Electronic Journal of Differential Equations, Vol. 2004(2004), No. 53, pp. 1-12. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp)

QUALITATIVE PROPERTIES OF SOLUTIONS TO SEMILINEAR HEAT EQUATIONS WITH SINGULAR INITIAL DATA

JUNJIE LI

$$
\begin{aligned}
& \text { Abstract. This article concerns the nonnegative solutions to the Cauchy } \\
& \text { problem } \\
& \qquad \begin{array}{c}
u_{t}-\Delta u+b(x, t)|u|^{p-1} u=0 \quad \text { in } \mathbb{R}^{N} \times(0, \infty), \\
u(x, 0)=u_{0}(x) \quad \text { in } \mathbb{R}^{N} .
\end{array}
\end{aligned}
$$

We investigate how the comparison principle, extinction in finite time, instantaneous shrinking of support, and existence of solutions depend on the behaviour of the coefficient $b(x, t)$.

1. Introduction

In this paper we investigate the qualitative properties of the nonnegative solutions to the Cauchy problem

$$
\begin{gather*}
L u:=u_{t}-\Delta u+b(x, t)|u|^{p-1} u=0 \quad \text { in } \mathbb{R}^{N} \times(0, \infty), \tag{1.1}\\
u(x, 0)=u_{0}(x) \quad \text { in } \mathbb{R}^{N} \tag{1.2}
\end{gather*}
$$

where $0<p<1, b(x, t) \geq 0$, and $u_{0}(x)$ satisfies the hypothesis
(H1) $u_{0}(x) \in C\left(\mathbb{R}^{N} \backslash\{0\}\right), 0<u_{0}(x) \leq f(x):=f_{0}+\frac{f_{1}}{|x|^{k_{0}}}$ in $\mathbb{R}^{N}\left(f_{0} \geq 0, f_{1}>0\right.$, $\left.k_{0}>0\right)$.
Note that for any positive number q, when k_{0} is large, $f(x) \notin L_{\mathrm{loc}}^{q}\left(\mathbb{R}^{N}\right)$. So to give a proper definition of the solution to $\sqrt[1.1)]{ },(1.2)$ is the first thing to be consider. Moreover, due to the singularity of the initial value, solutions to $(1.1, \sqrt{1.2}$ are in general unbounded, and the singularity at $x=0$ cannot be "kill" for $t>0$ even if $b(x, t)$ possesses some kind of singularity at $x=0$; see for instance the following example:

Example 1.1. Let $b(x, t)=\left(k_{0}\left(k_{0}+2-N\right)\right) /\left(|x|^{k_{0}(1-p)+2}\right)$ with $k_{0}+2>N$ and $u(x, 0)=1 /\left(|x|^{k_{0}}\right)$. Then $u(x, t)=\frac{1}{|x|^{k_{0}}}$ is a classical solution to (1.1) in $\left(\mathbb{R}^{N} \backslash\{0\}\right) \times(0, \infty)$.

Due to these facts, we give the definition of solution to $1.1, \sqrt{1.2}$ as follows.

[^0]Definition 1.2. By a solution to problem (1.1), 1.2 we mean a function $u(x, t) \in$ $C\left(\left(\mathbb{R}^{N} \backslash\{0\}\right) \times[0, \infty)\right) \cap C^{2,1}\left(\left(\mathbb{R}^{N} \backslash\{0\}\right) \times(0, \infty)\right)$ satisfying classically 1.1) in $\left.\left(\mathbb{R}^{N} \backslash\{0\}\right) \times(0, \infty)\right)$ with $u(x, 0)=u_{0}(x)$ in $\left(\mathbb{R}^{N} \backslash\{0\}\right)$.

One sees that this definition allows solutions of $\sqrt{1.1},(\sqrt{1.2})$ take their potential singular points only at $x=0$. Does problem 1.1), 1.2) have such a solution? Although we do not know at the moment the precise and proper conditions imposed on $b(x, t)$ under which problem (1.1), 1.2) is global solvable in the sense of Definition 1.2, we give in Section 4 a positive answer when $b(x, t)$ satisfies certain conditions. One also believe that if $b(x, t)$ is only nonnegative such phenomena as comparison principle, extinction in finite time and instantaneous shrinking of support for solutions cease to hold. Our aim in this paper is to give suitable conditions on $b(x, t)$ under which the above mentioned phenomena are valid, i.e., we are mainly interested in the following: What conditions we add on $b(x, t)$ so that
(a) Comparison principles for subsolutions and supersolutions of 1.1 hold.
(b) The solution $u(x, t)$ of (1.1) has the property of instantaneous shrinking of the support (the support of $u(x, t)$ is bounded for $t>0$ although the initial value $u_{0}(x)$ is positive every where).
(c) The solution of 1.1 becomes extinct in finite time.
(d) Problem 1.1), 1.2 has a global solution.

There are many results on (a)-(d) when initial value $u_{0}(x)$ does not possess singular points; see [3, 5, 7, 9, 11] for (a); 1, 6, 7, 8, 10, 11 , for (b) and (c); and 3, 7, 9, 11, for (d). The reader can find further references therein. However, when initial value $u_{0}(x)$ is subject to (H1), to our knowledge there are few developments in these direction. As is known to all, the comparison principle is one of the cornerstones in dealing with phenomena (b) and (c). We establish, in the next section, a comparison principle when $b(x, t)$ is under some conditions. We also state a negative result on comparison principles. From this negative result one can see that the comparison principle is not valid when the singularity of $b(x, t)$ is not very "strong". These results and their proofs are of interest in themselves. The study of phenomena (b) and (c) is the subject of Section 3. Section 4 is devoted to global existence problems.

2. Comparison Principle

In the sequel we use ϵ_{0}, R_{0} and $b_{i}(i=0,1)$ to denote different positive constants, their values may change from one place to the next. The statement that a constant depends only on the data means that this constant can be determined in terms of N, p, f_{0}, f_{1} and k_{0}. We also use $B_{r}\left(x_{0}\right)$ to denote the ball in \mathbb{R}^{N} of radius r and centered at x_{0}.

Definition 2.1. For $M_{0} \geq f_{0}, 0<T_{0} \leq \infty, \mathbb{F}_{M_{0}}\left(T_{0}\right)$ is the set of all nonnegative functions $u(x, t)$ in $C\left(\left(\mathbb{R}^{N} \backslash\{0\}\right) \times\left[0, T_{0}\right)\right) \cap C^{2,1}\left(\left(\mathbb{R}^{N} \backslash\{0\}\right) \times\left(0, T_{0}\right)\right)$ satisfying

$$
\begin{equation*}
\left.u(x, t) \leq M_{0}+\frac{f_{1}}{|x|^{k_{0}}} \quad \text { in } \mathbb{R}^{N} \backslash\{0\}\right) \times\left[0, T_{0}\right) \tag{2.1}
\end{equation*}
$$

Theorem 2.2 (Comparison Principle). Assume $0<p \leq 1$, and let $u^{ \pm}(x, t) \in$ $\mathbb{F}_{M_{0}}\left(T_{0}\right)$ satisfy

$$
\begin{gather*}
\pm L u^{ \pm} \geq 0 \quad \text { in }\left(\mathbb{R}^{N} \backslash\{0\}\right) \times\left(0, T_{0}\right) \\
u^{-}(x, 0) \leq u^{+}(x, 0) \quad \text { in } \mathbb{R}^{N} \backslash\{0\} . \tag{2.2}
\end{gather*}
$$

(a) If $k_{0}<N-2$ and $b(x, t) \geq 0$ in $\left(\mathbb{R}^{N} \backslash\{0\}\right) \times\left[0, T_{0}\right)$, then

$$
u^{-}(x, t) \leq u^{+}(x, t) \quad \text { in }\left(\mathbb{R}^{N} \backslash\{0\}\right) \times\left[0, T_{0}\right)
$$

(b) if $k_{0} \geq N-2$, and for $k>k_{0}, R_{0}>0$,

$$
b(x, t) \geq \begin{cases}\frac{k_{0}(k+2-N) f_{1}^{1-p}}{p|x|^{k_{0}(1-p)+2}} & \text { in }\left(B_{R_{0}}(0) \backslash\{0\}\right) \times\left[0, T_{0}\right) \tag{2.3}\\ 0 & \text { in }\left(\mathbb{R}^{N} \backslash B_{R_{0}}(0)\right) \times\left[0, T_{0}\right)\end{cases}
$$

then $u^{-}(x, t) \leq u^{+}(x, t)$ in $\left(\mathbb{R}^{N} \backslash\{0\}\right) \times\left[0, T_{0}\right)$.
Proof. Suppose the contrary, then there exists a point $\left(x^{0}, t^{0}\right) \in\left(\mathbb{R}^{N} \backslash\{0\}\right) \times\left(0, T_{0}\right)$ such that

$$
\begin{equation*}
u^{-}\left(x^{0}, t^{0}\right)-u^{+}\left(x^{0}, t^{0}\right)=2 a>0 \tag{2.4}
\end{equation*}
$$

Let $\theta_{0} \in(0,1)$ and $\lambda_{0} \geq 1$ be fixed, and set

$$
\begin{gathered}
v^{ \pm}(x, t)= \begin{cases}\frac{|x|^{k_{0}+\theta_{0}}}{\left(1+|x|^{2}\right)^{\frac{k_{0}+2 \theta_{0}}{2}}} u^{ \pm}(x, t), & x \neq 0, t \in\left[0, T_{0}\right), \\
0, & x=0, t \in\left[0, T_{0}\right),\end{cases} \\
w(x, t)=e^{\lambda_{0}\left(t^{0}-t\right)}\left(v^{-}(x, t)-v^{+}(x, t)\right), \quad E=\left\{(x, t) \in \mathbb{R}^{N} \times\left(0, t^{0}\right] ; w(x, t)>0\right\} .
\end{gathered}
$$

From the hypotheses, one easily see that $v^{ \pm}(x, t) \in C\left(\mathbb{R}^{N} \times\left[0, T_{0}\right)\right) \cap C^{2,1}\left(\left(\mathbb{R}^{N} \backslash\right.\right.$ $\left.\{0\}) \times\left(0, T_{0}\right)\right)$ and

$$
\begin{equation*}
\lim _{|x| \rightarrow \infty} v^{ \pm}(x, t)=0 \quad \text { uniformly in } t \in\left[0, t^{0}\right] \tag{2.5}
\end{equation*}
$$

A straightforward calculation yields

$$
\begin{aligned}
\pm\left(v_{t}^{ \pm}-\Delta v^{ \pm}+2 b_{i}(x) v_{x_{i}}^{ \pm}\right)= & \pm \frac{|x|^{k_{0}+\theta_{0}}}{\left(1+|x|^{2}\right)^{\frac{k_{0}+2 \theta_{0}}{2}}} L u^{ \pm} \\
& \pm\left\{c(x) v^{ \pm}+\frac{\left(k_{0}+\theta_{0}\right)\left(k_{0}+\theta_{0}+2-N\right)}{|x|^{2}} v^{ \pm}\right. \\
& \left.-\left(\frac{|x|^{k_{0}+\theta_{0}}}{\left(1+|x|^{2}\right)^{\frac{k_{0}+2 \theta_{0}}{2}}}\right)^{1-p} b(x, t)\left(v^{ \pm}\right)^{p}\right\} \\
\geq & \pm\left\{-\left(\frac{|x|^{k_{0}+\theta_{0}}}{\left(1+|x|^{2}\right)^{\frac{k_{0}+2 \theta_{0}}{2}}}\right)^{1-p} b(x, t)\left(v^{ \pm}\right)^{p}+c(x) v^{ \pm}\right. \\
& \left.+\frac{\left(k_{0}+\theta_{0}\right)\left(k_{0}+\theta_{0}+2-N\right)}{|x|^{2}} v^{ \pm}\right\}
\end{aligned}
$$

in $\left(\mathbb{R}^{N} \backslash\{0\}\right) \times\left(0, T_{0}\right)$, where

$$
\begin{gathered}
b_{i}(x)=\frac{\left(k_{0}+\theta_{0}\right) x_{i}}{|x|^{2}}-\frac{\left(k_{0}+2 \theta_{0}\right) x_{i}}{1+|x|^{2}} \\
c(x)=\frac{\left(k_{0}+2 \theta_{0}\right)\left(N-2 k_{0}-2 \theta_{0}\right)}{1+|x|^{2}}-\frac{\left(k_{0}+2 \theta_{0}\right)\left(2-k_{0}-2 \theta_{0}\right)|x|^{2}}{\left(1+|x|^{2}\right)^{2}} .
\end{gathered}
$$

Therefore,

$$
\begin{align*}
& w_{t}-\Delta w+2 b_{i}(x) w_{x_{i}} \\
& \leq-\lambda_{o} w-\frac{p b(x, t) w}{\left(u^{-}\right)^{1-p}}+N\left(k_{0}+2 \theta_{0}\right) w+\frac{\left(k_{0}+\theta_{0}\right)\left(k_{0}+\theta_{0}+2-N\right)}{|x|^{2}} w \tag{2.6}
\end{align*}
$$

in E, where we have used the elementary inequality:

$$
a^{p}-b^{p} \geq \frac{p(a-b)}{a^{1-p}} \quad \text { for } a>b \geq 0
$$

Case i) $k_{0} \geq N-2$. In view of (2.3), 2.6) and $u^{-} \in \mathbb{F}_{M_{0}}\left(T_{0}\right)$, we first fix θ_{0} and $\bar{R} \in\left(0, R_{0}\right)$ small enough such that

$$
\begin{equation*}
\frac{p b(x, t)}{\left(u^{-}(x, t)\right)^{1-p}} \geq \frac{k_{0}(k+2-N) f_{1}^{1-p}}{\left(M_{0}+\frac{f_{1}}{|x|^{k_{0}}}\right)^{1-p}|x|^{k_{0}(1-p)+2}} \geq \frac{\left(k_{0}+\theta_{0}\right)\left(k_{0}+\theta_{0}+2-N\right)}{|x|^{2}} \tag{2.7}
\end{equation*}
$$

in $\left(B_{\bar{R}}(0) \backslash\{0\}\right) \times\left(0, t^{0}\right]$, and then take λ_{0} satisfying

$$
\begin{equation*}
\lambda_{0} \geq \frac{\left(k_{0}+\theta_{0}\right)\left(k_{0}+\theta_{0}+2-N\right)}{\bar{R}^{2}}+\left(k_{0}+2 \theta_{0}\right)\left(N+3 k_{0}+4 \theta_{0}+2\right) \tag{2.8}
\end{equation*}
$$

to obtain $w_{t}-\Delta w+2 b_{i}(x) w_{x_{i}} \leq 0$ in E.
Case ii) $k_{0}<N-2$. This time we choose λ_{0} as in (2.8) and θ_{0} small enough such that $k_{0}+\theta_{0}+2-N \leq 0$. Then from (2.6) we get

$$
w_{t}-\Delta w+2 b_{i}(x) w_{x_{i}} \leq 0 \quad \text { in } E
$$

Thus, we have for small θ_{0} and large λ_{0},

$$
\begin{equation*}
w_{t}-\Delta w+2 b_{i}(x) w \leq 0 \quad \text { in } E \tag{2.9}
\end{equation*}
$$

For any $t \in\left(0, t^{o}\right]$, if,$w(x, t)$ attains its positive maximum at $x(t)(\sqrt{2.5})$ implies that $w(x, t)$ cannot attain its positive maximum at infinity), then by 2.9) we deduce

$$
\begin{equation*}
w_{t}(x(t), t) \leq 0 \tag{2.10}
\end{equation*}
$$

We introduce now the function

$$
W(t)=\sup _{x \in \mathbb{R}^{N}} w(x, t)
$$

From $w(x, 0) \leq 0$ and 2.4,

$$
\begin{equation*}
W\left(t^{0}\right) \geq 2 a, \quad W(0) \leq 0 \tag{2.11}
\end{equation*}
$$

Set

$$
\begin{equation*}
t^{*}=\inf \left\{t \in\left[0, t^{0}\right] ; W(\tau) \geq a, \tau \in\left(t, t^{0}\right]\right\} \tag{2.12}
\end{equation*}
$$

By 2.11) and the continuity of $W(t)$ on $\left\{t \in\left[0, t^{0}\right] ; W(t) \geq \frac{a}{2}\right\}$, we have

$$
\begin{equation*}
0<t^{*}<t^{0}, \quad \text { and } W\left(t^{*}\right)=a \tag{2.13}
\end{equation*}
$$

From the proof of [4, Theorem 4.5], one can easily see that $W(t)$ is Lipschitz continuous on $\left[t^{*}, t^{0}\right]$ and

$$
\begin{equation*}
W^{\prime}(t) \leq w_{t}(x(t), t) \quad \text { a.e. in }\left[t^{*}, t^{0}\right] \tag{2.14}
\end{equation*}
$$

where $x(t)$ is a point $\in \mathbb{R}^{N} \backslash\{0\}$ satisfying $w(x(t), t)=W(t)$. Therefore, from 2.10 and 2.14,

$$
W^{\prime}(t) \leq 0 \quad \text { a.e. in }\left[t^{*}, t^{0}\right]
$$

which implies $a=W\left(t^{*}\right) \geq W\left(t^{0}\right) \geq 2 a$, a contradiction.
For the case $k_{0} \geq N-2$ we do not know at the moment in a certain sense a precise or a sharp condition on $b(x, t)$ under which the comparison principle remains valid. However, we have the following negative result.

Theorem 2.3. Assume $k_{0} \geq N-2, N>4$ and $0<p<1$. Suppose that for positive constants $\epsilon_{0}, b_{0}, b_{1}$, and R_{0},

$$
\begin{equation*}
b_{0}\left(1+\frac{1}{|x|^{N-2}}\right)^{1-p} \leq b(x, t) \leq b_{1}\left(1+\frac{1}{|x|^{N-2}}\right)^{1-p} \tag{2.15}
\end{equation*}
$$

in $\left(B_{R_{0}}(0) \backslash\{0\}\right) \times\left[0, T_{0}\right)$, and

$$
\begin{equation*}
b(x, t) \geq \epsilon_{0} \quad \text { in }\left(\mathbb{R}^{N} \backslash B_{R_{0}}(0)\right) \times\left[0, T_{0}\right) \tag{2.16}
\end{equation*}
$$

Then there exist $u^{ \pm} \in \mathbb{F}_{M_{0}}\left(T_{0}\right)$ satisfying 2.2 and a point $\left(x^{0}, t^{0}\right) \in\left(\mathbb{R}^{N} \backslash\{0\}\right) \times$ $\left(0, T_{0}\right)$ such that

$$
\begin{equation*}
u^{-}\left(x^{0}, t^{0}\right)>u^{+}\left(x^{0}, t^{0}\right) \tag{2.17}
\end{equation*}
$$

where $M_{0}=f_{0}$ if $f_{0}>0 ; M_{0}>0$ if $f_{0}=0$.
Proof. If not, then we have for any pair $u^{ \pm} \in \mathbb{F}_{M_{0}}\left(T_{0}\right)$ satisfying 2.2,

$$
\begin{equation*}
u^{-}(x, t) \leq u^{+}(x, t) \quad \text { in }\left(\mathbb{R}^{N} \backslash\{0\}\right) \times\left[0, T_{0}\right) \tag{2.18}
\end{equation*}
$$

Let α, β and $\bar{f} \in(0,1)$ be fixed, denote $a_{+}=\max \{a, 0\}$ and set

$$
\begin{equation*}
V^{*}(x)=\frac{\bar{f}}{\alpha^{2 \omega}|x|^{N-2}}\left(\alpha^{2}-|x|^{2}\right)_{+}^{\omega}, \quad U^{*}(x, t)=\bar{f}\left(1+\frac{1}{|x|^{N-2}}\right)(1-\beta t)_{+}^{\sigma} \tag{2.19}
\end{equation*}
$$

where $\omega=2 /(1-p), \sigma=1 /(1-p)$.
We may choose \bar{f} small enough such that V^{*}, U^{*} are in $\mathbb{F}_{M_{0}}(\infty)$. One can easily verify

$$
\begin{align*}
L V^{*}= & \left(\alpha^{2}-|x|^{2}\right)_{+}^{\omega p}\left(\frac{\bar{f}}{|x|^{N-2}}\right)^{p}\left[\frac{b(x, t)}{\alpha^{2 \omega p}}-\frac{4 \omega(\omega-1)|x|^{2}}{\alpha^{2 \omega}}\left(\frac{\bar{f}}{|x|^{N-2}}\right)^{1-p}\right. \\
& \left.-\frac{2 \omega(N-4)}{\alpha^{2 \omega}}\left(\frac{\bar{f}}{|x|^{N-2}}\right)^{1-p}\left(\alpha^{2}-|x|^{2}\right)_{+}\right] \tag{2.20}\\
\leq & \left(\alpha^{2}-|x|^{2}\right)_{+}^{\omega p}\left(\frac{\bar{f}}{|x|^{N-2}}\right)^{1-p}\left[\frac{b(x, t)}{\alpha^{2 \omega p}}-\frac{\bar{\omega}}{\alpha^{2(\omega-1)}}\left(\frac{\bar{f}}{|x|^{N-2}}\right)^{1-p}\right]
\end{align*}
$$

and

$$
\begin{equation*}
L U^{*}=(1-\beta t)_{+}^{\sigma p}\left[\bar{f}\left(1+\frac{1}{|x|^{N-2}}\right)\right]^{p}\left[b(x, t)-\beta \sigma\left(\bar{f}\left(1+\frac{1}{|x|^{N-2}}\right)\right)^{1-p}\right] \tag{2.21}
\end{equation*}
$$

where $\bar{\omega}=2 \omega \min \{2 \omega-2, N-4\}$. From 2.15, 2.16, 2.20 and 2.21, it easily follows

$$
\begin{aligned}
& L V^{*} \leq 0 \quad \text { in }\left(\mathbb{R}^{N} \backslash\{0\}\right) \times(0, \infty) \\
& L U^{*} \geq 0 \quad \text { in }\left(\mathbb{R}^{N} \backslash\{0\}\right) \times(0, \infty),
\end{aligned}
$$

provided that α and β are small enough. Hence by $V^{*}(x) \leq U^{*}(x, 0)$ in $\mathbb{R}^{N} \backslash\{0\}$ and 2.18,

$$
\begin{equation*}
V^{*}(x) \leq U^{*}(x, t) \quad \text { in }\left(\mathbb{R}^{N} \backslash\{0\}\right) \times\left[0, t^{*}\right] \tag{2.22}
\end{equation*}
$$

where $t^{*}=\min \left\{1, \frac{T_{0}}{2}\right\}$. One can establish step by step on t that

$$
\begin{equation*}
V^{*}(x) \leq U^{*}(x, t) \quad \text { in }\left(\mathbb{R}^{N} \backslash\{0\}\right) \times[0, \infty) \tag{2.23}
\end{equation*}
$$

in particular,

$$
\frac{\bar{f}}{\alpha^{2 \omega}|x|^{N-2}}\left(\alpha^{2}-|x|^{2}\right)_{+}^{\omega}=V^{*}(x) \leq U^{*}(x, t)=0, \quad t>\frac{1}{\beta}, x \neq 0
$$

this yields a contradiction.

3. Instantaneous shrinking of the support: Extinction properties

For an arbitrary nonnegative continuous function $v(x, t)$ defined in $\left(\mathbb{R}^{N} \backslash\{0\}\right) \times$ $\left[0, T_{0}\right)\left(0<T_{0} \leq \infty\right)$, we set

$$
\begin{equation*}
\xi(t ; v)=\sup \{|x| ; v(x, t)>0\}, \quad t \in\left[0, T_{0}\right) . \tag{3.1}
\end{equation*}
$$

Definition 3.1. Assume that $0 \leq v(x, t) \in C\left(\left(\mathbb{R}^{N} \backslash\{0\}\right) \times\left[0, T_{0}\right)\right)$, and $\xi(0 ; v)=\infty$. We say that instantaneous shrinking of support occurs for v if there exists $\tau>0$ such that $\xi(t ; v)<\infty$ for all $t \in(0, \tau]$.

Definition 3.2. Assume that $0 \leq v(x, t) \in C\left(\left(\mathbb{R}^{N} \backslash\{0\}\right) \times[0, \infty)\right)$, we say that extinction in finite time occurs for v if there exists $T_{0}>0$ such that $v(x, t) \equiv 0$ in $\left(\mathbb{R}^{N} \backslash\{0\}\right) \times\left[T_{0}, \infty\right)$.

We begin with a theorem on the instantaneous shrinking of support property.
Theorem 3.3. Assume that $0<p<1$ and $\left(H_{1}\right)$ hold, and let $u(x, t) \in \mathbb{F}_{M_{0}}\left(T_{0}\right)$ be a solution of (1.1), 1.2). If $b(x, t)$ satisfies, in addition to $b(x, t) \geq 0$ in $\left(\mathbb{R}^{N} \backslash\right.$ $\{0\}) \times\left[0, T_{0}\right)$,

$$
\begin{equation*}
b(x, t) \geq h(|x|) f^{1-p}(x) \quad \text { in }\left(\mathbb{R}^{N} \backslash B_{R_{0}}(0)\right) \times\left[0, T_{0}\right) \tag{3.2}
\end{equation*}
$$

where $R_{0}>0, h(r)$ is a positive non-decreasing C^{2}-function in $\left[R_{0}, \infty\right)$ satisfying for some positive constant h_{0},

$$
\begin{gather*}
\lim _{r \rightarrow \infty} h(r)=\infty, \tag{3.3}\\
h^{\prime}(r)+\left|h^{\prime \prime}(r)\right| \leq h_{0} h(r), \quad r \in\left[R_{0}, \infty\right) .
\end{gather*}
$$

Then instantaneous shrinking of support occurs for u. Further,

$$
\xi(t ; u) \leq h^{-1}\left(\frac{1}{\beta t}\right), \quad \forall t \in(0, \tau],
$$

where β is a positive constant depending only on $p ; \tau$ is small enough, and $h^{-1}(a)=$ $\sup \{r ; h(r)=a\}$.

Proof. Denote $\omega=\frac{2}{1-p}$, and let $\beta \in(0,1)$ and $l_{0} \geq R_{0}+1$ be fixed. We introduce the function

$$
U(x, t)=2 f(x)(1-\beta t h(|x|))_{+}^{\omega}:=2 f(x) Z^{\omega}(x, t) .
$$

We wish to prove that for small $\tau>0$ and large l_{0},

$$
\begin{equation*}
u(x, t) \leq U(x, t) \quad \text { in }\left\{|x| \geq l_{0}\right\} \times[0, \tau] \tag{3.4}
\end{equation*}
$$

From the definition of $h^{-1}(\cdot)$, one can see that $h^{-1}\left(\frac{1}{\beta t}\right)>l_{0}$ for $t \in(0, \tau]$, provided that τ is small enough. Hence the assertion of the theorem easily follows from (3.4). Set

$$
Q^{+}=\left\{(x, t) \in\left(\mathbb{R}^{N} \backslash B_{l_{0}}(0)\right) \times\left(0, T_{0}\right) ; Z(x, t)>0\right\}
$$

It is obvious that $U(x, t) \in C^{2,1}\left(\left(\mathbb{R}^{N} \backslash\{0\}\right) \times\left[0, T_{0}\right)\right), 0<Z(x, t) \leq 1$ in Q^{+}and $L U=0$ in $\left(\mathbb{R}^{N} \backslash B_{l_{0}}(0)\right) \times\left(0, T_{0}\right) \backslash Q^{+}$. A straightforward calculation yields

$$
\begin{align*}
L U= & -2 \omega \beta h(|x|) f(x) Z^{\omega-1}-\frac{2 k_{0}\left(k_{0}+2-N\right) f_{1}}{|x|^{2+k_{0}}} Z^{\omega} \\
& -\frac{4 \omega k_{0} f_{1}}{|x|^{1+k_{0}}} \beta t h^{\prime} Z^{\omega-1}-2 \omega(\omega-1)\left(\beta t h^{\prime}\right)^{2} f Z^{\omega p} \tag{3.5}\\
& +2 \beta t \omega h^{\prime \prime} f Z^{\omega-1}+\frac{2 \omega(N-1)}{|x|} \beta t h^{\prime} f Z^{\omega-1}+2^{p} b f^{p} Z^{\omega p}
\end{align*}
$$

By (3.2), 3.3) and (3.5), we get

$$
\begin{align*}
L U & \geq 2 f Z^{\omega p}\left[-\omega \beta h(|x|)-\frac{k_{0}\left(k_{0}+2\right)}{l_{0}^{2}}-\frac{2 \omega k_{0} h_{0}}{l_{0}}-\omega(\omega-1) h_{0}^{2}-h_{0} \omega+\frac{h(|x|)}{2}\right] \\
& \geq 0 \quad \text { in } Q^{+} \tag{3.6}
\end{align*}
$$

provided that β is small and l_{0} is large. ¿From $U(x, 0)>u(x, 0)$ on $|x|=l_{0}$ and the continuity of U and u, there exists $\tau=\tau\left(l_{0}\right)>0$ such that

$$
\begin{equation*}
u(x, t) \leq U(x, t),|x|=l_{0}, t \in[0, \tau] \tag{3.7}
\end{equation*}
$$

From (3.6), 3.7) and $U(x, 0)>u(x, 0)$ in $\mathbb{R}^{N} \backslash B_{l_{0}}(0)$, an application of the standard comparison principle immediately leads to the desired estimate (3.4).

The next theorem demonstrates that the hypothesis $\lim _{r \rightarrow \infty} h(r)=\infty$ in Theorem 3.3 is in a certain sense sharp.

Theorem 3.4. Assume $0<p<1$. Let $u \in \mathbb{F}_{M_{0}}\left(T_{0}\right)$ be a solution of (1.1), 1.2 with $u_{0}(x)=f(x)$, and suppose that for a positive constant b_{1},

$$
\begin{equation*}
0 \leq b(x, t) \leq b_{1} f^{1-p}(x) \quad \text { in }\left(\mathbb{R}^{N} \backslash B_{R_{0}}(0)\right) \times\left[0, T_{0}\right) \tag{3.8}
\end{equation*}
$$

Then there exist positive constants H and τ (H depends only on the data, R_{0} and $b_{1} ; \tau$ is small enough) such that

$$
\begin{equation*}
u(x, t) \geq \frac{f(x)}{2}(1-H t)_{+}^{\frac{1}{1-p}} \quad \text { in }\left(\mathbb{R}^{N} \backslash B_{R_{0}}(0)\right) \times[0, \tau] \tag{3.9}
\end{equation*}
$$

In particular, instantaneous shrinking of support does not occur for u.
Proof. . Let $H>0$ be fixed, consider the function

$$
V(x, t)=\frac{f(x)}{2}(1-H t)_{+}^{\sigma}:=\frac{f(x)}{2} Z^{\sigma}(t) \quad\left(\sigma=\frac{1}{1-p}\right) .
$$

In view of (3.8), a direct calculation gives

$$
\begin{align*}
L V & =-\frac{H \sigma f}{2} Z^{\sigma p}-\frac{k_{0}\left(k_{0}+2-N\right) f_{1}}{2|x|^{2+k_{0}}} Z^{\sigma}+\left(\frac{f}{2}\right)^{p} b Z^{\sigma p} \tag{3.10}\\
& \leq f Z^{\sigma p}\left(-\frac{H \sigma}{2}+\frac{k_{0} N}{2 R_{0}^{2}}+\frac{b_{1}}{2^{p}}\right)<0
\end{align*}
$$

in $\left(\mathbb{R}^{N} \backslash B_{R_{0}}(0)\right) \times\left(0, T_{0}\right)$, provided H is large enough. Since $u(x, 0)>V(x, 0)$ when $|x|=R_{0}$, arguing similarly as in the proof of Theorem 3.3 , one can easily see the validity of (3.9) for small $\tau>0$.

We pass now to the extinction in finite time phenomenon. We distinguish two cases: $k_{0}<N-2$ and $k_{0} \geq N-2$.

Theorem 3.5 (Case $k_{0}<N-2$). Assume $0<p<1$ and that (H1) holds, and let $u \in \mathbb{F}_{M_{0}}(\infty)$ be a solution to (1.1), 1.2). If

$$
\begin{equation*}
b(x, t) \geq b_{0} f^{1-p}(x) \quad \text { in }\left(\mathbb{R}^{N} \backslash\{0\}\right) \times[0, \infty)\left(b_{0}>0\right) \tag{3.11}
\end{equation*}
$$

then extinction in finite time occurs for u.

Proof. Let β be fixed, and consider the function

$$
\begin{equation*}
U(x, t)=f(x)(1-\beta t)_{+}^{\sigma} \quad\left(\sigma=\frac{1}{1-p}\right) \tag{3.12}
\end{equation*}
$$

A quick calculation gives

$$
\begin{equation*}
L U=(1-\beta t)_{+}^{\sigma p}\left[-\beta \sigma f(x)-\frac{f_{1} k_{0}\left(k_{0}+2-N\right)}{|x|^{k_{0}+2}}(1-\beta t)_{+}+b(x, t) f^{p}(x)\right] \tag{3.13}
\end{equation*}
$$

Then by the hypotheses, we have

$$
L U \geq(1-\beta t)_{+}^{\sigma p} f(x)\left(-\beta \sigma+b_{0}\right) \geq 0
$$

provided β is small enough. Hence by Theorem 2.2 ,

$$
u(x, t) \leq U(x, t) \quad \text { in }\left(\mathbb{R}^{N} \backslash\{0\}\right) \times[0, \infty)
$$

which implies $u(x, t) \equiv 0$ in $\left(\mathbb{R}^{N} \backslash\{0\}\right) \times\left[\frac{1}{\beta}, \infty\right)$.
Theorem 3.6 (Case $\left.k_{0} \geq N-2\right)$. Assume $p, u_{0}(x)$ and $u(x, t)$ are as in Theorem 3.5. Suppose that for positive constants $k>k_{0}, R_{0}$ and ϵ_{0},

$$
b(x, t) \geq \begin{cases}\frac{k_{0}(k+2-N) f_{1}^{1-p}}{p \mid x x^{k}(1-p)+2} & \text { in } \left.\left(B_{R_{0}}(0)\right) \backslash\{0\}\right) \times[0, \infty) \tag{3.14}\\ \epsilon_{0} & \text { in }\left(\mathbb{R}^{N} \backslash B_{R_{0}}(0)\right) \times[0, \infty)\end{cases}
$$

Then extinction in finite time occurs for u.
Proof. This time we introduce the function

$$
U(x, t)=\left(\tilde{f}_{0}+\frac{f_{1}}{|x|^{k_{o}}}\right)(1-\beta t)_{+}^{\sigma} \quad\left(\sigma=\frac{1}{1-p}\right)
$$

where

$$
\begin{equation*}
\tilde{f}_{0}=f_{0}+1+\left(\frac{2 f_{1} k_{0}\left(k_{0}+2-N\right)}{\epsilon_{0} R_{0}^{k_{0}+2}}\right)^{1 / p} \tag{3.15}
\end{equation*}
$$

First, by the hypotheses and 3.15 , one can see in $\left(\mathbb{R}^{N} \backslash B_{R_{0}}(0)\right) \times(0, \infty)$,

$$
\begin{align*}
L U= & (1-\beta t)_{+}^{\sigma p}\left\{-\beta \sigma\left(\tilde{f}_{0}+\frac{f_{1}}{|x|^{k_{0}}}\right)-\frac{f_{1} k_{0}\left(k_{0}+2-N\right)}{|x|^{k_{0}+2}}(1-\beta t)_{+}\right. \\
& \left.+b(x, t)\left(\tilde{f}_{0}+\frac{f_{1}}{|x|^{k_{0}}}\right)^{p}\right\} \\
\geq & (1-\beta t)_{+}^{\sigma p}\left\{-\beta \sigma\left(\tilde{f}_{0}+\frac{f_{1}}{R_{0}^{k_{0}}}\right)-\frac{f_{1} k_{0}\left(k_{0}+2-N\right)}{R_{0}^{k_{0}+2}}+\epsilon_{0} \tilde{f}_{0}^{p}\right\} \tag{3.16}\\
\geq & (1-\beta t)_{+}^{\sigma p}\left\{-\beta \sigma\left(\tilde{f}_{0}+\frac{f_{1}}{R_{0}^{k_{0}}}\right)+\frac{\epsilon_{0} \tilde{f}_{0}^{p}}{2}\right\} .
\end{align*}
$$

Next, in $\left(B_{R_{0}}(0)\right) \times(0, \infty)$,

$$
\begin{equation*}
L U \geq(1-\beta t)_{+}^{\sigma p}\left\{-\beta \sigma\left(\tilde{f}_{0}+\frac{f_{1}}{|x|^{k_{0}}}\right)+\left(\frac{1}{p}-1\right) \frac{k_{0}(k+2-N) f_{1}^{1-p}}{|x|^{k_{0}(1-p)+2}}\left(\tilde{f}_{0}+\frac{f_{1}}{|x|^{k_{0}}}\right)^{p}\right\} . \tag{3.17}
\end{equation*}
$$

From (3.16) and (3.17), one can easily conclude

$$
L U \geq 0 \quad \text { in }\left(\mathbb{R}^{N} \backslash\{0\}\right) \times(0, \infty)
$$

provided β is small enough. Thus, by comparison

$$
\begin{equation*}
u(x, t) \leq U(x, t) \quad \text { in }\left(\mathbb{R}^{N} \backslash\{0\}\right) \times[0, \infty) \tag{3.18}
\end{equation*}
$$

The assertion of the theorem follows immediately from 3.18) and the definition of $U(x, t)$.

The following negative result shows that in a certain sense the condition $b(x, t) \geq$ $\epsilon_{0}>0$ in $\left(\mathbb{R}^{N} \backslash B_{R_{0}}(0)\right) \times[0, \infty)$ in 3.14 is necessary.

Theorem 3.7. Assume $k_{0} \geq N-2$ and $\frac{1}{2}<p<1$, and let u in $\mathbb{F}_{M_{0}}(\infty)$ be a solution of 1.1, 1.2 with $u_{0}(x)=f(x)$. If

$$
\begin{equation*}
b(x, t) \geq \frac{k_{0}(k+2-N) f_{1}^{1-p}}{p|x|^{k_{0}(1-p)+2}} \quad \text { in }\left(B_{R_{0}}(0) \backslash\{0\}\right) \times[0, \infty), \tag{3.19}
\end{equation*}
$$

and

$$
\begin{equation*}
0 \leq b(x, t) \leq g(|x|) f^{1-p}(x) \quad \text { in }\left(\mathbb{R}^{N} \backslash B_{R_{o}}(0)\right) \times[0, \infty) \tag{3.20}
\end{equation*}
$$

where $g(r)$ is a positive non-increasing C^{2}-function in $\left[R_{0}, \infty\right)$ satisfying

$$
\begin{gather*}
\lim _{r \rightarrow \infty} g(r)=0 \\
-\frac{g^{\prime}(r)}{r}+\left|g^{\prime \prime}(r)\right| \leq g_{0} g^{2}(r) \quad \text { in }\left[R_{0}, \infty\right)\left(g_{0}>0\right) \tag{3.21}
\end{gather*}
$$

Then extinction in finite time does not occur for u.
Proof. Let γ be large enough such that $(1-\gamma g(|x|))_{+}>0$ implies $|x| \geq R_{0}$. Consider the function

$$
V(x, t)=f(x)(1-\gamma(t+1) g(|x|))_{+}^{\sigma}:=f(x) Z^{\sigma}(x, t) \quad\left(\sigma=\frac{1}{1-p}\right)
$$

Since $\frac{1}{2}<p<1, V(x, t) \in C^{2,1}\left(\left(\mathbb{R}^{N} \backslash\{0\}\right) \times[0, \infty)\right)$. Set

$$
Q^{+}=\left\{(x, t) \in\left(\mathbb{R}^{N} \backslash\{0\}\right) \times(0, \infty) ; Z(x, t)>0\right\}
$$

It is obvious that $L V=0$ in $\left(\mathbb{R}^{N} \backslash\{0\}\right) \times(0, \infty) \backslash Q^{+}$and $Q^{+} \subseteq\left(\mathbb{R}^{N} \backslash B_{R_{o}}(0)\right) \times$ $(0, \infty)$. Now, we compute in Q^{+},

$$
\begin{align*}
L V= & f(x) Z^{\sigma p}(x, t)\left[-\sigma \gamma g(|x|)-\frac{f_{1} k_{0}\left(k_{0}+2-N\right)}{|x|^{k_{0}+2} f(x)} Z(x, t)-\frac{2 \sigma k_{0} f_{1} \gamma(1+t) g^{\prime}(|x|)}{|x|^{k_{0}+1} f(x)}\right. \\
& -\sigma(\sigma-1)\left(\gamma(1+t) g^{\prime}(|x|)\right)^{2} Z^{-1}(x, t)+\sigma(N-1) \frac{\gamma(1+t) g^{\prime}(|x|)}{|x|} \\
& \left.+\sigma \gamma(1+t) g^{\prime \prime}(|x|)+\frac{b(x, t)}{f^{1-p}(x)}\right] \tag{3.22}
\end{align*}
$$

Then by 3.19-3.22, we have

$$
L V \leq f(x) Z^{\sigma p}(x, t)\left[-\sigma \gamma g(|x|)+\sigma g_{0}\left(2 k_{0}+1\right) g(|x|)+g(|x|)\right] \leq 0
$$

provided γ is large enough. Hence from (3.19) and 3.20, an application of Theorem 2.2 yields

$$
\begin{equation*}
u(x, t) \geq V(x, t) \quad \text { in }\left(\mathbb{R}^{N} \backslash\{0\}\right) \times[0, \infty) \tag{3.23}
\end{equation*}
$$

From the definition of $V(x, t)$ and $\lim _{r \rightarrow \infty} g(r)=0$, we see that for any $T>0$, there exists a point $x=x(T) \in \mathbb{R}^{N} \backslash\{0\}$ such that $V(x, T)>0$, whence by (3.23) $u(x, T)>0$.

For the case $k_{0}<N-2$ we have the following result.

Theorem 3.8. Assume $k_{0}<N-2$ and $\frac{1}{2}<p<1$. Let $u(x, t) \in \mathbb{F}_{M_{0}}(\infty)$ be a solution to the problem 1.1, (1.2 with $u_{0}(x)=f(x)$. If

$$
\begin{equation*}
0 \leq b(x, t) \leq \frac{b_{1} f^{1-p}(x)}{|x|^{2}} \quad \text { in }\left(\mathbb{R}^{N} \backslash\{0\}\right) \times[0, \infty) \quad\left(b_{1}>0\right) \tag{3.24}
\end{equation*}
$$

Then extinction in finite time does not occur for u.
Proof. We introduce the function

$$
V(x, t)=f(x)\left(1-\frac{\gamma t}{|x|^{2}}\right)_{+}^{\sigma}:=f(x) Z^{\sigma}(x, t) \quad\left(\sigma=\frac{1}{1-p}\right)
$$

where γ is a large constant to be chosen. A simple calculation yields

$$
\begin{aligned}
& L V \\
& = \\
& =-\frac{\sigma \gamma}{|x|^{2}} f(x) Z^{\sigma p}(x, t)-\frac{k_{0}\left(k_{0}+2-N\right) f_{1}}{|x|^{k_{o}+2}} Z^{\sigma}(x, t)-\frac{2 \sigma(N-4) \gamma t}{|x|^{4}} f(x) Z^{\sigma p}(x, t) \\
& \\
& \\
& -\frac{4 \sigma(\sigma-1)}{|x|^{6}}(\gamma t)^{2} f(x) Z^{\sigma-2}(x, t)+\frac{4 \sigma k_{0} f_{1}}{|x|^{k_{0}+4}} \gamma t Z^{\sigma p}(x, t)+b(x, t) f^{p}(x) Z^{\sigma p}(x, t) .
\end{aligned}
$$

Then by (3.24), we have for large γ

$$
L V \leq f(x) Z^{\sigma p}(x, t)\left\{-\frac{\sigma \gamma}{|x|^{2}}+\frac{k_{o}(N+4 \sigma)+8 \sigma}{|x|^{2}}+\frac{b_{1}}{|x|^{2}}\right\} \leq 0
$$

and hence by comparison, $u(x, t) \geq V(x, t)$ in $\left(\mathbb{R}^{N} \backslash\{0\}\right) \times[0, \infty)$. The remaining of the proof is as before.

4. Existence

We begin with a global existence result.
Theorem 4.1. Assume that $0<p \leq 1$ and (H1) hold, and suppose that $b(x, t) \in$ $C^{\alpha_{0}, \frac{\alpha_{0}}{2}}\left(\left(\mathbb{R}^{N} \backslash\{0\}\right) \times[0, \infty)\right)\left(\alpha_{0} \in(0,1)\right)$ satisfies

$$
b(x, t) \geq \begin{cases}\frac{k_{0}\left(k_{0}+2-N\right)_{+} f_{1}^{1-p}}{|x|^{k_{0}(1-p)+2}} & \text { in }\left(B_{R_{0}}(0) \backslash\{0\}\right) \times[0, \infty), \tag{4.1}\\ 0 & \text { in }\left(\mathbb{R}^{N} \backslash B_{R_{0}}(0)\right) \times[0, \infty)\end{cases}
$$

Then there exists a solution $u(x, t) \in \mathbb{F}_{M_{0}}(\infty)$ to 1.1 , 1.2 for some constant M_{o} depending only on the data and R_{0}.

Proof. . For any large n, let $u_{n}(x, t)$ be the unique solution of the approximated problem

$$
\begin{gather*}
\left(u_{n}\right)_{t}-\Delta u_{n}+b_{n}(x, t)\left|u_{n}\right|^{p-1} u_{n}=0 \quad \text { in } B_{n}(0) \times\left(0, n^{2}\right], \tag{4.2}\\
u_{n}(x, t)=0 \quad \text { on } \partial B_{n}(0) \times\left(0, n^{2}\right] \tag{4.3}\\
u_{n}(x, 0)=u_{o, n}(x) \psi_{n}(x) \quad \text { in } B_{n}(0) . \tag{4.4}
\end{gather*}
$$

Here $\psi_{n}(x)$ is a smooth cutoff function in $B_{n}(0)$ satisfying $0 \leq \psi_{n} \leq 1, \psi_{n}(x)=0$ on $\partial B_{n}(0)$ and $\psi_{n}(x)=1$ in $B_{n-1}(0) ; u_{0, n}(x)$ and $b_{n}(x, t)$ are, respectively, the smooth approximation of $u_{0}(x)$ and $b(x, t)$ satisfying

$$
\begin{gather*}
\lim _{n \rightarrow \infty} u_{0, n}(x)=u_{0}(x) \quad \text { in } \mathbb{R}^{N} \backslash\{0\}, \\
0 \leq u_{0, n}(x) \leq f_{0}+\frac{f_{1}}{\left(|x|^{2}+n^{-2}\right)^{\frac{k_{0}}{2}}} \quad \text { in } \mathbb{R}^{N}, \tag{4.5}
\end{gather*}
$$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} b_{n}(x, t)=b(x, t) \quad \text { in }\left(\mathbb{R}^{N} \backslash\{0\}\right) \times[0, \infty) \tag{4.6}
\end{equation*}
$$

and

$$
b_{n}(x, t) \geq \begin{cases}\frac{k_{0}\left(k_{0}+2-N\right)+f_{1}^{1-p}}{\left(|x|^{2}+n^{-2}\right)^{\frac{k_{0}(1-p)+2}{2}},} & \text { in } \left.B_{R_{o}}(0) \backslash\{0\}\right) \times[0, \infty) \tag{4.7}\\ 0 & \text { in }\left(\mathbb{R}^{N} \backslash B_{R_{0}}(0)\right) \times[0, \infty)\end{cases}
$$

Clearly, $u_{n}(x, t) \geq 0$ in $B_{n}(0) \times\left[0, n^{2}\right]$. To estimate the upper bound of $u_{n}(x, t)$, we introduce the function

$$
\begin{equation*}
U_{n}(x, t)=\tilde{M}+f_{1} g\left(\sqrt{|x|^{2}+n^{-2}}\right) \tag{4.8}
\end{equation*}
$$

where $\tilde{M} \geq f_{0}$ is a large constant to be fixed, and

$$
g(r)= \begin{cases}\frac{1}{r^{k_{0}}}, & 0<r \leq r_{0}:=\frac{k_{0}+1}{2\left(k_{0}+3\right)} R_{0} \tag{4.9}\\ -\frac{k_{0}\left(k_{0}+1\right)^{2}}{12 r_{0}^{k_{0}+3}}\left(r-\frac{R_{0}}{2}\right)^{3}+\frac{k_{0}+3}{3\left(k_{0}+1\right) r_{0}^{k_{0}}}, & r_{0}<r \leq \frac{R_{0}}{2} \\ \frac{k_{0}+3}{3\left(k_{0}+1\right) r_{0}^{k_{0}}}, & r>\frac{R_{0}}{2}\end{cases}
$$

It is readily to verify that $g(r) \in C^{2}(0, \infty)$. From the definition of $g(r)$, we compute

$$
r g^{\prime \prime}(r)+(N-1) g^{\prime}(r) \leq \begin{cases}\frac{k_{0}\left(k_{0}+2-N\right)_{+}}{r} g(r), & 0<r \leq r_{0} \tag{4.10}\\ C, & r_{0}<r \leq \frac{R_{0}}{2} \\ 0, & r>\frac{R_{0}}{2}\end{cases}
$$

where C depends only on N, k_{0}, and R_{0}; and

$$
\begin{align*}
L U_{n}= & b_{n}(x, t) U_{n}^{p}(x, t)-f_{1}\left\{\frac{|x|^{2}}{|x|^{2}+n^{-2}} g^{\prime \prime}\left(\sqrt{|x|^{2}+n^{-2}}\right)\right. \\
& \left.+\left(\frac{N}{\sqrt{|x|^{2}+n^{-2}}}-\frac{|x|^{2}}{\left(|x|^{2}+n^{-2}\right)^{\frac{3}{2}}}\right) g^{\prime}\left(\sqrt{|x|^{2}+n^{-2}}\right)\right\} \tag{4.11}\\
\geq & b_{n}(x, t) U_{n}^{p}(x, t)-\frac{f_{1}}{\sqrt{|x|^{2}+n^{-2}}}\left[\sqrt{|x|^{2}+n^{-2}} g^{\prime \prime}\left(\sqrt{|x|^{2}+n^{-2}}\right)\right. \\
& \left.+(N-1) g^{\prime}\left(\sqrt{|x|^{2}+n^{-2}}\right)\right] .
\end{align*}
$$

By (4.7)-4.11) we have for large \tilde{M},

$$
L U_{n} \geq 0 \quad \text { in } B_{n}(0) \times\left(0, n^{2}\right]
$$

and hence by comparison,

$$
\begin{equation*}
u_{n}(x, t) \leq U_{n}(x, t) \leq 2 \tilde{M}+\frac{f_{1}}{|x|^{k_{o}}} \quad \text { in }\left(B_{n}(0) \backslash\{0\}\right) \times\left[0, n^{2}\right] \tag{4.12}
\end{equation*}
$$

From this equation, according to the well-known interior estimates of solutions and their continuity module (see for instance [2, 3, 9]), it follows that for any $l \geq 2$ and $n \geq l+4$, we have

$$
\begin{gather*}
\left\|u_{n}\right\|_{C^{2+\alpha_{1}, 1+\frac{\alpha_{1}}{2}}\left(Q_{l}\right)} \leq C_{l} \tag{4.13}\\
\left|u_{n}(x, t)-u_{n}\left(x^{\prime}, t^{\prime}\right)\right| \leq \omega_{l}\left(\left|x-x^{\prime}\right|+\left|t-t^{\prime}\right|^{\frac{1}{2}}\right) \tag{4.14}
\end{gather*}
$$

for all $(x, t),\left(x^{\prime}, t^{\prime}\right) \in \widehat{Q_{l}}$, where $Q_{l}=\left(B_{l}(0) \backslash B_{1 / l}(0)\right) \times\left[\frac{1}{l^{2}}, l^{2}\right], \widehat{Q_{l}}=\left(B_{l}(0) \backslash\right.$ $\left.B_{1 / l}(0)\right) \times\left[0, l^{2}\right] ; \alpha_{1}(>0)$ is independent of n and l, C_{l} and $\omega_{l}(r)$ are independent of n, and $\omega_{l}(r)$ tends to zero as $r \downarrow 0$.

The above estimates together with Arzela's lemma and a diagonal argument imply that there exists a function $u(x, t) \in \mathbb{F}_{M_{0}}(\infty)\left(M_{0}=2 \tilde{M}\right)$ such that, after extracting a subsequence if necessary,

$$
\lim _{n \rightarrow \infty} u_{n}(x, t)=u(x, t) \quad \text { in }\left(\mathbb{R}^{N} \backslash\{0\}\right) \times[0, \infty)
$$

and $u(x, t)$ solves $1.1,1.2$ in the classical sense.
From Theorems 2.2 and 4.1 we have the following statement.
Corollary 4.2. Assume $0<p \leq 1$ and (H1) hold, and suppose that $b(x, t) \in$ $C^{\alpha_{0}, \frac{\alpha_{0}}{2}}\left(\left(\mathbb{R}^{N} \backslash\{0\}\right) \times[0, \infty)\right), \alpha_{0} \in(0,1)$, satisfies:
(a) For $k_{0}<N-2, b(x, t) \geq 0$ in $\left(\mathbb{R}^{N} \backslash\{0\}\right) \times[0, \infty)$
(b) For $k_{0} \geq N-2, k>k_{0}$,

$$
b(x, t) \geq \begin{cases}\frac{k_{0}(k+2-N) f_{1}^{1-p}}{p|x|^{k_{0}(1-p)+2}} & \text { in }\left(B_{R_{0}}(0) \backslash\{0\}\right) \times[0, \infty), \\ 0 & \text { in }\left(\mathbb{R}^{N} \backslash B_{R_{0}}(0)\right) \times[0, \infty) .\end{cases}
$$

Then problem (1.1), (1.2) is uniquely solvable in $\mathbb{F}_{M_{0}}(\infty)$ for some $M_{0} \geq f_{0}$.

References

[1] L. C. Evans, B. F. Knerr, Instantaneous shrinking of the support of non-negative solutions to certain nonlinear parabolic equations and variational inequalities, Illinois J.Math., 23 (1979)153-166
[2] E. DiBenedetto, On the local behaviour of solutions of degenerate parabolic equations with measurable coefficients, Ann. Sc. NOrm. Sup. 13 (3)(1986)485-535
[3] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Inc. (1964)
[4] A. Friedman, B. McLeod, Blow-up of positive solutions of semilinear heat equations, Indiana Univ. Math. J., 34 (1985) 425-447.
[5] A. M. Il'in, A. S. Kalashinikov and O. A. Oleinik, Second order linear equations of parabolic type, Russian Math. Surveys, 17(1962) 1-143.
[6] A. S. Kalashnikov, Instantaneous shrinking of the support for solutions to certain parabolic equations and systems, Rend. Mat. Acc. Lincei. Serie 9, vol 8(1997) 263-272.
[7] R. Kersner, F. Nicolosi, The nonlinear heat equation with absorption: effects of variable coefficients, J. Math. Anal. Appl., 170 (1992) 551-566
[8] R. Kersner, A. Shishkov, Instantaneous shrinking of the support of energy solutions, J. Math. Anal. Appl. 198 (1996) 729-750.
[9] O. A. Ladyzenskaja, V. A. Solonnikov, N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, AMS Providence. Rhode island (1968).
[10] Junjie Li, Instantaneous shrinking of the support of solutions to certain parabolic equations with unbounded initial data, Nonlinear Analysis, TMA, 48(2002) 1-12.
[11] Junjie Li, Qualitative properties for solutions of semilinear heat equations with strong absorption, J. Math. Anal. Appl. 281(2003) 382-394.

Junjie Li
Department of Mathematicas, Yuquan Campus, Zhejiang University, Hangzhou 310027, China

E-mail address: ljj@math.zju.edu.cn

[^0]: 2000 Mathematics Subject Classification. 35B05, 35K55.
 Key words and phrases. Comparison principle, extinction, shrinking of support, existence. (C)2004 Texas State University - San Marcos.

 Submitted December 5, 2002. Published April 8, 2004.
 Supported by the National Foundation of China and by the Scientific Research Foundation for Returned Scholars of the Ministry of Education of China.

