Marcelo M. Cavalcanti, Valeria N. Domingos Cavalcanti,
Juan A. Soriano, Joel S. Souza
Abstract:
In this article we study the homogenization and
uniform decay of the nonlinear hyperbolic equation
where
is a domain containing holes with
small capacity (i. e. the holes are smaller than a critical size).
The homogenization's proofs are based on the abstract framework
introduced by Cioranescu and Murat [8] for the study of
homogenization of elliptic problems. Moreover, uniform decay
rates are obtained by considering the perturbed energy method
developed by Haraux and Zuazua [10].
Submitted September 23, 2003. Published April 9, 2004.
Math Subject Classifications: 35B27, 35B40, 35L05
Key Words: Homogenization, asymptotic stability, wave equation.
Show me the PDF file (315K), TEX file, and other files for this article.
Marcelo M. Cavalcanti Universidade Estadual de Maringa 87020-900 Maringa - PR, Brasil email: mmcavalcanti@uem.br | |
Valeria N. Domingos Cavalcanti Universidade Estadual de Maringa 87020-900 Maringa - PR, Brasil email: vndcavalcanti@uem.br | |
Juan Amadeo Soraino Universidade Estadual de Maringa 87020-900 Maringa - PR, Brasil email: jaspalomino@uem.br | |
Joel S. Souza Departamento de Matematica Universidade Federal de Santa Catarina 80040-900 Florianopolis - SC, Brasil email: cido@dme.ufpb.br |
Return to the EJDE web page