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SOLVABILITY AND THE NUMBER OF SOLUTIONS OF
HAMMERSTEIN EQUATIONS

PETRONIJE S. MILOJEVIĆ

Abstract. We study the solvability and the number of solutions to Hammer-
stein operator equations in Banach spaces using a projection like method and
degree theory for corresponsing vector fields. The linear part is assumed to be
either selfadjoint or non-seladjoint. We present also applications to Hammer-
stein integral equations.

1. Introduction

In this paper, we study the solvability and the number of solutions to the Ham-
merstein operator equation

x−KFx = f (1.1)
where K is linear and F is a nonlinear map. We consider (1.1) in a general setting
between two Banach spaces. To that end, we use two approaches. One is based
on using the degree theory for φ-condensing maps or applying the Brouwer degree
theory directly to the finite dimensional approximations of the map I − KF in
conjunction with the (pseudo) A-proper mapping approach. The other one is based
on splitting first the map K as a product of two suitable maps and then using again
these degree theories. The linear part K is assumed to be either selfadjoint or non-
selfadjoint. In the second case, we assume that K is either positive in the sense of
Krasnoselskii, potentially positive, P -positive (i.e., angle- bounded) or that it is P-
quasi-positive, which means that its selfadjoint part has at most a finite number of
negative eigenvalues of finite multiplicity. The nonlinear part is assumed to be such
that either I −KF is A-proper or KF is φ-condensing, or that the corresponding
map in an equivalent reformulation of (1.1) is a k-ball contractive perturbation of
a strongly monotone map and is therefore A-proper.

We begin with proving some continuation results on the number of solutions of
general nonlinear operator equations. Then we use them to establish various results
on the number of solutions of (1.1) assuming different conditions on the nonlinearity
F that imply a priori estimates on the solution set. In particular, depending on the
structure of the linear part K, we assume that either F has a linear growth, and/or
F satisfies a side estimate of the form (Fx, x) ≤ a(x) for a suitable functional
a. Unlike earlier studies, we also study (1.1) with nonlinearities that are the sum
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of a strongly monotone and k-ball condensing maps. The last part of the paper is
devoted to applications of these abstract results to Hammerstein integral equations.
This work is a continuation of our study of these equations in [15, 19]. There is
an extensive literature on Hammerstein equations and we refer to [5, 6, 23]. In
particular, for the unique (approximation) solvability of these equations we refer to
[23, 1, 15, 19].

2. Some preliminaries on A-proper maps

Let {Xn} and {Yn} be finite dimensional subspaces of Banach spaces X and Y
respectively such that dim Xn = dim Yn for each n and dist(x,Xn) → 0 as n →∞
for each x ∈ X. Let Pn : X → Xn and Qn : Y → Yn be linear projections onto Xn

and Yn respectively such that Pnx → x for each x ∈ X and δ = max ‖Qn‖ < ∞.
Then Γ = {Xn, Pn;Yn, Qn} is a projection scheme for (X, Y ).

Definition 2.1. A map T : D ⊂ X → Y is said to be approximation-proper
(A-proper for short) with respect to Γ if (i) QnT : D ∩Xn → Yn is continuous for
each n and (ii) whenever {xnk

∈ D∩Xnk
} is bounded and ‖Qnk

Txnk
−Qnk

f‖ → 0
for some f ∈ Y , then a subsequence xnk(i) → x and Tx = f . T is said to be pseudo
A-proper with respect to Γ if in (ii) above we do not require that a subsequence of
{xnk

} converges to x for which Tx = f . If (ii) holds for a given f , we say that T
is (pseudo) A-proper at f .

For the developments of the (pseudo) A-proper mapping theory and applications
to differential equations, we refer to [11, 18] and [21]. To demonstrate the generality
and the unifying nature of the (pseudo) A-proper mapping theory, we state now a
number of examples of A-proper and pseudo A-proper maps.

To look at φ-condensing maps, we recall that the set measure of noncompactness
of a bounded set D ⊂ X is defined as γ(D) = inf{d > 0 : D has a finite covering by
sets of diameter less than d}. The ball-measure of noncompactness of D is defined
as χ(D) = inf{r > 0|D ⊂ ∪n

i=1B(xi, r), x ∈ X, n ∈ N}. Let φ denote either
the set or the ball-measure of noncompactness. Then a map N : D ⊂ X → X
is said to be k − φ contractive (φ-condensing) if φ(N(Q)) ≤ kφ(Q) (respectively
φ(N(Q)) < φ(Q)) whenever Q ⊂ D (with φ(Q) 6= 0).

Recall that N : X → Y is K-monotone for some K : X → Y ∗ if (Nx−Ny,K(x−
y)) ≥ 0 for all x, y ∈ X. It is said to be generalized pseudo-K-monotone (of type
(KM)) if whenever xn ⇀ x and lim sup(Nxn,K(xn − x)) ≤ 0 then (Nxn,K(xn −
x)) → 0 and Nxn ⇀ Nx (then Nxn ⇀ Nx). Recall that N is said to be of
type (KS+) if xn ⇀ x and lim sup(Nxn,K(xn − x)) ≤ 0 imply that xn → x.
If xn ⇀ x implies that lim sup(Nxn,K(xn − x)) ≥ 0, N is said to be of type
(KP). If Y = X∗ and K is the identity map, then these maps are called monotone,
generalized pseudo monotone, of type (M) and (S+) respectively. If Y = X and
K = J the duality map, then J-monotone maps are called accretive. It is known
that bounded monotone maps are of type (M). We say that N is demicontinuous if
xn → x in X implies that Nxn ⇀ Nx. It is well known that I−N is A-proper if N
is ball-condensing and that K-monotone like maps are pseudo A-proper under some
conditions on N and K. Moreover, their perturbations by Fredholm or hyperbolic
like maps are A-proper or pseudo A-proper (see [11, 12, 13, 16, 17, 18]).

The following result states that ball-condensing perturbations of stable A-proper
maps are also A-proper.
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Theorem 2.1 ([7]). Let D ⊂ X be closed, T : X → Y be continuous and A-proper
with respect to a projectional scheme Γ and a-stable, i.e. for some c > 0 and n0

‖QnTx−QnTy‖ ≥ c‖x− y‖ for x, y ∈ Xn and n ≥ n0

and F : D → Y be continuous. Then T + F : D → Y is A-proper with respect to Γ
if F is k-ball contractive with kδ < c, or it is ball-condensing if δ = c = 1.

Remark 2.2. The A-properness of T in Theorem 2.1 is equivalent to T being
surjective. In particular, as T we can take a c-strongly K- monotone map for a
suitable K : X → Y ∗, i.e., (Tx − Ty, K(x − y)) ≥ c‖x − y‖2 for all x, y ∈ X.
In particular, since c-strongly accretive maps are surjective, we have the following
important special case [7].

Corollary 2.3. Let X be a π1 space, D ⊂ X be closed, T : X → X be continuous
and c-strongly accretive and F : D → X be continuous and either k-ball contractive
with k < c, or it is ball-condensing if c = 1. Then T +F : D → X is A-proper with
respect to Γ.

3. On the number of solutions of Hammerstein equations

In this section, we shall study the solvability and the number of solutions of
(1.1) imposing various types of conditions on K and F . Our results will be based
on Theorems 3.1–3.3 below. We shall study (1.1) directly as well as using splitting
techniques for the map K.

We say that a map T : X → Y satisfies condition (+) if whenever Txn → f
in Y then {xn} is bounded in X. T is locally injective at x0 ∈ X if there is a
neighborhood U(x0) of x0 such that T is injective on U(x0). T is locally injective
on X if it is locally injective at each point x0 ∈ X. A continuous map T : X → Y
is said to be locally invertible at x0 ∈ X if there are a neighborhood U(x0) and a
neighborhood U(T (x0)) of T (x0) such that T is a homeomorphism of U(x0) onto
U(T (x0)). It is locally invertible on X if it is locally invertible at each point x0 ∈ X.

Let Σ be the set of all points x ∈ X where T is not locally invertible and let
cardT−1({f}) be the cardinal number of the set T−1({f}).

We need the following basic theorem on the number of solutions of nonlinear
equations for A-proper maps (see [17]).

Theorem 3.1. Let T : X → Y be a continuous A-proper map that satisfies condi-
tion (+). Then

(a) The set T−1({f}) is compact ( possibly empty ) for each f ∈ Y .
(b) The range R(T ) of T is closed and connected.
(c) Σ and T (Σ) are closed subsets of X and Y , respectively, and T (X \ Σ) is

open in Y .
(d) card T−1({f}) is constant and finite (it may be 0) on each connected com-

ponent of the open set Y \ T (Σ).

We need the following homotopy version of Theorem 3.1.

Theorem 3.2. Let H : [0, 1]×X → Y be an A-proper homotopy with respect to Γ
and satisfy condition (+), i.e. if H(tn, xn) → f then {xn} is bounded in X. Let,
for each f ∈ Y , the numbers rf > 0 and nf ≥ 1 be such that

deg(PnH0, B(0, rf ) ∩Xn, 0) 6= 0 for all n ≥ nf .
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Then the equation H(1, x) = f is approximation solvable with respect to Γ for each
f ∈ Y . Moreover, if Σ = {x ∈ X : H1 is not invertible at x} and H1 is continuous,
then H−1

1 ({f}) is compact for each f ∈ Y and the cardinal number card(H−1
1 ({f}))

is constant, finite and positive on each connected component of the set Y \H1(Σ).

Proof. The condition (+) implies that for each f ∈ Y there is an r > R and γ > 0
such that

‖H(t, x)− tf‖ ≥ γ for all t ∈ [0, 1], x ∈ ∂B(0, r).
Indeed, if this were not the case, there would exist tn ∈ [0, 1] and xn ∈ X such that
tn → t and ‖xn‖ → ∞ and H(tn, xn)− tnf → 0 as n →∞. Hence, H(tn, xn) → tf
and {xn} is unbounded, in contradiction to condition (+). Since Ht is an A-proper
homotopy, this implies that there is an n0 ≥ 1 such that

PnH(t, x) 6= tPnf for all t ∈ [0, 1], x ∈ ∂B(0, r) ∩Xn, n ≥ n0.

By the Brouwer degree properties and the A-properness of H1, there is an x ∈ X
such that H(1, x) = f . The other conclusions follow from Theorem 3.1. �

Next, we have the following homotopy theorem for φ-condensing maps.

Theorem 3.3. Let F : [0, 1]×X → X be a φ-condensing homotopy and H = I−F
satisfy condition (+). Let, for each f ∈ X, there be an rf > 0 such that

deg(H0, B(0, rf ), 0) 6= 0.

Then the equation H(1, x) = f is solvable for each f ∈ X. Moreover, if Σ = {x ∈
X : H1 is not invertible at x} and H1 is continuous, then H−1

1 ({f}) is compact for
each f ∈ X and the cardinal number card(H−1

1 ({f})) is constant, finite and positive
on each connected component of the set X \H1(Σ).

Proof. As before, condition (+) implies that for each f ∈ X there is an r > R and
γ > 0 such that

‖H(t, x)− tf‖ ≥ γ for all t ∈ [0, 1], x ∈ ∂B(0, r).

By the φ -condensing degree properties [20], there is an x ∈ X such that H(1, x) =
f . The other conclusions follow from [22, Theorem 3.2] since its coercivity condition
can be replaced by condition (+). �

The existence part of the following result can be found in [15].

Theorem 3.4. Let X and Y be Banach spaces, K : Y → X be linear and contin-
uous and F : X → Y be nonlinear and such that there are some constants a and b
such that a‖K‖ < 1 and

‖Fx‖ ≤ a‖x‖+ b for all ‖x‖ ≥ R.

a) Let Ht = I − tKF : X → X be A-proper with respect to a projection scheme
Γ = {Xn, Pn} for X for each t ∈ [0, 1], or H1 is A-proper with respect to Γ and
δa‖K‖ < 1, where δ =max‖Pn‖. Then (1.1) is approximation solvable for each
f ∈ X. Moreover, if Σ = {x ∈ X : I − KF is not invertible at x} and I − KF
is continuous, then (I −KF )−1({f}) is compact for each f ∈ X, and the cardinal
number card(I − KF )−1({f}) is constant, finite, and positive on each connected
component of the set X \ (I −KF )(Σ).
b) If I −KF : X → X is pseudo A-proper with respect to Γ and δa‖K‖ < 1, then
(1.1) is solvable for each f ∈ X.
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Proof. (a) We shall show that the homotopy Ht = I − tKF satisfies condition (+).
Indeed, let H(tn, xn) = xn − tnKFxn → f in Y for some tn ∈ [0, 1] and xn ∈ X.
It follows that for some M > 0

‖xn‖ ≤ ‖H(tn, xn)‖+ ‖K‖ ‖Fx‖ ≤ M + ‖K‖(a‖xn‖+ b).

Hence {xn} is bounded in X since a‖K‖ < 1. Moreover, for each r > 0 and
each n ≥ 1, deg(PnH0, B(0, r) ∩ Xn, 0) 6= 0. Hence, the conclusions follow from
Theorem 3.2. If only H1 is A-proper, then it satisfies condition (+) as above and
x − KFx = f is approximation solvable for each f ∈ X (see part b) ). Hence,
Theorem 3.1 applies.
(b) If I −KF is pseudo A-proper, then condition

PnH(t, x) 6= tPnf for all t ∈ [0, 1], x ∈ ∂B(0, r) ∩Xn, n ≥ n0.

holds since δa‖K‖ < 1 and the solvability follows from the pseudo A-propernes of
I −KF . �

Since a ball condensing perturbation of the identity map is an A-proper map,
we have the following special case.

Corollary 3.5. Let K : Y → X be linear and continuous and F : X → Y be
nonlinear and such that KF is a continuous φ-condensing map and there are some
constants a and b such that a‖K‖ < 1, and

‖Fx‖ ≤ a‖x‖+ b for all ‖x‖ ≥ R.

Then (1.1) is approximation solvable for each f ∈ X with respect to a projection
scheme Γ = {Xn, Pn} for X with δ =max‖Pn‖ = 1 if φ = χ. It is solvable if
φ = γ. Moreover, if Σ = {x ∈ X : I − KF is not locally invertible at x}, then
(I − KF )−1({f}) is compact for each f ∈ X, and the cardinal number card(I −
KF )−1({f}) is constant, finite, and positive on each connected component of the
set X \ (I −KF )(Σ).

Next, we shall discuss other sets of conditions on K and F that imply the A-
properness of an operator in an equivalent formulation of our equation. Recall that
a map K acting in a Hilbert space H is called positive in the sense of Krasnoselski
if there exists a number µ > 0 for which

(Kx, Kx) ≤ µ(Kx, x) x ∈ H.

The infimum of all such numbers µ is called the positivity constant of K and is
denoted by µ(K). The simplest example of a positive map is provided by any
bounded selfadjoint positive definite map K on H. Then µ(K) = ‖K‖ for such
maps. A compact normal map K in a Hilbert space is positive on H if and only if
( cf. [4] ) the number

[ inf
λ∈σ(K),λ6=0

Re(λ−1)]−1

is well defined and positive. In that case, it is equal to µ(K).
Let X be a reflexive embeddable Banach space, that is, there is a Hilbert space

H such that X ⊂ H ⊂ X∗ so that < y, x >= (y, x) for each y ∈ H,x ∈ X, where
<,> is the duality pairing of X and X∗. Let K : X∗ → X be a positive semidefinite
bounded selfadjoint map in the sense that < Kx, y >=< x,Ky > for all x, y ∈ X∗.
Then the positive semidefinite square root K

1/2
H of the restriction KH of K to H
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can be extended to a bounded linear map T : X∗ → H such that K = T ∗T , where
the adjoint map T ∗ = K

1/2
H of T is a bounded map from H to X ( see [23] ).

We shall look at the following equivalent formulation of (1.1)

y − TFCy = h, h ∈ H. (3.1)

We need the following lemma (cf. [23]).

Lemma 3.6. Equations (1.1) and (3.1) are equivalent with f restricted to C(H);
each solution y of (3.1) determines a solution x = Cy of (1.1) and each solution
x of (1.1) with f ∈ C(H) determines a solution y = TFx + h of (3.1) with
f = Ch and x = Cy. Moreover, the map C : S(h) = (I − TFC)−1({h}) → S =
(I −KF )−1({Ch}) is bijective.

Proof. Let y1 and y2 be distinct solutions of (3.1). Applying C to yi − TFCyi = h
and using the fact that K = CT , we get that x1 = Cy1 and x2 = Cy2 are solutions
of (1.1). They are distinct since

0 < ‖y1 − y2‖2 = (TFCy1 − TFCy2, y1 − y2) =

(FCy1 − FCy2, C(y1 − y2)) = (Fx1 − Fx2, x1 − x2).
Conversely, let f ∈ C(H) and x1 and x2 be distinct solutions of (1.1). Let f = Ch
for some h ∈ H. Set yi = TFxi + h. Then Cyi = CTFxi + h = KFxi + f and so
xi = Cyi. Hence, yi = TFCyi + h, i.e., yi are solutions of (3.1). They are distinct
since y1 = y2 implies that x1 = Cy1 = Cy2 = x2. These arguments show that
C : S(h) → S is a bijection. �

Corollary 3.7. Let X be a reflexive embeddable Banach space (X ⊂ H ⊂ X∗),
K : X∗ → X be a positive semidefinite bounded selfadjoint map, and C = K

1/2
H ,

where KH is the restriction of K to H, µ(K) = ‖C‖2 and T : X∗ → H be a bounded
linear extension of K

1/2
H . Let F = F1 + F2 : X → X∗ be a nonlinear map, a and b

be constants and c be the smallest number such that
(i) (F1x− F1y, x− y) ≤ c‖x− y‖2 for all x, y ∈ X, and either
(ii) a‖K‖ < 1 and ‖Fx‖ ≤ a‖x‖+ b for all ‖x‖ ≥ R, or
(iii) (a + c)µ(K) < 1 and ‖F2x‖ ≤ a‖x‖+ b for all ‖x‖ ≥ R,

and TF2C is a continuous k-ball contraction with k < 1 − cµ(K). Then (1.1) is
approximation solvable in X for each f ∈ C(H) ⊂ X with respect to a projection
scheme Γ = {Xn, Pn} for X, δ =max ‖Pn‖ = 1. Moreover, if ΣH = {h ∈ H :
I − TFC is not locally invertible at h}, then (I −KF )−1({f}) is compact for each
f ∈ C(H), and the cardinal number card(I −KF )−1({f}) is constant, finite, and
positive on each connected component of the set H \ (I − TFC)(ΣH) intersected by
C(H).

Proof. Equation (1.1) is equivalent to (3.1). Hence, we shall consider this more
suitable formulation. We claim that the map I − TF1C : H → H is 1 − cµ(K)-
strongly monotone. Indeed, for x, y ∈ H, we have

(x− TF1Cx− y + TF1Cy, x− y) = ‖x− y‖2 − (TF1Cx− TF1Cy, x− y)

= ‖x− y‖2 − (F1Cx− F1Cy, Cx− Cy)

≥ (1− cµ(K))‖x− y‖2.

Since TF2C is k-ball contractive with k < 1− cµ(K) , we see that I − tTFC is A-
proper with respect to Γ = {Hn, Pn} for H by Corollary 2.3. Moreover, I − tTFC
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satisfies condition (+). Indeed, let H(tn, xn) = xn − tnTFCxn → g. If (ii) holds,
then

‖xn‖ ≤ ‖H(tn, xn)‖+ ‖T‖(a‖Cxn‖+ b) ≤ M + a‖K‖‖xn‖
for some constant M since ‖T‖ = ‖C‖ = ‖K‖1/2. It follows that {xn} is bounded.
Next, let (iii) hold. Then

(H(tn, xn), xn)

= (xn − tnTFCxn, xn)

= (xn − tnTF1Cxn + tnTF10, xn)− tn(TF10, xn)− tn(TF2Cxn, xn)

≥ (1− cµ(K))‖xn‖2 − ‖TF10‖ ‖xn‖ − a‖Cxn‖2 − b‖Cxn‖
≥ (1− (a + c)µ(K))‖xn‖2 − (‖TF10‖+ b‖C‖)‖xn‖.

It follows that {xn} is bounded, for otherwise dividing by ‖xn‖2 and passing to the
limit we get that (a + c)µ(K) ≥ 1, a contradiction. Hence, condition (+) holds in
either case.

By Theorem 3.2, we have that the equation y − TFCy = h is solvable for each
h ∈ H, S(h) = (I − TFC)−1({h}) 6= ∅ and compact, and cardS(h) is constant,
positive and finite on each connected component of the open set H\(I−TFC)(ΣH),
where ΣH = {h ∈ H : I − TFC is not locally invertible at h}.

Next, applying C to y − TFCy = h and using the fact that K = CT , we get
that x − KFx = f with x = Cy ∈ X. By Lemma 3.6, we get that cardS =
(I − KF )−1({Ch}) =cardS(h). Hence, card(I − KF )−1({f}) is constant, finite
and positive on each connected component of H \ (I − TFC)(ΣH) intersected by
C(H). �

Next, let us look at the case when K is not selfadjoint. We begin by describing
the setting of the problem. Let X be an embeddable Banach space, X ⊂ H ⊂ X∗.
Let K : X∗ → X be a linear map and KH be the restriction of K to H such
that KH : H → H. Let A = (K + K∗)/2 denote the selfadjoint part of K and
B = (K−K∗)/2 be the skew-adjoint part of K. Assume that A is positive definite.
Under our assumptions on K, both A and B map X∗ into X. We know that A
can be represented in the form A = CC∗, where C = A1/2 is the square root of A,
C : H → X, and the adjoint map C∗ : X∗ → H.

As in [1] and [19], we say that K is P -positive if C−1K(C∗)−1 exists and is
bounded in H. It is S-positive if K(C∗)−1 exists and is bounded in H. Clearly,
the P -positivity implies the S-positivity but not conversely. It is easy to see that
K is P -positive if and only if C−1B(C∗)−1 is bounded in H, and is S-positive if
and only if B(C∗)−1 is bounded in H. Moreover, K is P -positive if and only if K
is angle-bounded, i.e.,

|(Kx, y)− (y, Kx)| ≤ a(Kx, x)1/2(Ky, y)1/2, x, y ∈ H.

Denote by M and N the closure of the maps C−1K(C∗)−1 and K(C∗)−1, respec-
tively, in H. Note that M and N are defined on the closure ( in H ) of the range
of C = A1/2 and suppose that their domains coincide with H. We require that the
following decompositions hold

K = CMC∗, K = NC∗.

Note that K, M and N are related as: N = CM,N∗ = M∗C∗ and we have
(Mx, x) = ‖x‖2 for all x ∈ H. Hence, both M and M∗ have trivial nullspaces.
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Denote by µ(K) = ‖N‖2, which is the positivity constant of K in the sense of
Krasnoselski.

Let F : X → X∗ be a nonlinear map and consider the Hammerstein equation

x−KFx = f (3.2)

For f ∈ N(H), let h ∈ H be a solution of

M∗h−N∗FNh = M∗k (3.3)

where f = Nk for some k ∈ H. Then M∗(h − C∗FNh − k) = 0 since N = CM
and N∗ = M∗C∗. Hence, h = C∗FNh + k since M∗ is injective and therefore

Nh = NC∗FNh + Nk = KFNh + f

since K = NC∗. Thus x = Nh is a solution of (3.2). So the solvability of (3.2) is
reduced to the solvability of (3.3). Actually these two equations are equivalent.

Lemma 3.8. Equations (3.2) and (3.3) are equivalent with f restricted to N(H);
each solution h of (3.3) determines a solution x = Nh of (3.2) and each solution x
of (3.2) with f ∈ N(H) determines a solution h = C∗Fx+k of (3.3) with f = Nk
and x = Nh. Moreover, the map N : S(M∗k) = (M∗ −N∗FN)−1({M∗k}) → S =
(I −KF )−1({Nk}) is bijective.

Proof. Let h1 and h2 be distinct solutions of (3.3). We have seen above that
x1 = Nh1 and x2 = Nh2 are solutions of (3.2). They are distinct since

0 < ‖h1 − h2‖2 = (M(h1 − h2), h1 − h2)

= (N∗FNh1 −N∗FNh2, h1 − h2)

= (FNh1 − FNh2, N(h1 − h2))

= (Fx1 − Fx2, x1 − x2).

Conversely, let f ∈ N(H) and x1 and x2 be distinct solutions of (3.2). Let f = Nk
for some k ∈ H. Set hi = C∗Fxi + k. Then Nhi = NC∗Fxi + Nk = KFxi + f
and so xi = Nhi. Hence, M∗hi = M∗C∗FNhi + M∗k = N∗FNhi + M∗k, i.e., hi

are solutions of (3.3). They are distinct since h1 = h2 implies that x1 = Nh1 =
Nh2 = x2. These arguments show that N : S(M∗k) → S is bijective. �

Corollary 3.9. Let X be a reflexive embeddable Banach space (X ⊂ H ⊂ X∗) and
K : X∗ → X be a linear continuous P -positive map. Let F = F1 +F2 : X → X∗ be
a nonlinear map, N∗F2N be continuous and k-ball contractive with k < 1− cµ(K)
and there are positive constants a and b, R > 0 and c be the smallest number such
that

(i) (F1x− F1y, x− y) ≤ c‖x− y‖2 for allx, y ∈ X, and either
(ii) a‖K‖ < 1 and ‖Fx‖ ≤ a‖x‖+ b for all ‖x‖ ≥ R, or
(iii) (a + c)µ(K) < 1 and ‖F2x‖ ≤ a‖x‖+ b for all ‖x‖ ≥ R.

Then (1.1) is solvable in X for each f ∈ N(H) ⊂ X. Moreover, if ΣH = {h ∈
H : M∗ − N∗FN is not locally invertible at h} then (I − KF )−1({f}) is compact
for each f ∈ N(H), and the cardinal number card(I − KF )−1({f}) is constant,
finite, and positive on each connected component of the set H \ (M∗−N∗FN)(ΣH)
intersected by N(H).
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Proof. Define the homotopy H(t, x) = M∗x − tN∗FNx on [0, 1] × H. It suffices
to show that the map Ht = M∗ − tN∗FN : H → H is A-proper with respect
to Γ = {Hn, Pn} for each t ∈ [0, 1] and satisfies condition (+). Set H1t = M∗ −
tN∗F1N : H → H. Then, for each x, y ∈ H we have that

(H1(t, x)−H1(t, y), x− y) = ‖x− y)‖2 − t(N∗(F1Nx− F1Ny), x− y)

= ‖x− y‖2 − t(F1Nx− F1Ny,Nx−Ny)

≥ (1− cµ(K))‖x− y‖2.

Since N∗F2N is k-ball contraction, Ht is A-proper with respect to Γ by Corollary
2.3.

Next, let f ∈ N(H) ⊂ X, f = Nk, be fixed. We claim that H(t, x) − tM∗h
satisfies condition (+). If not, then there would exist xn ∈ H, tn ∈ [0, 1] such that
‖xn‖ → ∞ and

yn = H(tn, xn)− tnM∗k → g

as n →∞. Let (ii) hold. Then

M∗xn = yn + tnN∗FNxn − tnM∗k

and

‖xn‖2 = (M∗xn, xn) = (yn, xn) + tn(FNxn, Nxn)− tn(M∗k, xn)

≤ (‖yn‖+ ‖M∗k‖+ b‖N‖)‖xn‖+ aµ(K) ‖xn‖2.

Dividing by ‖xn‖2 and passing to the limit, we get that 1 ≤ aµ(K), a cotradiction.
Hence, condition (+) holds.

Next, let (iii) hold. Then, as above,

(H(tn, xn), xn)

= (M∗xn − tnN∗FNxn, xn)

= (M∗xn − tnN∗F1Nxn + tnN∗F10, xn)− tn(N∗F10, xn)− tn(N∗F2Nxn, xn)

≥ (1− cµ(K))‖xn‖2 − ‖N∗F10‖ ‖xn‖ − a‖Nxn‖2 − b‖Nxn‖
≥ (1− (a + c)µ(K))‖xn‖2 − (‖N∗F10‖+ b‖N‖)‖xn‖.

It follows that {xn} is bounded, for otherwise dividing by ‖xn‖2 and passing to the
limit we get that (a + c)µ(K) ≥ 1, a contradiction. Hence, condition (+) holds in
either case.

This and the A-properness of M∗ −N∗FN imply that M∗h−N∗FNh = M∗k
for some h ∈ H by Theorem 3.2. As before, we get that Nh = NC∗FNh + Nk =
KFNh + f since K = NC∗. Thus, x − KFx = f with x = Nh ∈ X. Next,
we have that Y = N(H) is a Banach subspace of X and I − KF : Y → Y ,
since N : H → X is continuous and therefore it is closed. Moreover, S(M∗k) is
nonempty and compact, and cardS(M∗k) is constant and finite on each connected
component of the open set H \ (M∗ − N∗FN)(ΣH) by Theorem 3.2. By Lemma
3.8, we get cardS = (I − KF )−1({f}) = cardS(M∗k) with f = Nk. Hence,
card(I−KF )−1({f}) is constant, positive and finite on each connected component
of H \ (M∗ −N∗FN)(ΣH) intersected by N(H). �

Next, we shall look at the case when the selfadjoint part A of K is not positive
definite. Suppose that A is quasi-positive definite in H, i.e., it has at most a
finite number of negative eigenvalues of finite multiplicity. Let U be the subspace
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spanned by the eigenvectors of A corresponding to these negative eigenvalues of A
and P : H → U be the orthogonal projection onto U . Then P commutes with A, but
not necessarily with B, and acts both in X and X∗. The operator |A| = (I− 2P )A
is easily seen to be positive definite. Hence, we have the decomposition |A| = DD∗,
where D = |A|1/2 : H → X and D∗ : X∗ → H.

Following [1, 19], we call the map K P -quasi-positive if the map D−1K(D∗)−1

exists and is bounded in H, and S-quasi-positive if the map K(D∗)−1 exists and
is bounded in H. Let M and N denote the closure in H of the the bounded maps
D−1K(D∗)−1 and K(D∗)−1 respectively. Assume that they are both defined on
the whole space H. We assume that we have the following decompositions

K = DMD∗, K = ND∗.

Then we have N = DM , N∗ = M∗D∗, and 〈Mh, h〉 = ‖h‖2−2‖Ph‖2 for all h ∈ H.
Define the number

ν(K) = sup{ν : ν > 0, ‖Nh‖ ≥ (ν)1/2‖Ph‖, h ∈ H}.
Note that for a selfadjoint map K, ν(K) is the absolute value of the largest negative
eigenvalue of K.

Lemma 3.10. Equations (3.2) and (3.3) are equivalent with f restricted to N(H);
each solution h of (3.3) determines a solution x = Nh of (3.2) and each solution
x of (3.2) with f ∈ N(H) determines a solution h = D∗Fx + k of (3.3) with
f = Nk and x = Nh. Moreover, the map N : S(M∗k) → S = (I −KF )−1({Nk})
is bijective.

Proof. Let h1 and h2 be distinct solutions of (3.3). Since N = DM , K = ND∗

and M is injective, we get as before that x1 = Nh1 and x2 = Nh2 are solutions of
(3.2). They are distinct since

0 6= ‖h1 − h2‖2 − 2‖P (h1 − h2)‖2

= (M(h1 − h2), h1 − h2) = (N∗FNh1 −N∗FNh2, h1 − h2)

= (FNh1 − FNh2, N(h1 − h2)) = (Fx1 − Fx2, x1 − x2).

Conversely, let f ∈ N(H) and x1 and x2 be distinct solutions of (3.2). Let f = Nk
for some k ∈ H. Set hi = D∗Fxi + k. Then Nhi = ND∗Fxi + Nk = KFxi + f
and so xi = Nhi. Hence, M∗hi = M∗D∗FNhi + M∗k = N∗FNhi + M∗k, i.e., hi

are solutions of (3.3). They are distinct since h1 = h2 implies that x1 = Nh1 =
Nh2 = x2. These arguments show that N : S(M∗k) → S is bijective. �

We have the following result when K is P -quasi-positive.

Corollary 3.11. Let X be a reflexive embeddable Banach space (X ⊂ H ⊂ X∗)
and K : X∗ → X be a linear continuous P-quasi-positive map with cν(K) < −1.
Let F = F1 + F2 : X → X∗ be a nonlinear map, N∗F2N be continuous and k-ball
contractive with k < −(1 + cν(K)) and there are positive constants a and b, R > 0
and let c be the smallest number such that 1 + (a + c)ν(K) < 0 and

(i) (F1x− F1y, x− y) ≤ c‖x− y‖2 for all x, y ∈ X
(ii) ‖F2x‖ ≤ a‖x‖+ b for all ‖x‖ ≥ R,

Then (1.1) is solvable in X for each f ∈ N(H) ⊂ X. Moreover, if ΣH = {h ∈
H : M∗−N∗FN is not invertible at h} then (I −KF )−1({f}) is compact for each
f ∈ N(H), and the cardinal number card(I −KF )−1({f}) is constant, finite, and
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positive on each connected component of the set H \(M∗−N∗FN)(ΣH) intersected
by N(H).

Proof. Define the homotopy H(t, x) = M∗x − tN∗FNx on [0, 1] × H. Again, it
suffices to show that he map Ht = M∗ − tN∗FN : H → H is A-proper with
respect to Γ = {Hn, Pn} for each t ∈ [0, 1] and satisfies condition (+). Set H1t =
M∗ − tN∗F1N : H → H. Then, for each x, y ∈ H we have that

(H1(t, x)−H1(t, y), x− y) = (M∗x−M∗y, x− y)− t(N∗(F1Nx− F1Ny), x− y)

= ‖x− y‖2 − 2‖P (x− y)‖2 − t(F1Nx− F1Ny,Nx−Ny)

≥ ‖x− y‖2 − 2‖P (x− y)‖2 − tc‖Nx−Ny‖2)

≥ ‖x− y‖2 − 2‖P (x− y)‖2 − cν(K)‖P (x− y)‖2

≥ ‖x− y‖2 − (2 + cν(K))‖P (x− y)‖2 = −(1 + cν(K))‖x− y‖2.

Since N∗F2N is a k-ball contraction, Ht is A-proper with respect to Γ by Corollary
2.3.

Next, let f ∈ N(H) ⊂ X, f = Nk, be fixed. We claim that H(t, x) − tM∗h
satisfies condition (+). If not, then there would exist xn ∈ H, tn ∈ [0, 1] such that
‖xn‖ → ∞ and

yn = H(tn, xn)− tnM∗k → g

as n →∞. Then, as above,

(H(tn, xn), xn) = (M∗xn − tnN∗FNxn, xn)

= (M∗xn, xn)− tn(N∗F1Nxn, xn)− tn(N∗F2Nxn, xn)

= ‖xn‖2 − 2‖Pxn‖2 − tn(N∗F1Nxn + tnN∗F10, xn)

− tn(F10, Nxn)− tn(F2Nxn, Nxn)

≥ −(1 + cν(K))‖xn‖2 − ‖N∗F10‖ ‖xn‖ − a‖Nxn‖2 − b‖Nxn‖

≥ −(1 + (a + c)ν(K))‖xn‖2 − ‖N∗F10‖ ‖xn‖ − bν(K)1/2‖Pxn‖)

≥ −(1 + (a + c)ν(K))‖xn‖2 − (‖N∗F10‖ − bν(K)1/2)‖xn‖.

Since
(H(tn, xn), xn) = (yn, xn) + tn(M∗k, xn) ≤ C‖xn‖

for some constant C, we get that

−(1 + (a + c)ν(K))‖xn‖2 − (‖N∗F10‖ − bν(K)1/2)‖xn‖ ≤ C‖xn‖.

It follows that {xn} is bounded, for otherwise dividing by ‖xn‖2 and passing to the
limit we get that 1 + (a + c)ν(K) ≥ 0, a contradiction. Hence, condition (+) holds
in either case. �

Next, we shall continue our study of (1.1) assuming that the nonlinearity has a
one sided estimate and the linear map K is either positive or P -(quasi)-positive.

Theorem 3.12. Let X be a reflexive embeddable Banach space (X ⊂ H ⊂ X∗),
K : X∗ → X be a map such that the restriction of K to H, KH , is selfadjoint and
positive semidefinite and F : X → X∗ be such that I − tTFC is A-proper in H for
each t ∈ [0, 1], and for some constants a, b, d, R > 0 and γ ∈ (0, 2],

(Fx, x) ≤ a‖x‖2 + b‖x‖2−γ + d, x ∈ X \B(0, R)
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and aλ < 1, where λ is the leading eigenvalue of K. Then (1.1) is solvable for each
f ∈ C(H) ⊂ X. Further, if ΣH = {h ∈ H : I − TFC is not locally invertible at h}
then (I − KF )−1({f}) is compact for each f ∈ C(H), and the cardinal number
card(I−KF )−1({f}) is constant, finite, and positive on each connected component
of the set H \ (I − TFC)(ΣH) intersected by C(H).

Proof. The map K can be represented as K = CC∗, where C : H → X and
C∗ : X∗ → H. The restriction of C to H coincides with the selfadjoint positive
semidefinite square root of K. Moreover, ‖C‖ = λ1/2 when considered as a map
in H. Consider the homotopy H(t, x) = x − tTFCx on [0, 1] ×H. We claim that
H(t, x) − tf satisfies condition (+). Indeed, let (tn, xn) be such that H(tn, xn) −
tnf → g. If ‖xn‖ → ∞, then for some M ,

‖xn‖2 = (H(tn, xn)− tnf, xn) + t(TFCx, x)

≤ M‖xn‖+ (TFCx, x)

≤ M‖xn‖+ (FCx,Cx)

≤ M‖xn‖+ a‖Cxn‖2 + b‖xn‖2−γ + d ≤ M‖xn‖+ aλ‖xn‖2 + b‖xn‖2−γ + d.

Dividing by ‖xn‖2, we get

1 ≤ aλ + M‖xn‖−1 + b‖xn‖−γ + d‖xn‖−2.

Passing to the limit, we get that 1 ≤ aλ, a contradiction. Hence, {xn} is bounded
and condition (+) holds. By Theorem 3.2, we get a solution y of y − C∗FCy = h
for each h ∈ H and x = Cy is a solution of x −KFx = f . The other conclusions
follow as in Corollary 3.7. �

Remark 3.13. The one sided condition on F in Theorem 3.12, as well as in other
results below where it appears, can be replaced by

(Fx, x) ≤ a(x) for all x ∈ X \B(0, R)

for a suitable function a : X → R+.

An easy consequence of Theorems 3.3 and 3.12 is the following result.

Corollary 3.14. Let X be a reflexive embeddable Banach space (X ⊂ H ⊂ X∗),
K : X∗ → X be a map such that the restriction of K to H, KH , is selfadjoint and
positive semidefinite and F : X → X∗ be such that TFC is φ-condensing, and for
some constants a, b, d and γ ∈ (0, 2]

(Fx, x) ≤ a‖x‖2 + b‖x‖2−γ + d, x ∈ X \B(0, R)

and aλ < 1, where λ is the leading eigenvalue of K. Then (1.1) is solvable for each
f ∈ C(H) ⊂ X. Further, if ΣH = {h ∈ H : I − TFC is not locally invertible at h}
then (I − KF )−1({f}) is compact for each f ∈ C(H), and the cardinal number
card(I−KF )−1({f}) is constant, finite, and positive on each connected component
of the set H \ (I − TFC)(ΣH) intersected by C(H).

Corollary 3.15. Let X be a reflexive embeddable Banach space (X ⊂ H ⊂ X∗),
K : X∗ → X be a positive semidefinite bounded selfadjoint map in H, and C =
K

1/2
H , where KH is the restriction of K to H, µ(K) = ‖C‖2 and T : X∗ → H be a

bounded linear extension of K
1/2
H . Let F = F1 + F2 : X → X∗ be a nonlinear map,
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a b, d and γ ∈ (0, 2] be constants such that aλ < 1, R > 0 and c be the smallest
number such that

(F1x− F1y, x− y) ≤ c‖x− y‖2 for all x, y ∈ X

(Fx, x) ≤ a‖x‖2 + b‖x‖2−γ + d, x ∈ X \B(0, R)

and TF2C is a continuous k-ball contraction with k < 1 − cµ(K). Then (1.1) is
approximation solvable in X for each f ∈ C(H) ⊂ X with respect to a projection
scheme Γ = {Xn, Pn} for X, δ =max ‖Pn‖ = 1. Moreover, if ΣH = {h ∈ H :
I − TFC is not locally invertible at h} then (I −KF )−1({f}) is compact for each
f ∈ C(H), and the cardinal number card(I −KF )−1({f}) is constant, finite, and
positive on each connected component of the set H \ (I − TFC)(ΣH) intersected by
C(H).

Proof. We have shown before that I − tTFC : H → H is A-proper with respect to
Γ = {Hn, Pn}, t ∈ [0, 1]. Then the conclusions follow from Theorem 3.12. �

Next, we shall give an extension of Theorem 3.12 to non-selfadjoint K.

Theorem 3.16. Let X be a reflexive embeddable Banach space (X ⊂ H ⊂ X∗),
K : X∗ → X be a linear continuous P -positive map and F : X → X∗ be such
that M∗ − tN∗FN is A-proper with respect to Γ for each t ∈ [0, 1], and for some
constants a, b, d, γ ∈ (0, 2] and R > 0,

(Fx, x) ≤ a‖x‖2 + b‖x‖2−γ + d, x ∈ X \B(0, R)

and aµ(K) < 1. Then (1.1) is solvable for each f ∈ N(H) ⊂ X. Moreover, if
ΣH = {h ∈ H : M∗ −N∗FN is not locally invertible at h} then (I −KF )−1({f})
is compact for each f ∈ N(H), and the cardinal number card(I − KF )−1({f}) is
constant, finite, and positive on each connected component of the set H \ (M∗ −
N∗FN)(ΣH) intersected by N(H).

Proof. The homotopy H(t, x) = M∗x − tN∗FNx on [0, 1] × H is A-proper with
respect to Γ = {Hn, Pn}. By Theorem 3.2, it is left to show that it satisfies condition
(+). Let f ∈ N(H) ⊂ X, f = Nk, be fixed. We claim that H(t, x) − tM∗h
satisfies condition (+). If not, then there would exist xn ∈ H, tn ∈ [0, 1] such that
‖xn‖ → ∞ and

yn = H(tn, xn)− tnM∗k → g

as n →∞. Then
M∗xn = yn + tnN∗FNxn − tnM∗k

and

‖xn‖2 = (M∗xn, xn)

= (yn, xn) + tn(FNxn, Nxn)− tn(M∗k, xn)

≤ (‖yn‖+ ‖M∗k‖)‖xn‖+ b(‖N‖ ‖xn‖)2−γ + d + aµ(K) ‖xn‖2.

Dividing by ‖xn‖2 and passing to the limit, we get that 1 ≤ aµ(K), a contradiction.
Hence, condition (+) holds. This and the A-properness of M∗−N∗FN imply that
M∗h − N∗FNh = M∗k for some h ∈ H. The rest of the proof follows as in
Corollary 3.9. �
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Corollary 3.17. Let X be a reflexive embeddable Banach space (X ⊂ H ⊂ X∗),
K : X∗ → X be a linear P -positive map and F : X → X∗ be such that N∗FN is
ball condensing, and for some constants a, b, d, γ ∈ (0, 2] and R > 0

(Fx, x) ≤ a‖x‖2 + b‖x‖2−γ + d, x ∈ X \B(0, R)

and aµ(K) < 1. Then (1.1) is solvable for each f ∈ N(H) ⊂ X. Moreover, if ΣH =
{h ∈ H : M∗ − N∗FN is not invertible at h} then (I − KF )−1({f}) is compact
for each f ∈ N(H), and the cardinal number card(I − KF )−1({f}) is constant,
finite, and positive on each connected component of the set H \ (M∗−N∗FN)(ΣH)
intersected by N(H).

Proof. It suffices to observe that M∗ − N∗FN is A-proper with respect to Γ by
Corollary 2.3. �

Corollary 3.18. Let X be a reflexive embeddable Banach space (X ⊂ H ⊂ X∗) and
K : X∗ → X be a linear continuous P -positive map. Let F = F1 +F2 : X → X∗ be
a nonlinear map, N∗F2N be continuous and k-ball contraction with k < 1− cµ(K)
and there are positive constants a, b, d, γ ∈ (0, 2] and R > 0 with aµ(K) < 1, and
let c be the smallest number such that

(i) (F1x− F1y, x− y) ≤ c‖x− y‖2 x, y ∈ X
(ii) (Fx, x) ≤ a‖x‖2 + b‖x‖2−γ + d, x ∈ X \B(0, R)

Then (1.1) is solvable in X for each f ∈ N(H) ⊂ X. Moreover, if ΣH = {h ∈
H : M∗−N∗FN is not invertible at h} then (I−KF )−1({f}) is compact for each
f ∈ N(H), and the cardinal number card(I −KF )−1({f}) is constant, finite, and
positive on each connected component of the set H \(M∗−N∗FN)(ΣH) intersected
by N(H).

Proof. As in the proof of Corollary 3.11, we have that M∗ − tN∗FN is A-proper
with respect to Γ for each t ∈ [0, 1]. Hence, the conclusions follow from Theorem
3.16. �

For P -quasi-positive K we have the following statement.

Theorem 3.19. Let X be a reflexive embeddable Banach space (X ⊂ H ⊂ X∗),
K : X∗ → X be a linear continuous P -quasi-positive map and F : X → X∗ be such
that M∗ − tN∗FN is A-proper with respect to Γ for each t ∈ [0, 1], and for some
constants a, b, d, γ ∈ (0, 2] and R > 0

(Fx, x) ≤ a‖x‖2 + b‖x‖2−γ + d, x ∈ X \B(0, R)

and −(1 + aν(K)) > 0. Then (1.1) is solvable for each f ∈ N(H) ⊂ X. Moreover,
if ΣH = {h ∈ H : M∗ − N∗FN is not invertible at h} then (I − KF )−1({f}) is
compact for each f ∈ N(H), and the cardinal number card(I − KF )−1({f}) is
constant, finite, and positive on each connected component of the set H \ (M∗ −
N∗FN)(ΣH) intersected by N(H).

Proof. The homotopy H(t, x) = M∗x − tN∗FNx on [0, 1] × H is A-proper with
respect to Γ = {Hn, Pn}. By Theorem 3.2, it is left to show that it satisfies condition
(+). Let f ∈ N(H) ⊂ X, f = Nk, be fixed. We claim that H(t, x) − tM∗h
satisfies condition (+). If not, then there would exist xn ∈ H, tn ∈ [0, 1] such that
‖xn‖ → ∞ and

yn = H(tn, xn)− tnM∗k → g
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as n →∞. Then
M∗xn = yn + tnN∗FNxn − tnM∗k

and

(yn, xn)

= (M∗xn, xn)− tn(FNxn, Nxn) + tn(M∗k, xn)

≥ ‖xn‖2 − 2‖Pxn‖2 − tna‖Nxn‖2 − tnb‖Nxn‖2−γ − tnd− tn‖M∗k‖ ‖xn‖

≥ ‖xn‖2 − (2 + aν(K))‖Pxn‖2 − b(ν(K)1/2‖Pnxn‖)2−γ − ‖M∗k‖ ‖xn‖ − d

≥ −(1 + aν(K))‖xn‖2 − b(ν(K)1/2‖xn‖)2−γ − ‖M∗k‖ ‖xn‖ − d.

Dividing by ‖xn‖2 and passing to the limit, we get that 1 + aν(K) ≥ 0, a contra-
diction. Hence, condition (+) holds.

This and the A-properness of M∗ −N∗FN imply that M∗h−N∗FNh = M∗k
for some h ∈ H. The rest of the proof follows as in Corollary 3.9. �

Corollary 3.20. Let X be a reflexive embeddable Banach space (X ⊂ H ⊂ X∗),
K : X∗ → X be a linear P -quasi-positive map and F : X → X∗ be such that N∗FN
is ball condensing, and for some constants a, b, d, γ ∈ (0, 2] and R > 0

(Fx, x) ≤ a‖x‖2 + b‖x‖2−γ + d, x ∈ X \B(0, R)

and −(1 + aν(K)) > 0. Then (1.1) is solvable for each f ∈ N(H) ⊂ X. Moreover,
if ΣH = {h ∈ H : M∗ − N∗FN is not invertible at h} then (I − KF )−1({f}) is
compact for each f ∈ N(H), and the cardinal number card(I − KF )−1({f}) is
constant, finite, and positive on each connected component of the set H \ (M∗ −
N∗FN)(ΣH) intersected by N(H).

Proof. We have that M∗ − tN∗FN + 2P is A-proper with respect to Γ for each
t ∈ [0, 1] by Corollary 2.3 since (M∗x + 2Px, x) = ‖x‖2. But, P is a compact map
and therefore the map M∗ − tN∗FN is A-proper as a compact perturbation of an
A-proper map. Hence, the conclusions follow by Theorem 3.19. �

Corollary 3.21. Let X be a reflexive embeddable Banach space (X ⊂ H ⊂ X∗)
and K : X∗ → X be a linear continuous P-quasi-positive map. Let F = F1 + F2 :
X → X∗ be a nonlinear map, N∗F2N be continuous and k-ball contractive with
k < 1 − cµ(K) and there are positive constants a, b, d, γ ∈ (0, 2] and R > 0 with
−(1 + aν(K)) < 0, and let c be the smallest number such that

(i) (F1x− F1y, x− y) ≤ c‖x− y‖2 x, y ∈ X
(ii) (Fx, x) ≤ a‖x‖2 + b‖x‖2−γ + d, x ∈ X \B(0, R).

Then (1.1) is solvable in X for each f ∈ N(H) ⊂ X. Moreover, if ΣH = {h ∈
H : M∗−N∗FN is not invertible at h} then (I−KF )−1({f}) is compact for each
f ∈ N(H), and the cardinal number card(I −KF )−1({f}) is constant, finite, and
positive on each connected component of the set H \(M∗−N∗FN)(ΣH) intersected
by N(H).

Proof. As in the proof of Corollary 3.11, we have that M∗ − tN∗FN is A-proper
with respect to Γ for each t ∈ [0, 1]. Hence, the conclusions follow by Theorem
3.19. �

For our next result, assume that a Hilbert space H is in a duality with a Banach
space Y with H ⊂ Y and K : H → H is positive. Then its selfadjoint part
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A = 1/2(K + K∗) is positive semidefinite and therefore its square root C = A1/2 :
H → H is also positive and semidefinite. Assume that K has a decomposition of
the form K = NC : H → Y for some continuous linear map N : H → Y .

Lemma 3.22. Equations (1.1) and y − FKy = h with h ∈ H and f ∈ K(H) are
equivalent; each solution y of y− FKy = h determines a solution x = Ky of (1.1)
and each solution x of (1.1) with f ∈ K(H) determines a solution y = Fx + h
of y − FKy = h with f = Kh and x = Kh. Moreover, the map K : S(h) =
(I − FK)−1({h}) → S = (I −KF )−1({Kh}) is bijective.

Proof. Let y1 and y2 be distinct solutions of y − FKy = h. Applying K to yi −
FKyi = h, we get that x1 = Ky1 and x2 = Ky2 are solutions of (1.1). They are
distinct since

0 < ‖y1 − y2‖2 = (FKy1 − FKy2, y1 − y2)
implies that FKy1 6= FKy2 and therefore x1 = Ky1 6= x2 = Ky2. Conversely, let
f ∈ K(H) and x1 and x2 be distinct solutions of (1.1). Let f = Kh for some h ∈ H.
Set yi = Fxi + h. Then Kyi = KFxi + f and so xi = Kyi. Hence, yi = FKyi + h,
i.e., yi are solutions of y − FKy = h. They are distinct since y1 = y2 implies
that x1 = Ky1 = Ky2 = x2. These arguments show that K : S(h) → S is a
bijection. �

Theorem 3.23. Let a Hilbert space H be in a duality with a Banach space Y with
H ⊂ Y and K : H → H be positive and K = NC : H → Y for some continuous
linear map N : H → Y . Let F : Y → H be a bounded nonlinear map such that
I − FK : H → H is A-proper and

(Fx, x) ≤ a‖x‖2 + b‖x‖2−γ + d, x ∈ Y \B(0, R)

for some constants a, b, d, γ ∈ (0, 2], R > 0 and aµ(K) < 1. Then (1.1) is solvable
for each f ∈ K(H). Moreover,if Σ = {x ∈ H : I − FK is not invertible at x} and
I − FK is continuous, then (I −KF )−1({f}) is compact for each f ∈ K(H), and
the cardinal number card(I −KF )−1({f}) is constant, finite, and positive on each
connected component of the set H \ (I − FK)(Σ) intersected by K(H).

Proof. Let h ∈ H and and f = Kh. Consider the homotopy H(t, y) = y − tFKy
on [0, 1] × H. We claim that H(t, y) − th satisfies condition (+) for each h ∈ H.
Let tn ∈ [0, 1] and yn ∈ H be such that un = yn − tnFKyn − tnh → g. Then the
positivity of K implies

0 ≤ (Kyn, yn) ≤ (un,Kyn) + tn(FKyn + h, Kyn)

≤ ‖un‖ ‖Kyn‖+ a‖Kyn‖2 + b‖Kyn‖2−γ + ‖h‖ ‖Kyn‖+ d

≤ aµ(K)(yn,Kyn) + b‖Kyn‖2−γ + (‖h‖+ |un‖)‖Kyn‖+ d.

Hence,

(Kyn, yn) ≤ (1− aµ(K))−1(b‖Kyn‖2−γ + (‖h‖+ ‖un‖)‖Kyn‖+ d).

Moreover,

(Kyn, yn) = (Ayn, yn) = (Cyn, Cyn)

≤ (1− aµ(K))−1(b‖Kyn‖2−γ + (‖h‖+ ‖un‖)‖Kyn‖+ d).

But, K = NC and therefore,

‖Kyn‖ ≤ ‖N‖ ‖Cyn‖ ≤ c1‖Kyn‖1−γ/2 + c2‖Kyn‖1/2 + c3
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for some constants c1, c2 and c3. Since the real function f(t) = t−c1t
1−γ/2−c2t

1/2

tends to infinity as t →∞, and for each n

‖Kyn‖ − c1‖Kyn|1−γ/2 − c2‖Kyn‖1/2 ≤ c3

it follows that {‖Kyn‖ : n = 1, 2, . . . } is a bounded set. Thus

‖yn‖ ≤ ‖un‖+ ‖FKyn‖+ ‖h‖ ≤ c4

for some constant c4 and all n by the boundedness of F . This shows that Ht satisfies
condition (+). By Theorem 3.2, we have that the equation y−FKy = h is solvable
for each h ∈ H, S(h) = (I − FK)−1({h}) 6= ∅ and compact, and cardS(h) is
constant and finite on each connected component of the open set H \ (I−FK)(Σ).

Next, applying K to y−FKy = h we get that x−KFx = f with x = Ky ∈ H.
By Lemma 3.22, we get that cardS = (I − KF )−1({Kh}) = cardS(h). Hence,
card(I−KF )−1({f}) is constant, finite and positive on each connected component
of H \ (I − FK)(Σ) intersected by K(H). �

Corollary 3.24. Let a Hilbert space H be in a duality with a Banach space Y with
H ⊂ Y and K : H → H be positive and K = NC : H → Y for some continuous
linear map N : H → Y . Let F : Y → H be a bounded nonlinear map such that
FK : H → H is continuous and φ-condensing, and

(Fx, x) ≤ a‖x‖2 + b‖x‖2−γ + d, x ∈ Y \B(0, R)

for some constants a, b, d, γ ∈ (0, 2], R > 0 and aµ(K) < 1. Then (1.1) is solvable
for each f ∈ K(H). Moreover,if Σ = {x ∈ H : I − FK is not invertible at x},
then (I − KF )−1({f}) is compact for each f ∈ K(H), and the cardinal number
card(I−KF )−1({f}) is constant, finite, and positive on each connected component
of the set H \ (I − FK)(Σ) intersected by K(H).

Proof. If KF is ball condensing, Theorem 3.23 applies. If KF is set condensing,
then arguing as in Theorem 3.23 we can prove this case again. �

Remark 3.25. If K : H → H is a positive, normal and compact map, then there
is a map N : H → Y such that K = NC (cf. [4]). In this case FK is compact and
Corollary 3.24 is applicable.

Next, assuming only the positivity of K, we can still prove the solvability of
(1.1) by requiring additionally that F has a linear growth.

Theorem 3.26. Let X be a reflexive embeddable Banach space (X ⊂ H ⊂ X∗),
K : X∗ → X be a continuous map such that the restriction KH of K to H is
positive and F : X → X∗ be such that I −KF is A-proper,

‖Fx‖ ≤ a‖x‖+ b, x ∈ X

(Fx, x) ≤ c‖x‖2 + d, x ∈ X \B(0, R)

for some constants a, b, c, d, R > 0 and cµ(K) < 1. Then (1.1) is approximation
solvable for each f ∈ X. Moreover, if Σ = {x ∈ X : I −KF is not invertible at x}
and I −KF is continuous, then (I −KF )−1({f}) is compact for each f ∈ X, and
the cardinal number card(I −KF )−1({f}) is constant, finite, and positive on each
connected component of the set X \ (I −KF )(Σ).
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Proof. Consider the homotopy H(t, x) = x − tKFx on [0, 1] × X. We claim that
H(t, x)−tf satisfies condition (+) for each f ∈ X. Indeed, let tn ∈ [0, 1] and xn ∈ X
be such that un = xn − tnKFxn − tnf → g. Then Fxn = F (un + tnKFxn + tnf)
and set yn = tnFxn. Then yn = tnF (un + Kyn + tnf) and

(yn,Kyn)

= (tnF (un + Kyn + tnf),Kyn)

= tn(F (un + Kyn + tnf), un + Kyn + tnf)− (F (un + Kyn + tnf), un + tnf)

≤ c‖un + Kyn + tnf‖2 + ‖F (un + Kyn + tnf)‖ ‖un + tnf‖+ d

≤ c‖Kyn‖2 + (a + 2c)‖un + tnf‖ ‖Kyn‖+ (a + c)‖un + tnf‖2

+ b‖un + tnf‖+ c1).

Since (y, Ky) ≥ 1/µ(K)‖Ky‖2 for all y ∈ H and H is dense in X∗, we have that
(y, Ky) ≥ 1/µ(K)‖Ky‖2 for all y ∈ X∗. Hence,

‖Kyn‖2 ≤ µ(K)(yn,Kyn)

≤ µ(K)(c‖Kyn‖2 + (a + 2c)‖un + tnf‖ ‖Kyn‖+ (a + c)‖un + tnf‖2

+ b‖un + tnf‖+ c1).

Next, we have that

‖xn‖ = ‖un + Kyn + tnf‖ ≤ ‖un‖+ ‖Kyn‖+ ‖f‖ ≤ M + ‖Kyn‖

for some constant M . If Kyn → 0, it follows that {xn} is bounded. If {Kyn} does
not converge to zero, then after dividing the above inequality by ‖Kyn‖ we get

‖Kyn‖ ≤ (1− cµ(K))−1µ(K)[(a + 2c)‖un + tnf‖
+

(
(a + c)‖un + tnf‖2 + b‖un + tnf‖+ c1

)
/‖Kyn‖] ≤ M1

for all n and some constant M1. Hence, {xn} is bounded in either case and condition
(+) holds. The conclusions now follow from Theorem 3.2 since

deg(PnH0, B(0, r) ∩Hn, 0) = deg(I,B(0, r) ∩Hn, 0) 6= 0

for all n ≥ n0. �

Corollary 3.27. Let X be a reflexive embeddable Banach space (X ⊂ H ⊂ X∗),
K : X∗ → X be a map such that the restriction KH of K to H is positive and
F : X → X∗ be nonlinear and such that KF is a continuous φ-condensing map
and

‖Fx‖ ≤ a‖x‖+ b, x ∈ X

(Fx, x) ≤ c‖x‖2 + d, x ∈ X \B(0, R)

for some constants a, b, c, d and cµ(K) < 1. Then (1.1) is solvable for each f ∈ X.
Moreover, if Σ = {x ∈ X : I−KF is not invertible at x}, then (I−KF )−1({f}) is
compact for each f ∈ X, and the cardinal number card(I−KF )−1({f}) is constant,
finite, and positive on each connected component of the set X \ (I −KF )(Σ).

Proof. Consider the homotopy H(t, x) = x − tKFx − tf . Then the conclusions
follow from Theorems 3.3 and 3.26. �
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Next, we shall extend Theorem 3.26 to potentially positive maps. Recall that
a map K : H → H is called potentially positive (from below) (cf. [4]) if there
exists a λ ∈ R such that the map I − λK is continuously invertible and the map
Kλ = (I − λK)−1K is positive on H. Clearly, any positive map is potentially
positive. Moreover, a completely continuous selfadjoint map is potentially positive
if and only if it has a finite number of negative eigenvalues.

Equation (1.1) can be written in the following equivalent form

x−KλFλx = (I − λK)−1(f)

where Fλ = F − λI. Clearly,

S(f) = (I −KF )−1({f}) = Sλ((I − λK)−1f) = (I −KλFλ)−1({(I − λK)−1f}).

Moreover, I − KF : X → X is locally invertible at x0 ∈ X if and only if (I −
λK)−1(I − KF ) : X → X is locally invertible at x0 ∈ X since I − λK : H → H
is a homeomorphism. Hence, Σ = {x ∈ X : I − KF is not invertible at x} =
Σλ = {x ∈ X : (I − λK)−1(I − KF ) is not locally invertible at x} = {x ∈ X :
I − (I − λK)−1K(F − λI) is not locally invertible at x}. We have the following
extension of Theorem 3.26 to potentially positive maps.

Theorem 3.28. Let X be a reflexive embeddable Banach space (X ⊂ H ⊂ X∗),
K : X∗ → X be a map such that the restriction KH of K to H is potentially positive
and F : X → X∗ be such that I −KλFλ is A-proper, and

‖Fx‖ ≤ a‖x‖+ b, x ∈ X

(Fx, x) ≤ c‖x‖2 + c1, x ∈ X

for some constants a, b, c, c1 and (c − λ)µ(K) < 1. Then (1.1) is approximation
solvable for each f ∈ X. Moreover, if Σ = {x ∈ X : I −KF is not invertible at x}
and I −KF is continuous, then (I −KF )−1({f}) is compact for each f ∈ X, and
the cardinal number card(I −KF )−1({f}) is constant, finite, and positive on each
connected component of the set X \ (I −KF )(Σ).

Proof. Let Fλ = F − λI and consider the homotopy Hλ(t, x) = x − tKλFλx − tf .
Then arguing as in Theorem 3.26, we get that S(f) = (I −KF )−1({f}) = Sλ((I −
λK)−1f) is not empty and compact, and cardS(f) is constant, finite and positive
on each connected component Ui of the open set X \ (I −KλFλ)(Σ) = ∪iUi. Since
(I − λK)(X \ (I −KλFλ)(Σ)) = X \ (I − λK)(I −KλFλ)(Σ) = X \ (I −KF )(Σ),
we get that X \ (I −KF )(Σ) = ∪i(I − λK)Ui. Hence, f ∈ (I − λK)Ui if and only
if f = (I − λK)g with g ∈ Ui. Therefore, card(I −KF )−1({f}) is constant, finite,
and positive on each connected component of the set X \ (I −KF )(Σ). �

Corollary 3.29. Let X be a reflexive embeddable Banach space (X ⊂ H ⊂ X∗),
K : X∗ → X be a map such that the restriction KH of K to H is potentially positive
and F : X → X∗ be such that KλFλ is φ-condensing, and

‖Fx‖ ≤ a‖x‖+ b, x ∈ X

(Fx, x) ≤ c‖x‖2 + c1, x ∈ X

for some constants a, b, c, c1 and (c − λ)µ(K) < 1. Then (1.1) is solvable for each
f ∈ X. Moreover, if Σ = {x ∈ X : I − KF is not invertible at x} and I − KF
is continuous, then (I −KF )−1({f}) is compact for each f ∈ X, and the cardinal
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number card(I − KF )−1({f}) is constant, finite, and positive on each connected
component of the set X \ (I −KF )(Σ).

Proof. Let Fλ = F − λI and consider the homotopy Hλ(t, x) = x − tKλFλx − tf .
Then the conclusions follow from Theorems 3.3 and 3.28. �

We say that T satisfies condition (++) if whenever {xn} is bounded and Txn →
f , then Tx = f for some x ∈ X. Let σ(K) denote the spectrum of K. Our next
result involves a suitable Leray-Schauder type of condition.

Theorem 3.30. Let K : X → X be a continuous linear map, λ−1 /∈ σ(K), F :
X → X be nonlinear, Tp = pI − (I − λK)−1K(F − λI) : X → X for p ≥ 1, T1

satisfy condition (+) and either F is odd or, for some R > 0,

K(F − λI)x 6= t(I − λK)x for ‖x‖ ≥ R, t > 1. (3.4)

a) If T1 is A-proper with respect to Γ, then (1.1) is approximation solvable for each
f ∈ X. Moreover, if Σ = {x ∈ X : I − KF is not invertible at x} and I − KF
is continuous, then (I −KF )−1({f}) is compact for each f ∈ X, and the cardinal
number card(I − KF )−1({f}) is constant, finite, and positive on each connected
component of the set X \ (I −KF )(Σ).
b) If Tp is A-proper with respect to Γ for each p > 1 and T1 satisfies condition
(++), then (1.1) is solvable for each f ∈ X.

Proof. Equation (1.1) is equivalent to

Ax−Nx = f (3.5)

where A = I − λK and N = K(F − λI). It is easy to see that (3.4) implies that

Nx 6= tAx for ‖x‖ ≥ R, t > 1.

Hence, the (approximate) solvability of (1.1) follows from [9, Theorem 4.1]. Next,
set Σ1 = {x ∈ X : I − A−1N is not invertible at x}. Then {(I − A−1N)−1({h})}
is compact for each h ∈ X and the cardinal number card(I − A−1N)−1({h}) is
constant, finite and positive on each connected component of X \ (I −A−1N)(Σ1)
by Theorem 3.1. Since A is a homeomorphism and Σ = Σ1, we have that card((I−
KF )−1({f})) =card((I − A−1N)−1({A−1(f)}) on each connected component Ui

of X \ (I − A−1N)(Σ). As before, we get that card(I − KF )−1({f}) is constant,
finite, and positive on each connected component of the set X \ (I −KF )(Σ). �

An easy consequence of Theorem 3.30 is the following result.

Corollary 3.31. Let K : X → X be a continuous linear map, λ−1 /∈ σ(K),
F : X → X be nonlinear, Tp = pI − (I − λK)−1K(F − λI) : X → X for p ≥ 1,
and

|F − λI| = lim sup
‖x‖→∞

‖Fx− λx‖/‖x‖ < ‖(I − λK)−1K‖−1. (3.6)

a) If T1 is A-proper with respect to Γ, then (1.1) is approximation solvable for
each f ∈ X. Moreover, if Σ = {x ∈ X : I − KF is not invertible at x} and T1

is continuous, then (I −KF )−1({f}) is compact for each f ∈ X, and the cardinal
number card(I − KF )−1({f}) is constant, finite, and positive on each connected
component of the set X \ (I −KF )(Σ).
b) If Tp is A-proper with respect to Γ for each p > 1 and T1 satisfies condition
(++), then (1.1) is solvable for each f ∈ X.
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Corollary 3.32. Let X be a uniformly convex space with a scheme Γ = {Xn, Pn},
max‖Pn‖ = 1, K : X → X be a continuous linear map, λ−1 /∈ σ(K) and F : X →
X be nonlinear such that (I−λK)−1K(F −λI) : X → X is nonexpensive and (3.6)
hold. Then (1.1) is solvable for each f ∈ X.

Let us now look at some special cases.

Corollary 3.33. Let K : H → H be a positive, compact and normal linear map,
λ−1 /∈ σ(K), F : X → X be a nonlinear map such that

(|F − λI|+ λ)µ(K) < 1. (3.7)

Then (1.1) is approximation solvable for each f ∈ H. Moreover, if Σ = {x ∈ X :
I −KF is not invertible at x}, then (I −KF )−1({f}) is compact for each f ∈ X,
and the cardinal number card(I − KF )−1({f}) is constant, finite, and positive on
each connected component of the set X \ (I −KF )(Σ).

Proof. Since K is compact, it suffices to show that (3.7) implies (3.6). We know
that (3.7) is equivalent to

|F − λI|+ λ < inf
γ∈σ(K),γ 6=0

Re(γ−1)

and the spectrum is σ(Kλ) = {γ/(1− λγ) : γ ∈ σ(K)}. Hence

|F − λI| < inf
γ∈σ(K),γ 6=0

Re(γ−1)− λ = inf
γ∈σ(K), γ 6=0

Re((1− λγ)/γ).

Thus,
|F − λI|2 < inf

γ∈σ(K), γ 6=0
{[Re(γ−1)− λ]2 + (Imλ−1)2}.

which is equivalent to |F − λI| ‖Kλ‖ < 1. Hence, (3.6) holds. �

Let Σ(K) be the set of characteristic values of K, i.e., Σ(K) = {µ : 1/µ ∈ σ(K)}.

Theorem 3.34. Let K : H → H be a selfadjoint map, λ /∈ Σ(K), F : H → H be
nonlinear and continuous and Tp = pI− (I−λK)−1K(F −λI) : H → H for p ≥ 1.
Suppose that for some k with kδ < d = dist(λ, Σ(K))

lim sup
‖x‖→∞

‖Fx− λx‖/‖x‖ < k.

(a) If T1 is A-proper with respect to Γ, then (1.1) is approximation solvable for
each f ∈ H. Moreover, if Σ = {x ∈ X : I − KF is not invertible at x} and T1

is continuous, then (I −KF )−1({f}) is compact for each f ∈ X, and the cardinal
number card(I − KF )−1({f}) is constant, finite, and positive on each connected
component of the set H \ (I −KF )(Σ).
(b) If Tp is A-proper with respect to Γ for each p > 1 and T1 satisfies condition
(++), then (1.1) is solvable for each f ∈ X.

Proof. Equation (1.1) is equivalent to x = (I − λK)−1K(F − λ)x + (I − λK)−1f .
Since (I − λK)−1K = −1/λ + 1/λ(I − λK)−1, we have that, [4],

‖(I − λK)−1K‖ = sup
µ∈σ(K)

| − 1/λ + 1/λ(1− λµ)−1| = sup
µ∈Σ(K)

|(µ− λ)−1| = d−1.

Then the conclusions follow from Corollary 3.31. �
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4. Hammerstein integral equations

Let Q ⊂ Rn be a bounded domain, k(t, s) : Q × Q → R be measurable and
f(s, u) : Q × R → R be a Caratheodory function. We consider the problem of
finding a solution u ∈ L2(Q) of the Hammerstein integral equation

u(t) =
∫

Q

k(t, s)f(s, u(s))ds + g(t) (4.1)

where g is a measurable function. There is a vast literature on the solvability of
(4.1) and we just mention the books by Krasnoselskii [5] and Vainberg [23]. Define
the linear map

Ku(t) =
∫

Q

k(t, s)u(s) ds

in H = L2(Q). Define Fu = f(s, u(s)) and note that (4.1) can be written in the
form u−KFu = g.

Theorem 4.1. Let K : H → H be compact and selfadjoint, Σ(K) = {λ : λ−1 ∈
σ(K)} and assume that either one of the following conditions holds

(i) Let λ /∈ Σ(K) and a < dist(λ, Σ(K)) be such that for some h ∈ L2(Q),

|f(s, u)− λu| ≤ a|u|+ h(s) for all s ∈ Q, u ∈ R,

(ii) There are λ, µ ∈ Σ(K) such that (λ, µ)∩Σ(K) = ∅ and λ < α < β < µ and
ε > 0 such that for s ∈ Q

α + ε ≤ f−(s) = lim inf
|u|→∞

(f(s, u)/u) ≤ f+(s) = lim sup
|u|→∞

(f(s, u)/u) ≤ β − ε.

(iii) Let K be positive and compact normal map in H with

|f(s, u)| ≤ c|u|+ c(s), s ∈ Q, u ∈ R, c(s) ∈ L2(Q),

uf(s, u) ≤ ku2 + b(s), s ∈ Q, u ∈ R, b(s) ∈ L1(Q),

‖(I − γK)−1K‖(c + k)/2 < 1 .

Then (4.1) is approximation solvable in L2 for each g ∈ L2 and the number of its
solutions is constant and finite on each connected component of L2(Q)\(I−KF )(Σ),
where Σ = {u ∈ L2(Q) : I −KF is not invertible at u}.

Proof. We shall show first that (ii) implies (i). From (ii), we get that there is R > 0
such that

α < f−(s)− ε ≤ f(s, u)/u ≤ f+(s) + ε < β, for all s ∈ Q and |u| ≥ R.

Hence, for each s ∈ Q,

|f(s, u)
u

− λ + µ

2
| ≤ min(f+(s) + ε− λ + µ

2
,
λ + µ

2
− f−(s) + ε)

≤ min(β − λ + µ

2
,
λ + µ

2
+ α) = a

<
µ− λ

2
= dist(

λ + µ

2
,Σ(K)).

Thus, (i) holds.
Next, we shall show that (iii) also implies (i).The inequalities in (iii) imply that

|f(s, u)− (k − c)/2u| ≤ (k + c)/2|u|+ b1(s), b1(s) ∈ L2(Q).
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Since k > 0 and c > k, we see that (i) holds with λ = (k − c)/2 and a = (c + k)/2.
Hence, the conclusion holds by Theorem 3.34 and Corollary 3.31. �

Let us now look at the case when K is not selfadjoint nor compact. Suppose
first that K is P -positive in H = L2(Q). Suppose that K acts from Lq into Lp for
2 ≤ p ≤ ∞ and q = p/(p− 1) with q = 1 if p = ∞. As before, let A = 1/2(K +K∗)
be the selfadjoint part of K and B = 1/2(K −K∗) be the skew-adjoint part of K.
They both act from Lq into Lp. Assume that A is positive definite. Then it can
be represented in the form A = CC∗, where C = A1/2 : L2 → Lp and the adjoint
operator C∗ : Lq → L2. Assume that K is P -positive operator in L2. Denote by
M and N the closure of the maps C−1K(C∗)−1 and K(C∗)−1, respectively, in L2.
Note that M and N are defined on the closure (in L2) of the range of C = A1/2.
This closure coincides with L2 in our case. Since K is P -positive, the following
decompositions hold (cf. [1])

K = CMC∗, K = NC∗.

Note that K, M and N are related as: N = CM,N∗ = M∗C∗ and we have
(Mh, h) = ‖h‖2 for all h ∈ L2. Hence, both M and M∗ have trivial nullspaces.
Denote by µ(K) = ‖N‖2, which is the positivity constant of K in the sense of
Krasnoselski. Set Fx(s) = f(s, x(s)).

Theorem 4.2. Suppose that K is P -positive in L2(Q), f = f1 + f2 satisfies the
Caratheodory condition, F : Lp → Lq, and there are constants a, b c and k such
that a‖K‖ < 1, k < 1− cµ(K) and

(i) |f(s, u)| ≤ a|u|+ b (s ∈ Q, u ∈ R)
(ii) (f1(s, u)− f1(s, v), u− v) ≤ c|u− v|2 (s ∈ Q, u, v ∈ R)
(iii) |f2(s, u)− f2(s, v)| ≤ k|u− v| (s ∈ Q, u, v ∈ R).

Then (4.1) is approximation solvable in L2 for each g ∈ N(L2) and the number of
its solutions is constant and finite on each connected component of L2(Q) \ (M∗ −
N∗FN)(ΣL2) intersected by N(L2), where
ΣL2 = {u ∈ L2 : M∗ −N∗FN is not invertible at u}.

The above theorem follows from Corollary 3.9.

Theorem 4.3. Suppose that K is P -positive in L2(Q), f = f1 + f2 satisfies the
Caratheodory condition, F : Lp → Lq, and there are constants a, b, d, γ ∈ (0, 2], c
and k such that aµ(K) < 1, k < 1− cµ(K) and

(i) (f(s, u), u) ≤ a|u|2 + b|u|2−γ + d (s ∈ Q, u ∈ R)
(ii) (f1(s, u)− f1(s, v), u− v) ≤ c|u− v|2 (s ∈ Q, u, v ∈ R)
(iii) |f2(s, u)− f2(s, v)| ≤ k|u− v| (s ∈ Q, u, v ∈ R).

Then (4.1) is approximation solvable in L2 for each g ∈ N(L2) and the number of
its solutions is constant and finite on each connected component of L2(Q) \ (M∗ −
N∗FN)(ΣL2) intersected by N(L2), where
ΣL2 = {u ∈ L2 : M∗ −N∗FN is not invertible at u}.

The above theorem follows from Corollary 3.18.
Next, we shall look at the case when the selfadjoint part A of K is not positive

definite. Suppose that A is quasi-positive definite in L2, i.e., it has at most a finite
number of negative eigenvalues of finite multiplicity. Let U be the subspace spanned
by the eigenvectors of A corresponding to these negative eigenvalues of A and
P : L2 → U be the orthogonal projection onto U . Then P commutes with A, but
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not necessarily with B, and acts both in Lp and Lq. The operator |A| = (I − 2P )A
is easily seen to be positive definite. Hence, we have the decomposition |A| = DD∗,
where D = |A|1/2 : L2 → Lp and D∗ : Lq → Lp.

As before, the map K P -quasi-positive if the map D−1K(D∗)−1 exists and is
bounded in L2, and S-quasi-positive if the map K(D∗)−1 exists and is bounded in
H. Let M and N denote the closure in L2 of the the bounded maps D−1K(D∗)−1

and K(D∗)−1 respectively. They are both defined on the whole space L2 (cf. [1])
and have the following decompositions

K = DMD∗, K = ND∗.

Then we have N = DM , N∗ = M∗D∗, and 〈Mh, h〉 = ‖h‖2−2‖Ph‖2 for all h ∈ H.
Define the number

ν(K) = sup{ν : ν > 0, ‖Nh‖ ≥ (ν)1/2‖Ph‖, h ∈ H}.
Note that for a selfadjoint map K, ν(K) is the absolute value of the largest negative
eigenvalue of K.

We have the following result when K is P-quasi-positive.

Theorem 4.4. Suppose that K is P-quasi-positive in L2(Q), f = f1 + f2 satisfies
the Caratheodory condition, F : Lp → Lq, and there are constants a, b, d, γ ∈ (0, 2],
c and k such that a + cν(K) < −1, k < −(1 + cν(K)) and

(i) |f(s, u)| ≤ a|u|+ b (s ∈ Q, u ∈ R)
(ii) (f1(s, u)− f1(s, v), u− v) ≤ c|u− v|2 (s ∈ Q, u, v ∈ R)
(iii) |f2(s, u)− f2(s, v)| ≤ k|u− v| (s ∈ Q, u, v ∈ R).

Then (4.1) is approximation solvable in L2 for each g ∈ N(L2) and the number of
its solutions is constant and finite on each connected component of L2(Q) \ (M∗ −
N∗FN)(ΣL2) intersected by N(L2), where
ΣL2 = {u ∈ L2 : M∗ −N∗FN is not invertible at u}.

The above theorem follows from Corollary 3.11.

Theorem 4.5. Suppose that K is P-quasi-positive in L2(Q), f = f1 + f2 satisfies
the Caratheodory condition, F : Lp → Lq, and there are constants a, b, d, γ ∈ (0, 2],
c and k such that a + cν(K) < −1, k < −(1 + cν(K)) and

(i) (f(s, u), u) ≤ a|u|2 + b|u|2−γ + d (s ∈ Q, u ∈ R)
(ii) (f1(s, u)− f1(s, v), u− v) ≤ c|u− v|2 (s ∈ Q, u, v ∈ R)
(iii) |f2(s, u)− f2(s, v)| ≤ k|u− v| (s ∈ Q, u, v ∈ R).

Then (4.1) is approximation solvable in L2 for each g ∈ N(L2) and the number of
its solutions is constant and finite on each connected component of L2(Q) \ (M∗ −
N∗FN)(ΣL2) intersected by N(L2), where
ΣL2 = {u ∈ L2 : M∗ −N∗FN is not invertible at u}.

The above theorem follows from Corollary 3.11.
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