Carlos Conca, Jesus Ildefonso Diaz,
Amable Linan, & Claudia Timofte
Abstract:
This paper concerns the homogenization of two nonlinear models for
chemical reactive flows through the exterior of a domain containing
periodically distributed reactive solid grains (or reactive obstacles).
In the first model, the chemical reactions take place on the walls of
the grains, while in the second one the fluid penetrates the grains
and the reactions take place therein. The effective behavior of these
reactive flows is described by a new elliptic boundary-value problem
containing an extra zero-order term which captures the effect of the
chemical reactions.
Submitted April 3, 2003. Published March 22, 2004.
Math Subject Classifications: 47A15, 46A32, 47D20.
Key Words: Homogenization, reactive flows, variational inequality,
monotone graph.
Show me the PDF file (308K), TEX file, and other files for this article.
Carlos Conca Departamento de Ingenieria Matematica and Centro de Modelamiento Matematico, UMR 2071 CNRS-U Chile Facultad de Ciencias Fisicas y Matematicas Universidad de Chile, Casilla 170/3, Santiago, Chile email: cconca@dim.uchile.cl | |
Jesus Ildefonso Diaz Departamento de Matematica Aplicada Facultad de Matematicas Universidad Complutense, 28040 Madrid, Spain email: ildefonso_diaz@mat.ucm.es | |
Amable Linan Escuela T. S. de Ingenieros Aeronauticos Universidad Politecnica de Madrid, Madrid, Spain email: linan@tupi.dmt.upm.es | |
Claudia Timofte Department of Mathematics, Faculty of Physics University of Bucharest P.O. Box MG-11, Bucharest-Magurele, Romania email: claudiatimofte@hotmail.com |
Return to the EJDE web page