

r(t)

ϕ(s)ds
]

+ [r′(t)]2
[
A(r(t)) cos

∫ t

r(t)

ϕ(s)ds + B(r(t)) sin
∫ t

r(t)

ϕ(s)ds
]

+ P (q(t))z(t) exp
{ ∫ t

r(t)

z(s)ds
}

+ k′(t)Q̃(k(t)) exp
{ ∫ rk(t)

r(t)

z(s)ds
}

cos
∫ rk(t)

t

ϕ(s)ds ≥ 0,

(5.8)

R̃(t) := r′′(t)
[
− z(r(t)) sin

∫ t

r(t)

ϕ(s)ds + ϕ(r(t)) cos
∫ t

r(t)

ϕ(s)ds
]

+ [r′(t)]2
[
−A(r(t)) sin

∫ t

r(t)

ϕ(s)ds + B(r(t)) cos
∫ t

r(t)

ϕ(s)ds
]

+ P (q(t))ϕ(t) exp
{ ∫ t

r(t)

z(s)ds
}

+ k′(t)Q̃(k(t)) exp
{ ∫ rk(t)

r(t)

z(s)ds
}

sin
∫ rk(t)

t

ϕ(s)ds = 0.

Instead of (5.8) one of the following two equivalent systems can be applied

Q̃(t) ≥ Ñ(t), R̃(t) = 0, (5.9)

or
Z̃(t) ≥ 0, R̃(t) = 0, (5.10)

where

k′(t)Ñ(k(t)) cos
∫ rk(t)

t

ϕ(s)ds

:= exp
{
−

∫ rk(t)

r(t)

z(s)ds
}{
− P (q(t))z(t) exp

∫ t

r(t)

z(s)ds

− r′′(t)
[
z(r(t)) cos

∫ t

r(t)

ϕ(s)ds + ϕ(r(t)) sin
∫ t

r(t)

ϕ(s)ds
]

− [r′(t)]2
[
A(r(t)) cos

∫ t

r(t)

ϕ(s)ds + B(r(t)) sin
∫ t

r(t)

ϕ(s)ds
]}

,

Z̃(t) := r′′(t)
[
z(r(t)) sin

∫ rk(t)

r(t)

ϕ(s)ds− ϕ(r(t)) cos
∫ rk(t)

r(t)

ϕ(s)ds
]

+ (r′(t))2
[
A(r(t)) sin

∫ rk(t)

r(t)

ϕ(s)ds−B(r(t)) cos
∫ rk(t)

r(t)

ϕ(s)ds
]

+ P (q(t))
[
z(t) sin

∫ rk(t)

t

ϕ(s)ds− ϕ(t) cos
∫ rk(t)

t

ϕ(s)ds
]
exp

∫ t

r(t)

z(s)ds.
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6. Applications of Sturm-like Comparison Theorems to Investigation
of some Typical Damped Equations

Consider the equation

x′′(t)− px′(t− 1) + Q(t)x(t− σ) = 0, −∞ < σ < ∞, p > 0. (6.1)

The equation
s(2 + sσ)

1 + s(σ − 1)
es = p (6.2)

has (a unique) root s > 0. This root s ∈ (0, 1
1−σ ) for −∞ < σ < 1 and s ∈ (0,∞)

for σ ≥ 1. The number q := s2(s+1)
1+s(σ−1)e

sσ together with p forms a critical pair {p, q}
for the autonomous equation

z′′(t)− pz(t− 1) + qz(t− σ) = 0. (6.3)

Theorem 6.1. If
lim inf
t→∞

Q(t) = C > q, (6.4)

then all solutions of (6.1) are oscillatory and there exists ν > 0 such that every
solution has at least one zero on any interval (T − 1, T + π

ν ) for sufficiently large
T .

Remark. The constant q in (6.4) is the best possible one. Indeed, (6.1) has a
nonoscillatory solution z(t) = est for Q(t) ≡ q.

Proof. The proof is based on Theorem 4.2. Let in (5.4) ϕ(t) := ν; z(t) =const,
which will be chosen later. Then (5.4) has the form

Q̃(t)ez(σ−1) cos ν(σ − 1) ≥ −e−z
[
(z2 − ν2) cos ν + 2νz sin ν

]
− pz

Q̃(t)ez(σ−1) sin ν(σ − 1) = −e−z
[
−(z2 − ν2) sin ν + 2νz cos ν

]
− pν

(6.5)

We will choose z and Q̃ as a solution of a system, which is stronger than (6.5), with
equality in (6.5)1 instead of the inequality. Then this new system is equivalent to
one of the following two systems:

F (ν, z) := pez − (z2 − ν2)
sin ν

ν
+ 2z cos ν = 0

Q̃ = −pz − e−z
[
(z2 − ν2) cos ν + 2νz sin ν

] , (6.6)

for σ = 1, and

Φ(ν, z) := (z2 − ν2)
sin νσ

ν
− 2z cos νσ + pez

[
z
sin ν(σ − 1)

ν
− cosν(σ − 1)

]
= 0

Q̃ =
e−σz

cos ν(σ − 1)
{
−(z2 − ν2) cos ν − 2zν sin ν − pezz

}
(6.7)

for σ 6= 1.
Evidently, a possible solution {z, Q̃} of (6.6) or (6.7) does not depend on t.

Consider first (6.6):

F ′z(ν, z) := pez − 2z
sin ν

ν
+ 2 cos ν,

F (0,−s) = pe−s − s2 − 2s =
s(2 + s)es

1
e−s − s2 − 2s = 0
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F ′z(0,−s) = s(2 + s) + 2s + 2 = s2 + 4s + 2 6= 0.

Then for sufficiently small ν there exists the implicit function z = z(ν) such that
z(0) = −s and F (ν, z(ν)) = 0. The number z(ν), which is constructed by this way,
is taken as the function z(t). From (6.6)2 we obtain

Q̃ = Q̃ν = −pzν − e−zν
[
(z2

ν − ν2) cos ν + 2νzν sin ν
]
,

lim
ν→0

Q̃ν = s2(2 + s)es − ess2 = s2(s + 1)es = q. (6.8)

Let us do the same calculations with (6.7):

Φ(0,−s) = s2σ + 2s +
s2σ + 2s

1 + s(σ − 1)
ese−s(−s(σ − 1)− 1) = 0,

Φ′z(ν, z)

= 2z
sin νσ

ν
− 2 cos νσ + pez

[
z
sin ν(σ − 1)

ν
− cos ν(σ − 1) +

sin ν(σ − 1)
ν

]
Φ′z(0,−s) = −2sσ − 2 + pe−s[−s(σ − 1)− 1 + σ − 1]

= −2sσ − 2 +
s2σ + 2s

1 + s(σ − 1)
[−s(σ − 1) + σ − 2]

= −σ2(1 + s)s2 − σs(s2 − 2s− 2)− 2(s2 − s− 1)
1 + s(σ − 1)

:= − h(s, σ)
1 + s(σ − 1)

,

We will prove that h(s, σ) > 0 in two domains:
(1) Let (σ, s) ∈ {σ > 1; s > 0}. Then

h(s, σ) = s3(σ − 1)σ + s2(σ2 + 2σ − 2) + s(2σ + 2) + 2 > s2 + 4s + 2 > 0.

(2) Let (σ, s) ∈ {−∞ < σ < 1; 0 < s < 1
1−σ}. Then h(s, σ) > 0 on the boundary

of this domain. Indeed,

h
(
s,

s− 1
s

)
= s + 1 > 0;h(s, 1) = s2 + 4s + 2 > 0;h(0, σ) = 2 > 0.

The domain (σ, s) in case 2o does not contains stationary points of h(s, σ) since
there are no solutions of the system

h′s = 0

h′σ = 0

in this domain. Indeed,

h′σ = 0 ⇔ σ =
s2 − 2s− 2
2s(1 + s)

⇔ 1
1− σ

− s = − s2(s + 2)
s2 + 4s + 2

< 0;

i.e. the point (σ0, s0) belongs to outside of the domain for every s. Thus Φ′z(0,−s) 6=
0 for ∀p > 0, σ 6= 1 and we can choose z = zν as a solution of (6.7)1. In addition,
from (6.7)2 we have

lim
ν→0

Q̃ν = eσs
{
− s2 + s

s(2 + σs)
1 + s(σ − 1)

ese−s
}

=
s2(1 + s)

1 + s(σ − 1)
eσs = q. (6.9)
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Conditions (6.9) and (6.4) imply that for sufficiently small ν we have Q̃ < C. Then
by (6.4) we have Q ≥ Q̃ which is condition 2 in Theorem 4.2. One needs to check
only (4.18): For t ∈ (a− 1, a) we have

y′′(t) ≤ 0 ⇐⇒ A(t) sin ν(t− a) + B(t) cos ν(t− a) ≤ 0

⇐⇒ −A(t) tan ν(a− t) + B(t) ≤ 0 ⇐⇒ −(z2
ν − ν2)

tan ν(a− t)
ν

+ 2zν ≤ 0

⇐= s2 tan ν(a− t)
ν

+ 2s > 0 ⇐= s > 0.

From the condition
∫ b

a
ϕ(t)dt = π we have b = a + π

ν . Then for t ∈ (b − 1, b) we
have

y′′(t) ≥ 0 ⇐⇒ A(t) sin(ν(t− b) + π) + B(t) cos(ν(t− b) + π) ≥ 0

⇐⇒ A(t) sin ν(t− b) + B(t) cos ν(t− b) ≤ 0.

The end of the calculations is similar to the previous case. All conditions of Theorem
4.2 hold. Then Theorem 6.1 is proven. �

We will strengthen Theorem 6.1 by formulating the following result which will
be called Knezer-like Theorem for (6.1).

Let be p > 0, s > 0, q > 0 denoted as in the beginning of section 6. Denote also
the constant

K(p, σ) :=
σ2s2(1 + s) + σs(−s2 + 2s + 2)− 2s2 + 2s + 2

8[1 + s(σ − 1)]
esσ. (6.10)

Theorem 6.2. If

lim inf
t→∞

{
[Q(t)− q]t2

}
= C > K(p, σ), (6.11)

then all solutions of (6.1) are oscillatory and there exists ν > 0 such that every
solution has at least one zero on any interval (T − 1, T exp π

ν ) for sufficiently large
T .

Proof. The proof is based on Theorem 4.2. Suppose first σ 6= 1 and set in (5.4),

ϕ(t) :=
ν

t
, z(t) := −s +

1
2t

+
β

t2
,

where β will be chosen later. Substitute k(t) = t+σ, q(t) = t+1, rk(t) = t+σ−1
in (5.3)-(5.4). Write out several asymptotic, where we denote f(t) ∼= g(t) instead
of f(t) = g(t) + o( 1

t2 ):

t

ν
ϕ(t + 1) ∼= 1− 1

t
+

1
t2

; cos
∫ t+σ

t

ϕ(s)ds ∼= 1− ν2σ2

2t2
,

cos
∫ t+σ

t+1

ϕ(s)ds ∼= 1− ν2(σ − 1)2

2t2
;

t

νσ
sin

∫ t+σ

t

ϕ(s)ds ∼= 1− σ

2t
+

σ2(2− ν2)
6t2

;

t

ν(σ − 1)
sin

∫ t+σ

t+1

ϕ(s)ds ∼= 1− σ − 1
2t

+
(2− ν2)(σ − 1)2 + 3σ + 3

6t2
;

t

νσ
sin

∫ t+σ−1

t−1

ϕ(s)ds ∼= 1 +
2− σ

2t
+

2σ2 − 6σ + 6− σ2ν2

6t2
;

t

ν
sin

∫ t

t−1

ϕ(s)ds ∼= 1 +
1
2t

+
2− ν2

6t2
;
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νσ

t
csc

∫ t+σ

t

ϕ(s)ds ∼= 1 +
σ

2t
+

σ2(2ν2 − 1)
12t2

;

z(t + 1) ∼= −s +
1
2t

+
2β − 1

2t2
;

∫ t+σ

t

z(s)ds ∼= −sσ +
σ

2t
+

4σβ − σ2

4t2
,

exp
∫ t+σ

t

z(s)ds ∼= e−sσ

[
1 +

σ

2t
+

8σβ − σ2

8t2

]
;

exp
{
−

∫ t+σ

t

z(s)ds
} ∼= esσ

[
1− σ

2t
+

3σ2 − 8σβ

8t2

]
;

A(t) := z2(t) + z′(t)− ϕ2(t) ∼= s2 − s

t
− 1 + 4s + 4ν2 + 8βs

4t2
;

t

ν
B(t) ∼= −2s− 2s

t
+

2β − 2s

t2
.

Using these asymptotic results, rewrite (5.4)1 as follows

Q̃(t + σ) ≥ Ñ(t + σ)

:=
exp

{
−

∫ t+σ−1

t
z(s)ds

}
cos

∫ t+σ−1

t
ϕ(s)ds

{
− pz(t)− exp

{
−

∫ t

t−1

z(s)ds
}

×
[
A(t− 1) cos

∫ t

t−1

ϕ(s)ds + B(t− 1) sin
∫ t

t−1

ϕ(s)ds
]}

= . . .

= esσ
(
1− σ − 1

2t
+

3(σ − 1)2 − 8β(σ − 1) + 4(σ − 1)2ν2

8t2

) {
D0 + D1

1
t

+ D2
1
t2

}
,

where

D0 :=
2s2 + σs3

1 + s(σ − 1)
− s2 =

s2(1 + s)
1 + s(σ − 1)

= qe−sσ,

D1 = − 2s + σs2

2(1 + s(σ − 1))
+

s2

2
+ s =

σ − 1
2

qe−sσ,

D2 = −β
2s + σs2

1 + s(σ − 1)
+

s2 + 8βs2

8
− s

2
+

1
4
− 2s− 4βs + ν2(s2 + 4s + 2)

2

= β
(σ − 1)s2(1 + s)

1 + s(σ − 1)
+

s2 + 4s + 2
8

+ ν2 s2 + 4s + 2
2

.

After these calculations we have

Q̃(t + σ) ≥ N̄(t + σ) ∼= q +
K(p, σ) + ν2L(σ, s)

t2
, (6.12)

in which the explicit form of L(σ, s) is unessential. Note also that (6.12) does not
contain parameter β. Equality (5.4)2) turns into

Q̃(t + σ) =
exp

{
−

∫ t+σ−1

t
z(s)ds

}
sin

∫ t+σ−1

t
ϕ(s)ds

{
− p

ν

t
+ exp

{
−

∫ t

t−1

z(s)ds
}

×
[
A(t− 1) sin

∫ t

t−1

ϕ(s)ds−−B(t− 1) cos
∫ t

t−1

ϕ(s)ds
]}

∼= q +
1
t2

{
L1(s, σ)ν2 − βR(s, σ) + K̃(p, σ)

}
,

(6.13)

where R(s, σ) := 1
σ−1 [q(σ−1)2+4esσ]. The explicit form of L1 and K̃ is unessential.
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Evidently R(s, σ) 6= 0, ∀s > 0, σ 6= 1, hence there exists β such that

K(p, σ) < L1 − βR + K̃ = C1 < C (6.14)

and choose ν > 0 small, such that

K(p, σ) + ν2L(s, σ) < C1 < C, (6.15)

which is possible due to (6.11). This inequality implies (2) in Theorem 4.2 for
sufficiently large t. We need now to check (4.18) only. For (4.18)1) we have for
t ∈ (a− 1, a):

y′′(t) ≤ 0 ⇔ s2 sin
(
ν ln

t

a

)
− 2νs

t
cos

(
ν ln

t

a

)
< 0 ⇔

⇔ −s2 tan
(
ν ln

a

t

)
− 2νs

t
< 0 ⇔ g(t) := s2 tan

(
ν ln

a

t

)
+

2νs

t
> 0.

Since

g′(t) = −s2 ν

t cos2(ν ln a
t )
− 2νs

t
< 0,

it follows that inft∈(a−1,a) g(t) = g(a) = 2νs
a > 0, for all s > 0.

For (4.18)2 due to
∫ b

a
ϕ(s)ds = π we have for t ∈ (b− 1, b):

y′′(t) > 0 ⇔ s2 sin
(
π + ν ln

t

a

)
− 2νs

t
cos

(
π + ν ln

t

a

)
> 0 ⇔

s2 sin
(
ν ln

t

a

)
− 2νs

t
cos

(
ν ln

t

a

)
< 0,

etc. (see the above calculations). For the case σ 6= 1 Theorem 6.2 is proven.
Now suppose σ = 1. In this case we have

k(t) = q(t) = t + 1, rk(t) = t, q = s2(s + 1)esσ,

where s ≥ 0 is the unique root of the equation s(2 + s)es = p. System (5.4) has
now the form

Q̃(t + 2) ≥ M(t) := −pz(t + 1)− exp
{
−

∫ t+1

t

z(s)ds
}

×
[
A(t) cos

∫ t+1

t

ϕ(s)ds + B(t) sin
∫ t+1

t

ϕ(s)ds
]

R̃(t) := −A(t) sin
∫ t+1

t

ϕ(s)ds + B(t) cos
∫ t+1

t

ϕ(s)ds

+ pϕ(t + 1) exp
{ ∫ t+1

t

z(s)ds
}

= 0.

(6.16)

Rewrite (6.16)2 after the substitution ϕ(t) := ν
t and expressions A(t) and B(t) in

the form

z′(t) + z2(t)− ν2

t2
− pν

t sin[ν ln(1 + 1
t )]

exp
{ ∫ t+1

t

z(s)ds
}
−

ν2[2z(t)− 1
t ]

t2 tan[ν ln(1 + 1
t )]

= 0.

(6.17)
This equality is an equation with respect to z(t) only in (T,∞) for sufficiently large
T .
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All coefficients in (6.17) are analytic functions in a neighborhood of the infinity.
Therefore there exists a solution z(t) of (6.17) which has the following expansion
in some neighborhood of the infinity :

z(t) =
∞∑

n=0

an

tn
, t ∈ (T,∞).

We will look for a few terms of this expansion:

z(t) = a0 +
a1

t
+

a2

t2
+ o(t−2).

We have

A(t) := z2(t) + z′(t)− ϕ2(t) =
[
a0 +

a1

t
+

a2

t2
]2 − a1

t2
− ν2

t2
+ o(t−2)

= a2
0 +

a0a1

t
+ [a2

1 + 2a0a2 − a1 − ν2]
1
t2

+ o(t−2),

B(t) := ϕ′(t) + 2ϕ(t)z(t) = − ν

t2
+

2ν

t

[
a0 +

a1

t
+

a2

t2
+ o(t−2)

]
=

ν

t

[
2a0 +

2a1 − 1
t

+
2a2

t2
+ o(t−2)

]
.

Then ∫ t+1

t

z(s)ds =
∫ t+1

t

[
a0 +

a1

s
+

a2

s2
+ o(s−2)

]
ds

= a0 + a1 ln(1 +
1
t
) +

a2

t(t + 1)
+ o(t−2)

= a0 + a1

(1
t
− 1

2t2
)

+
a2

t2
+ o(t−2)

= a0 +
a1

t
− a1 − 2a2

2t2
+ o(t−2),

exp
{ ∫ t+1

t

z(s)ds
}

= ea0

{
1 +

(a1

t
− a1 − 2a2

2t2
)

+
1
2!

(a1

t
− a1 − 2a2

2t2
)2 + o(t−2)

}
= ea0

{
1 +

a1

t
+

a2
1 − a1 + 2a2

2t2
+ o(t−2)

}
.

Substituting these expressions and the previous asymptotic in (6.17) and taking
into account that p = s(2 + s)es, q = s2(1 + s)es, we obtain

−
[
a2
0 +

2a0a1

t
+ (a2

1 + 2a0a1 − a1 − ν2)
1
t2

+ o(t−2
]ν

t

[
1− 1

2t
+

2− ν2

6t2
+ o(t−2

]
+

ν

t

[
2a0 +

2a1 − 1
t

+
2a2

t2
+ o(t−2

][
1− ν2

2t2
+ o(t−2

]
+s(2 + s)es ν

t

[
1− 1

t
+

1
t2

+ o(t−2
]
ea0

[
1 +

a1

t
+

a2
1 − a1 + 2a2

2t2
+ o(t−2

]
= 0.

(6.18)
Now we equate to zero all three coefficients of the left-hand side of the last equation.
The first one has the form

−a2
0 + 2a0 + s(2 + s)es+a0 = 0, (6.19)



EJDE-2004/59 DAMPED SECOND ORDER LINEAR DIFFERENTIAL EQUATION 19

so a0 = −s is the unique root of this equation. Equating to zero the coefficient of
1
t we have:

s2

2
+ 2sa1 + 2a1 − 1 + s(2 + s)(a1 − 1) = 0,

then

a1 =
1
2
. (6.20)

We will see further that the coefficient a2 is not applied, so we will not look for this
coefficient.

Thus, substituting z(t) = −s + 1
2t + a2

t2 + o(t−2) into (5.5)1) we have

M(t) ∼= −2s(2 + s)es
[
− s +

1
2t

+
2a2 − 1

2t2
]

− es
[
1− 1

2t
− 3− 8a2

8t2
]{[

s2 − s

t
− 1 + 8sa2 + 4ν2

4t2
](

1− ν2

2t2
)

+
ν2

t2
[
− 2s +

a2

t2
][

1− 1
2t

+
2− ν2

6t2
]}

∼= s2(1 + s)es +
1
t2

[es

8
(s2 + 4s + 2) + ν2L2(s)

]
∼= q +

1
t2

[
K(p, 1) + ν2L2(s) + o(t−2)

]
.

Note that the latter expression does not contain the coefficient a2. We can choose ν
so small that the inequality K(p, 1) + νL2(s) < C holds together with (6.5), which
was necessary to prove. For the case σ = 1 Theorem 6.2 is proven too. �

Remark. Condition (6.11) is unimprovable. Indeed, the function x0(t) :=
√

test

is a nonoscillatory solution of (6.1), where

Q(t + σ) := Q0(t + σ) =
px′0(t + σ − 1)− x

′′

0 (t + σ)
x0(t)

. (6.21)

We have x′0(t) =
√

test(s + 1
2t ),

x′0(t + σ − 1)

=
√

testes(σ−1)
{ 1

2t

[
1− σ − 1

2t
+ o(t−1)

]
+ s

[
1− σ − 1

2t
− (σ − 1)2

8t2
+ o(t−2

]}
,

x′′0(t) =
√

test
[
s2 +

s

t
− 1

4t2
+ o(t−2)

]
,

x′′0(t + σ)

=
√

testesσ
{
− 1

4t2
[1 + o(1)] +

s

t

[
1− σ

2t
+ o(t−1)

]
+ s2

[
1 +

σ

2t
− σ2

8t2
+ o(t−2)

]}
.

Substituting these expressions into (6.21) we obtain (after calculations)

Q0(t) = q +
K(p, σ)

t2
+ o(t−2).

Thus it is impossible to improve the constant K(p, σ) in (6.11) for any s > 0 and
any σ.
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Consider an application of Theorem 4.1 and Theorem 4.2 to the following typical
equation

lx := x′′(t)−
[ p

t− 1
x(t− 1)

]′ + Q(t)x(t− σ) = 0, σ 6= 0. (6.22)

Here P (t) := p
t−1 , l(t) = t− σ, r(t) = t− 1, k(t) = t + σ, and q(t) = t + 1.

Case p > 0: In this case we will apply Theorem 4.1. Rewrite (5.4) as follows:

Q̃(t + σ) = −
exp

{
−

∫ t+σ

t
z(s)ds

}
sin

∫ t+σ

t
ϕ(s)ds

{
B(t) +

p

t
exp

∫ t+1

t

z(s)ds

×
[
z(t + 1) sin

∫ t+1

t

ϕ(s)ds + ϕ(t + 1) cos
∫ t+1

t

ϕ(s)ds
]}

,

Q̃(t + σ) ≥ M(t + σ)

:= − exp
{
−

∫ t+σ

t

z(s)ds
}{

A(t) cos
∫ t+σ

t

ϕ(s)ds

+ B(t) sin
∫ t+σ

t

ϕ(s)ds +
p

t
exp

∫ t+1

t

z(s)ds

×
[
z(t + 1) cos

∫ t+σ

t+1

ϕ(s)ds + ϕ(t + 1) sin
∫ t+σ

t+1

ϕ(s)ds
]}

(6.23)

Suppose ϕ(t) := ν
t , z(t) := α

t + β
t2 , where α and β will be chosen later. Let us first

check (5) of Theorem 4.1. For t ∈ [a, a + 1] we have

y′(t) ≥ 0 ⇔ z(t) sin
(
ν ln

t

a

)
+

ν

t
cos

(
ν ln

t

a

)
≥ 0 ⇔

⇔ α tan
(
ν ln

t

a

)
+ ν ≥ 0 ⇔ α ln

t

a

tan
(
ν ln t

a

)
ν ln t

a

+ 1 ≥ 0.
(6.24)

Since limν→0
tan(ν ln t

a )

ν ln t
a

= 1, Inequality (4.6) is fulfilled if for sufficiently small ν we

have α ln t
a + 1 > 0, t ∈ [a, a + 1]. The last one is true if

α ln
a + 1

a
+ 1 > 0 ⇔ α

a
+ 1 > 0,

that is for every α, if a is sufficiently large. Since
∫ b

a
ϕ(s)

s ds = π we will obtain
similarly that y′(t) ≤ 0, t ∈ [b, b + 1].

Now, we return to (6.23)2:

A(t) = z2 + z′ − ϕ2 =
α2 − α− ν2

t2
+ o(t−2);

B(t) =
ν(2α− 1)

t2
+

2νβ

t3
+ o(t−3);

M(t + σ) = −
{α2 − α− ν2

t2
+

p

t

[α

t
+ o(t−1)

]}
⇒ t2M(t + σ) = α(1− p)− α2 + ν2 + o(1).

(6.25)

Let α = α0 = 1−p
2 . Then

sup
α

[α(1− p)− α2] = α0(1− p)− α2
0 =

(1− p)2

4
.
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Hence

t2M(t + σ) =
(1− p)2

4
+ ν2 + o(1).

From (6.23)1 we have

Q̃(t + σ) ∼= −
1− ασ

t
νσ
t

{ν(2α− 1)
t2

+
2νβ

t3

+
p

t

(
1 +

α

t

)[( α

t + 1
+

β

(t + 1)2
)ν

t
+

ν

t

(
1− ν2

2t2
)]}

∼= − t

σ

{2α− 1 + p

t2
+

2β + 2pα

t3
+ o(t−3)

}
.

Since α = α0 = (1− p)/2,

t2Q̃(t + σ) = − 2
σ

β − p(1− p)
σ

+ o(1). (6.26)

If from the beginning we require in (6.11) that

lim inf
t→∞

t2Q(t) := C >
(1 + p)2

4
, (6.27)

and we choose ν small such that
(1 + p)2

4
+ ν2 < C (6.28)

and β such that
(1 + p)2

4
+ ν2 < − 2

σ
β − p(1− p)

σ
< C,

then M(t) < Q̃(t) < Q(t), and the choice of a function Q̃(t) with required properties
is completed.
Case p < 0: Since an application of Theorem 4.1 is impossible in this case, we
employ Theorem 4.2. First consider (4.18) and rewrite (4.18)1 for t ∈ [a− 1, a] as

y′′(t) ≤ 0 ⇔ A(t) sin(ν ln
t

a
) + B(t) cos

(
ν ln

t

a

)
≤ 0

⇔ −A(t) sin(ν ln
a

t
) + B(t) cos(ν ln

a

t
) ≤ 0

⇔ −α2 − α− ν2

t2
tan(ν ln

a

t
) +

ν(2α− 1)
t2

+
2νβ

t3
< 0

⇐ (−α2 + α + ν2) tan(ν ln
a

t
) + ν(2α− 1) < 0.

Evidently, the condition 2α − 1 < 0 is necessary (put t = a). However it is also
sufficient, since tan(ν ln a

t ) ∼= ν/a and it becomes small for sufficiently large a.
Thus, let α < 1/2. Since

∫ b

a
ν
s ds = ν ln b

a = π. Then (4.18)2 can be rewritten for
t ∈ [b− 1, b] in the form

A(t) sin
∫ t

a

ϕ(s)ds + B(t) cos
∫ t

a

ϕ(s)ds ≥ 0

⇔ A(t) sin
( ∫ b

a

ϕ(s)ds +
∫ t

b

ϕ(s)ds
)

+ B(t) cos
( ∫ b

a

ϕ(s)ds +
∫ t

b

ϕ(s)ds
)
≥ 0

⇔ −A(t) sin
∫ t

b

ϕ(s)ds−B(t) cos
∫ t

b

ϕ(s)ds ≥ 0
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which is proven above. Then for α < 1/2 Condition (4.18) is fulfilled. Condition
(2) of Theorem 4.2 holds if

t2M̃(t + σ) = α(1− p)− α2 + ν2 + o(1), (6.29)

but here we can not assume α = α0 = 1−p
2 since p < 0, α0 > 1/2, and hence (6.19)

is not satisfied.
Let α = 1

2 in (6.29), that is

t2M̃(t + σ) =
1− 2p

4
+ ν2 + o(1). (6.30)

Then (6.23) turns into

Q̃(t + σ) exp
{ ∫ t+σ−1

t

z(s)ds
}

sin
(
ν ln

t + σ − 1
t

)
+

p

t

ν

t

+ exp
{
−

∫ t

t−1

z(s)ds
}{[

− α2 − α− ν2

t2
+

(2α− 1)β
t3

]
sin

(
ν ln

t

t− 1
)

+
[ν(2α− 1)

t2
+

2νβ

t3
]
cos(ν ln

t

t− 1
)
}

+ o(t−3) = 0,

or

Q̃(t + σ) =
1

ν(σ−1)
t

{ν(2α− 1− p)
t2

+ o(t−2)
}
.

Since α = 1/2,
tQ̃(t + σ) = − p

σ − 1
+ o(t−1). (6.31)

We have p < 0, so we should require σ > 1 to satisfy Condition (1) of Theorem 4.2.
Evidently, (6.30)–(6.31) imply Q̃(t) > M̃(t), t � t0, that is (6.23)2 is satisfied.

Now we can formulate the final result for (6.22).

Theorem 6.3. Suppose one of the two following conditions holds:
(a) p ≥ 0, σ 6= 0,

lim inf
t→+∞

[t2Q(t)] = C1 >
(1 + p)2

4
(6.32)

(b) p < 0, σ > 1,

lim inf
t→+∞

[tQ(t)] = C2 >
|p|

σ − 1
. (6.33)

Then all solutions of (6.22) are oscillatory and there exists ν > 0 such that all
solutions have at least one zero on any interval (T − 1, T exp π

ν ) for sufficiently
large T .

Remarks: (1) Equation (6.22) for case p > 0, σ 6= 0 has a nonoscillatory
solution x0(t) = t

p+1
2 and

Q(t) = Q0(t) :=

[
p

t−1x0(t− 1)
]′ − x′′0(t)

x0(t− σ)
==

1
t2

p(γ − 1)(1− 1
t )

γ−2 − γ(γ − 1)
(1− σ

t )γ
.

It is easy to see that

lim
t→∞

t2Q0(t) =
(1− p)2

4
.

Thus (6.32) which is apparently exact in order (t−2), but is not exact in constant.
Condition (6.33), apparently, is not exact, both in order and in constant.
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(2) The condition σ > 1 in the case p < 0 is not accidental. We remember that an
autonomous (3.1) with p < 0, τ = 1, σ ≤ 1 cannot be oscillatory for any q, but for
σ > 1 there exist such numbers q.

We will investigate here oscillation properties of another equation, which contains
unbounded delay in damped term. Consider the equation

x′′(t)−
[p

t
x
( t

µ

)]′ + Q(t)x(t) = 0, p > 0, µ > 1. (6.34)

Let be ϕ(t) := ν/t, ν > 0. Then

A(t) := z2(t) + z′(t)− ν2

t2
; B(t) :=

ν

t

[
2z(t)− 1

t

]
.

Substituting these equalities in (5.4) we have

S(t) := z2(t)− z′(t)− ν2

t2
+

p

t
exp

{ ∫ µt

t

z(s)ds
}

×
[
z(µt) cos(ν lnµ)− ν

µt
sin(ν lnµ)

]
+ Q̃(t) ≥ 0

R(t) :=
ν

t

[
2z(t)− 1

t

]
+

p

t
exp

{ ∫ µt

t

z(s)ds
}

×
[
z(µt) sin(ν lnµ) +

ν

µt
cos(ν lnµ)

]
= 0

or

Q̃(t) ≥ M(t) := −z′(t)− z2(t) +
ν2

t2
− p

t
exp

{ ∫ µt

t

z(s)ds
}

×
[
z(µt) cos(ν lnµ)− ν

µt
sin(ν lnµ)

]
N [z](t) := 2tz(t)− 1 + p exp

{ ∫ µt

t

z(s)ds
}

×
[
µtz(µt)

1
µν

sin(ν lnµ) +
1
µ

cos(ν lnµ)
]

= 0.

(6.35)

Equation (6.35)2 has an analytic solution z(t) in a neighborhood of infinity, such
that z(∞) = 0.

Let us find the first term of an expansion z(t) = α
t + . . . :

2α− 1 + pµα
[
α

1
µν

sin(ν lnµ) +
1
µ

cos(ν lnµ)
]

= 0

⇔ F (α; ν) := 2α− 1 + pµα−1
[
α lnµ

sin(ν lnµ)
ν lnµ

+ cos(ν lnµ)
]

= 0.

(6.36)

Consider also the limit equation of (6.36), where ν → 0:

F (α; 0) := 2α− 1 + pµα−1(α lnµ + 1) = 0. (6.37)

One can show that (6.37) has the unique root α0 (we omit calculations) and, more-
over, α0 ∈ [0, 1

2 ) for 0 < p ≤ µ and α0 ∈ (− 1
ln µ , 0) for p > µ.

On the other hand

F ′α(α0, 0) = 2pµα0−1 lnµ(2 + lnµ) > 0.
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Then (6.36) has a solution αν for 0 < ν < ν0. That is z(t) = αν

t + o(t−1) is a
solution of (6.35)2. Thus

M(t)t2 = αν − α2
ν + ν2 − pµαν−1[αν cos(ν lnµ)− ν sin(ν lnµ)] + o(t−2).

Since

αν −α2
ν + ν2− pµαν−1[αν cos(ν lnµ)− ν sin(ν lnµ)] = α2

0

[
1 + pµα0−1 lnµ

]
+ o(ν2),

the equality

lim inf
t→∞

t2Q(t) = C > α2
0

[
1 + pµα0−1 lnµ

]
:= K(p;µ) (6.38)

implies Q(t) > Q̃(t) for t > T . Then conditions (2)–(4) of Theorem 4.1 hold. Since
p > 0, Condition (1) also holds.

We check now (4.6) of (5). For t ∈ (a, µa) we have

y′(t) ≥ 0 ⇔ α0

t
sin

(
ν ln

t

a

)
+

ν

t
cos

(
ν ln

t

a

)
≥ 0

⇔ α0 tan
(
ν ln

t

a

)
+ ν ≥ 0 ⇔ α0 lnµ

tan
(
ν ln t

a

)
ν ln t

a

+ 1 ≥ 0.
(6.39)

Since limν→0
tan(ν ln t

a )
ν ln t

a

= 1 uniformly on t ∈ (a, µa) then an inequality α0 lnµ+1 >

0 implies (6.39) for sufficiently small ν > 0. Since∫ b

a

ϕ(s)ds = π ⇔ b = ae
π
ν

it follows that y′(t) ≤ 0, t ∈ (b, µb), which is the second part of (4.6). Thus we
have the following statement which is the exact analogue of the classical Knezerian
Theorem:

Theorem 6.4. Assume (6.38). Then all solutions of (6.34) are oscillatory, and,
moreover, there exists ν > 0 such that any solution has at least one zero on any
interval

(
T
µ , T e

π
ν

)
for sufficiently large T .

Remark. The constant K(p, µ) is an unimprovable in (6.38). Indeed, by direct
calculations one can check that x0(t) = t1−α0 is a non-oscillatory solution of (6.34)
with Q0(t) = Kt−2.

We will investigate in detail a particular case of (6.34) with p = µ, i.e. the
following equation

x′′(t)−
[µ

t
x
( t

µ

)]′ + Q(t)x(t) = 0, µ > 1. (6.40)

If p = µ (and only in this case) then (6.37) has the root α0 = 0. And so, in(6.38)
K(µ, µ) = 0. It means that there is no information about the main term of Kneze-
rian Minorant for Q(t) in (6.40).

Let ϕ(t) := ν
t ln t in (5.4). Hence

ϕ′(t) = −ν(1 + ln t)
t2 ln2 t

;
∫ µt

t

ϕ(s)ds =
ν lnµ

ln t

[
1− lnµ

2 ln t
+ o

( 1
ln t

)]
,

A(t) := z2(t) + z′(t)− ν2

t2 ln2 t
; B(t) :=

ν

t ln t

[
2z(t)− 1

t
− 1

t ln t

]
.
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Substituting all these equalities in (5.4), with p = µ, we obtain:

z2(t) + z′(t)− ν2

t2 ln2 t
+

µ

t
exp

{ ∫ µt

t

z(s)ds
}

×
[
z(µt) cos

∫ µt

t

ϕ(s)ds− ν

µt ln(µt)
sin

∫ µt

t

ϕ(s)ds
]
+ Q̃(t) ≥ 0 ,

ν

t ln t

[
2z(t)− 1

t
− 1

t ln t

]µ

t
exp

∫ µt

t

z(s)ds

×
[
z(µt) sin

∫ µt

t

ϕ(s)ds +
ν

µt ln(µt)
cos

∫ µt

t

ϕ(s)ds
]

= 0.

(6.41)

We will look for the main part of the solution z(t) of (6.41)2 in a neighborhood of
the infinity, that is a solution z(t) of the form

tz(t) =
∞∑

n=1

an

(ln t)n
.

Let us find the number β in z(t) = β
t ln t + o( 1

t ln t ). Since

exp
{ ∫ µt

t

z(s)ds
}

= 1 +
β lnµ

ln t
+ o

( 1
ln t

)
,

Equation (6.41)2 has the form
ν

t ln t

(2β − 1
t ln t

− 1
t

)
+

µ

t

(
1 +

β lnµ

ln t

)
×

[ β

µt ln(µt)
sin

(ν lnµ

ln t

)
+

ν

µt ln(µt)
cos

(ν lnµ

ln t

)
+ o

( 1
ln t

)]
= 0.

(6.42)

Applying the equality
1

ln(µt)
=

1
ln t

(
1− lnµ

ln t
+ o(

1
ln t

)
)
,

and multiplying all terms of (6.41)2 by t2 ln t, write its main terms:
2β − 1

ln t
− 1 +

(
1− lnµ

t

)(
1 +

β lnµ

ln t

)(
1 +

β lnµ

ln t

)
+ o

( 1
ln t

)
= 0

or
2β − 1

ln t
− 1 + 1 +

(2β − 1) lnµ

ln t
+ o

( 1
ln t

)
= 0 ⇒ β =

1
2
. (6.43)

Thus, z(t) = 1
2t ln t + o( 1

t ln t ) and we can write (6.41)1 as

Q̃(t) +
1

4t2 ln2 t
− 1 + ln t

2t2 ln2 t
− ν2

2t2 ln2 t
+

µ

t

[
1 +

lnµ

2 ln t
+ o

( 1
ln t

)]
{ 1

2µt ln(µt)
cos

ν lnµ

ln t
− ν

µt ln(µt)
ν lnµ

ln t
+ o

( 1
ln t

)}
≥ 0.

After some calculations we obtain

t2 ln2 tQ̃(t) ≥ 1 + lnµ

4
+ o(1).

Since ∫ b

a

ν

s ln s
ds = π ⇔ ν ln

[
ln b

ln a

]
= π ⇔ b = aeexp π

ν ,

we can formulate the following result.
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Theorem 6.5. Suppose in (6.40)

lim inf
t→∞

[t2 ln2 t Q(t)] = C >
1 + lnµ

4
. (6.44)

Then all its solutions are oscillatory. Moreover, there exists ν > 0 such that every
solution has at least one zero in any interval (T

µ , T exp π
ν ) for sufficiently large T .

This result is the best possible one in the following sense. The function
x0(t) := t

√
ln t is a nonoscillatory solution of (6.40) with

Q(t) = Q0(t) :=
1

x0(t)
{[µ

t
x0

( t

µ

)]′ − x′′0(t)
}
.

On the other hand, we can show that

lim
t→∞

{
t2 ln2 t Q0(t)

}
=

1 + lnµ

4
. (6.45)

Remark. This phenomenon is well-known for ordinary differential (1.2). Indeed,
substituting (1.3), where P (t) := 1

t , we transform (1.2) into (1.1) with a(t) =
Q(t) + 1

4t2 . Then by generalized Kneser Theorem [12, Theorem 7.1, Exercise 1.2,
Ch.11] the following statement holds

If

lim inf
t→∞

{
t2 ln2 t Q(t)

}
= C >

1
4
, (6.46)

then all solutions of the equation

x′′(t) +
[x(t)

t

]′ + Q(t)x(t) = 0 (6.47)

are oscillatory.

For differential equations with deviating arguments such phenomenon is de-
scribed for the first time here. Note, by the way, that (6.44) turns into (6.46)
when µ = 1.

Now, we apply Theorem 4.1 and Theorem 4.2 to the investigation of oscillation
properties of (1.6) with strong deviating arguments r(t) or l(t). We apply this
term when not only t − r(t) is unbounded but limt→∞

r(t)
t = 0 holds as well. For

example, the delay

t− r(t) = t− t

µ
=

µ− 1
µ

t, µ > 1

which was considered in the previous paragraph, is unbounded, but not strong in
our sense. A typical example of the strong deviating argument is r(t) = t1/µ, µ > 1.
Investigation of such equations usually meets difficulties. Below we will apply our
method to a typical equation with a strong delay. Consider the equation

x′′(t)−
[ p

tβ
x(t

1
µ )

]′ + Q(t)x(t
1
µ ) = 0, µ > 1; p > 0, β ≥ 1

µ
, (6.48)

and let us apply Theorem 4.1. Choose z(t) and Q̃(t) on (T,∞) for T sufficiently
large such that (5.6) is satisfied. We will seek z(t) in the form

z(t) =
s

t ln t
+

γ

t ln2 t
, (6.49)
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where parameters s and γ will be chosen later, and ϕ(t) is define as ϕ(t) = ν/(t ln t).
Then

A(t) =
1

t2 ln t

[
− s +

s2 − s− ν2 − γ

ln t
+ o

( 1
ln t

)]
,

B(t) =
ν

t2 ln t

[
− 1 +

2s− 1
ln t

+ o
( 1
ln t

)]
,

r(t) = l(t) = t1/µ, q(t) = k(t) = tµ,

∫ tµ

t

ϕ(s)ds = ν lnµ,

exp
∫ tµ

t

z(s)ds = µs
[
1 +

γ(µ− 1)
µ ln t

+ o
( 1
ln t

)]
.

Substituting all these expressions in (5.6) we obtain

Z(t) ≥ 0 ⇔
[
− s +

s2 − s− ν2 − γ

ln t
+ o

( 1
ln t

)]
sin(ν lnµ)

−
[
ν − 1 +

2s− 1
ln t

+ o
( 1
ln t

)]
ν cos(ν lnµ)− pνµs

tβµ−1

[
1 +

γ(µ− 1)
µ ln t

+ o
( 1
ln t

)]
≥ 0.

(6.50)
Consider two cases: β = 1

µ and β > 1/µ.
Case β = 1

µ : Equation (6.50) turns into[
− s sin(ν lnµ) + ν cos(ν lnµ)− νpµs

]
+

ν

ln t

[
s2 − s− γ − ν2)

sin(ν lnµ)
ν

− pµs−1(µ− 1)γ
]
+ o

( 1
ln t

)
≥ 0.

(6.51)

Put s = sν for sufficiently small ν > 0, where sν is the root of the equation

F (ν, s) :=
sin(ν lnµ)

ν lnµ
s lnµ− cos(ν lnµ) + pνs = 0. (6.52)

By the Implicit Function Theorem such a root exists since there exists the unique
root s = s0 < 1

ln µ of the equation

F (0, s) := s lnµ− 1 + pνs = 0, (6.53)

and F ′s(0, s0) = lnµ(1+pµs0) 6= 0. The coefficient γ in the second bracket in (6.50)
is negative, hence by choosing γ < γ0 one can carry out (6.50). The strict value of
γ0 is not important. Thus assume

z(t) :=
sν

t ln t
+

γ

t ln2 t
(6.54)

and ν > 0 is sufficiently small. Substituting (6.54) in (5.6)2), we obtain

µtµ−1Q̃(tµ) = [sin(ν lnµ)]−1
{

exp
{
−

∫ tµ

t

z(s)ds
}
B(t)

+ µtµ−1 p

t

[
z(tµ) sin(ν lnµ) +

ν

tµµ ln t
cos(ν lnµ)

]}
,

hence
µtµ+1 ln tQ̃(tµ) = D(p) + ε(ν, t),

where limν→0,t→∞ ε(ν, t) = 0 and

D(p) :=
1

lnµ

{
µ−s0 − p(s0 lnµ + 1)

}
=

s2
0 lnµ

µs0
. (6.55)
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Proceeding to a new time by the substitution of t instead of t
1
µ we obtain

t
µ+1

µ ln tQ̃(t) = D(p) + ε(ν, t
1
µ ). (6.56)

By the way, note that

lim
p→0

D(p) =
1

e lnµ
. (6.57)

Hence we have the following statement.

Theorem 6.6. Let be β = 1
µ , p > 0, µ > 1 in (6.48) and

lim inf
t→∞

{
t

µ+1
µ ln tQ̃(t)

}
= C > D(p). (6.58)

Then all solutions of (6.48) are oscillatory and there exists ν > 0 such that every
solution has at least one zero in any interval (T 1/µ, T exp(π/ν)) for sufficiently large
T .

Proof. It follows from Theorem 4.1 and the fact, that a pair {Q̃(t); z(t)} constructed
above satisfies (5.6). The interval (T

1
µ , T exp(π/ν)) coincides with the interval (a, b)

in Theorem 4.1. Indeed∫ b

T

ϕ(t)dt = π ⇔ ν

∫ b

T

dt

t ln t
= π ⇒ b = T exp(π/ν).

�

Remark. Condition (6.58) is unimprovable in the same sense: there exists (6.48)
such that

lim
t→∞

t
µ+1

µ ln tQ̃(t) = D(p), (6.59)

but, nevertheless, this equation has a nonoscillatory solution.
Indeed, let x0(t) := t(ln t)−s0 , where s0 is defined in (6.53). Then x0(t) is a

nonoscillatory solution of (6.48), where

Q(t) = Q0(t) :=
1

x0(t
1
µ )

{[ p

t
1
µ

x0(t
1
µ )

]′ − x′′0(t
1
µ )

}
.

After some calculations we get

Q(t) =
{
t

µ+1
µ ln t

}−1{
D(p)− s0(s0 + 1)

µs0 ln t

}
,

hence (6.58) holds.
Case β > 1/µ: One can write (6.50) as

[−s sin(ν lnµ) + ν cos(ν lnµ)] +
1

ln t
(s2 − s− γ − ν2) sin(ν lnµ) ≥ 0. (6.60)

After calculations as in the previous case with sν = (ν cos(ν lnµ))/(sin(ν lnµ), we
obtain

t
µ+1

µ ln tQ̃(t) =
1

e lnµ
+ ε(ν, t

1
µ ). (6.61)

Thus we have the statement.

Theorem 6.7. Let β > 1/µ, p > 0 in (6.48). Then the condition

lim inf
t→∞

{
t

µ+1
µ ln tQ(t)

}
= C >

1
e lnµ

implies the assertion of Theorem 6.6.



EJDE-2004/59 DAMPED SECOND ORDER LINEAR DIFFERENTIAL EQUATION 29

Now we show that it is possible to extend previous results to nonlinear damped
equations. Here we do not intend to cover the widest class of such equations, but
to present the sketch of the main idea only. Consider the nonlinear equation

z′′(t)− [P (t)z(r(t))]′ + F (t, z(l(t))) = 0, t ∈ (a, b), (6.62)

where F (t, u) satisfies the following “one-sided” estimation:

vF (t, v) ≥ Q̃(t)v2, ∀t ∈ (a, b)\eint, vF (t, v) ≥ 0, t ∈ eint, ∀v ∈ (−∞,∞). (6.63)

Theorem 6.8. Suppose for P (t), r(t), l(t), Q̃(t) Conditions (1), (3), (5), (6) of
Theorem 4.1 and (6.63) hold. Then (6.62) has no solution which is positive on
(r(a), b)

⋃
eext.

Proof. Suppose by contradiction that (6.62) has a solution z0(t) > 0, for t ∈
(r(a), b) ∪ eext. Then the linear equation

(lx)(t) := x′′(t)− [P (t)x(r(t))]′ +
F (t, z0(l(t))

z0(l(t))
x(l(t)) = 0, t ∈ (a, b) (6.64)

also has a positive solution x(t) := z0(t) on t ∈ (r(a), b)∪ eext. Equation (6.64) has
the form of (4.1) with Q(t) := F (t,x0(l(t))

x0(l(t))
. Equalities (6.63) and (6.64) imply that

conditions (2) and (4) of Theorem 4.1 hold. Then the statement of Theorem 6.8 is
a consequence of Theorem 4.1. �

Corollary 6.9. Let

ϕ(t) > 0,

∫ ∞
ϕ(t)dt = ∞

and let {Q̃(t); z(t)} be a solution of (5.5). Suppose (6.63) holds on (T,∞) for
sufficiently large T and Q̃(t) ≥ 0 on (T,∞). Then all solutions of (6.62) are
oscillatory. If ,in addition, (5.2) holds, then every solution of (6.62) has at least
one zero on any interval (r(a), b)

⋃
eext.
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