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EXISTENCE OF SOLUTIONS TO THE ROSENAU AND
BENJAMIN-BONA-MAHONY EQUATION IN DOMAINS WITH
MOVING BOUNDARY

RIOCO K. BARRETO, CRUZ S. Q. DE CALDAS,
PEDRO GAMBOA, & JUAN LIMACO

ABSTRACT. In this article, we prove the existence of solutions for a hyperbolic
equation known as the the Rosenau and Benjamin-Bona-Mahony equations.
We study increasing, decreasing, and mixed non-cylindrical domains. Our
main tools are the Galerkin method, multiplier techniques, and energy esti-
mates.

1. INTRODUCTION

To investigate the dynamics of certain discrete systems, Philip Rosenau obtained
the equation u; + (u + u?); + Uzzert = 0. The study of this equation in cylindrical
domains was done by Mi Ai Park [I3], who proved the existence and uniqueness
of local and global solutions. The Rosenau equation could be seen as a variant of
Benjamin-Bona-Mahony (BBM) equation, u; + (u + u?),; — tze¢ = 0, which models
long waves in a non linear dispersive system. In [3], Benjamin-Bona-Mahony proved
the existence and uniqueness of global solutions for the BBM equation in cylindrical
domains. In this work, we study the existence of solutions for the Rosenau and BBM
equations for increasing, decreasing, and mixed noncylindrical domains.

We introduce the following notation: Let «, 8, ¥ = 8 — a, be C?-functions of a
real variable, such that «(t) < B(t), for all ¢ > 0. We represent the noncylindrical
domain by

Q = {(z,t) e R?: a(t) < = < B(t), Yt > 0},

and its lateral boundary by & = Uo<i<ria(t), B(H)} x {t}.
In the present work we investigate the following two equations:

e+ (w4 u?)y + tggger =0 in Q
u(z,t) =0 for (z,t) € 5
Uy (z,t) =0 for (z,t) €T
u(z,0) = u’(z) for a(0) <z < B(0)

(1.1)
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and ~
ut+(u+u2)x —Uzpe =0 inQ
w(z,t) =0 for (z,t) €S (1.2)
u(z,0) =u’(z) in Q.

This paper is organized as follows: The next section is devoted to the existence and
uniqueness of solution for (1.1)) and (1.2)), satisfying the hypothesis

(H1) o/(t) > 0 and f'(t) <0 for t € [0,T].
Note that this hypothesis implies @ decreases in the sense that if ¢t > t1, then the
projection of [(t2), B(t2)] in the subspace ¢ = 0 is contained in the projection of
[a(t1), B(t1)] in the same subspace.

In the third section of this article, we study the existence of solutions for (|1.1))
and (1.2]) satisfying the hypothesis

(H2) o/(t) <0and f'(t) >0 for t € [0,T].
Analogously hypothesis (H2) implies that @ increases

In the last section of this article, we study the (1.1) and (1.2), satisfying the
hypothesis:

(H3) @ = @ U é\g where @ is increasing and 6/2\2 is decreasing.

In the following, by Q we represent the interval ]0,1[, Q; and Qo denote the
intervals Ja(t), B(¢)[ and Ja(0), 3(0)[ respectively. We denote, as usual, by (.,.), ||- ||
respectively the scalar product and norm in L?(£2). In the sequel, w,, , denotes

QW 8w P wy,
52, analogously W, o = 53", Wmat = Grge , etc.

2. SOLUTIONS ON DECREASING DOMAINS

In this section we study the existence and uniqueness for (1.1]) and (1.2)) satisfying

the hypothesis (H1). Let v(t) = 3(t) — () > 0, for all ¢ > 0. Then 0 < ”c:/ggt) <1,

for all t € [0, T]. With the change of variable u(z,t) = v(y,t) where y = z;ggt), for
all t € [0,T], problem (1.1)) is transformed into
1 2 1 (@ +7y) 4
vt + ;(U +0%)y + —Vyyyyt — fuy - ?”yyyy
/ /
—wvyyyyy =0 in Qx]0,T]
v (2.1)
v(0,t) =v(1,t) =0 in]0,T]
vy(0,t) = vy(1,t) =0 in ]0,T]
0(,0) = () Q.
Also problem ([1.2)) is transformed into
1 2 1 (@ +7y) 2
Ve + —(V+0%)y — —ZVyyt — —————Vy + —V
t ’Y( )y 72 yyt v Y ,yg vy
(@ +7'y) :
+Tvyyy =0 in Qx]0,T]| (2.2)

v(0,t) =v(1,t) =0 in ]0,T]
v(y,0) =v’(y) in Q.

Under these conditions, we establish the following existence results.
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Theorem 2.1. For each u® € HZ(Qo) N H*(Q), there erists a unique function
u: Q — R, satisfying u € CL([0,T); H3 () N C(0,T; H3 () N HE (L)) and

/Autgbd:zzdtJr/A(quuz)rzj)dxdtJr/Aumtgbmdxdt:0,
Q Q Q

for all ¢ € L?(0,T; HZ(Q)), u(x,0) = u®(z), for all z € Qq.
Theorem 2.2. For each u® € H}(Qo) N H%(Qo), there erxists a unique function
u:Q — R, satisfying u € L>(0,T; H}(Q)), us € L>=(0,T; H3 () and
/Autqﬁd;v dt + /A(u + u2)x¢dx dt + /A Uyt Pp dz dt = 0,
Q Q Q

for all ¢ € L?(0,T; HE (L)), u(z,0) = u®(z), for all z € Q.
To prove Theorem we need the following lemmas.
Lemma 2.3. For each v° € HZ () N H*(Q), there exists a unique function v :
Ox]0, T[— R, satisfying v € L>(0,T; HZ(Q) N H()), v, € L>(0,T; H3()), and
1 1
/ o3 + = (0 + %)y + —vyyithyy
0x]0,T[ Y 4

(@' +7'y) 4y (o' +7'y)
-yt — ?Uyzﬂz’yy (Td’)yvyyyy]dy dt =0,

for all 4 € L*(0,T; HF (), v(y,0) = v°(y), for all y € Q.
Lemma 2.4. For each f € C([0,T); H=%(R)), there exists a unique function z :
Ox]0,T[— R, satisfying z € C([0,T); H3(?)) and z + V%A?z =f

)
Lemma 2.5. For each v° € H2( )N H*(Q), there erists a unique function v :
Ox]0,T[— R, satisfying v € C*([0,T]; HZ(Q)) N C([0, T]'H3(Q) N HZ(Q)) and

1

/ (v + —(v+v ) () + Uuutwyu
Q><]0 | y

_(a —;7 y) yw— Uny/)yy ((a +,yz Zl)¢)

for all € L?(0,T; H3(Q)); (y,O) v9(y), for ally € Q.
1

yUyyyy | dy dt =0,

Lemma 2.6. For each v° € HZ(2) N H?(Q), there exists a unique function v :
Ox]0, T[— R, satisfying v € L°°(0,T; HY(Q) N H%(Q)), v, € L>=(0,T; H(Q))

and
/ )+ = (0 + 12y — et
U — (v v — =0
o] vE T et

(@ +7'y) 2y (' +~'y)y
-+ ?Uyyw - (T

for all v € L2(0,T; H3 (Q)); v(y,0) = v°(y), for all y € Q.

In this article, we prove Theorem [2.1] and Lemmas which correspond
to Rosenau Equation. However, we omit the proofs of Theorem [2:2] and Lemma
[2.6] which correspond to Benjamin Bona-Mahony Equation; because the proofs are
made in a similar way.

)yVyy Jdy dt = 0,
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Proof of Lemma[2.3 Let (w;);en be the special basis of H3 (), such that

Wi yyyy = )\iwi, in Q
wz(O) = wl(l) = ’U)i’y(O) = wi’y(l) =0, ¢€eN.

We denote by V,,, the subspace generated by wy, ..., w,,. Our starting point is to
construct the Galerkin approximation of the solution v,, € V,,, which is given by
the solution of the approximate equation

1 4~'
(Um,¢, w) + (;(Um + U%)va) + ﬁ(vm,yyyth) - ?(Um,yyyva)

!/ !/ / /
Hwywvaww) + (wvm,y’w) —0 foralwev, 23
Vm(0) =02, — % in H*(Q)
First Estimate. Taking w = v, (t) in (V)1, we have:
d 1 ~!
Z(lom @I + ?va,yy( )2 + ||Um,yy( )12
(2.4)
,y/ a/ ﬁ/
Integrating this equation over [0,¢] and using hypothesis (H1), we obtain
1
[om (DI + ¥|\Um,yy(t)||2
(2.5)

< [l°l1* +

t
1
1+ 2 [ Lo+ 2 [ famtsias

where 7o, 71, 72 are positive constants, such that vo < y(t) < 1, and

Y2 = max [Y(H)], m= jmax |o/(t)].

This implies

1 ¢ 1
[[om (B)]I” + gllvm,w(lﬁ)\\2 <Co+ 01/0 [llvm (s)[1* + ?va,yy(S)Hz’] ds  (2.6)

where Cy, C1, ... denote positive constants. Applying Gronwall inequality, we have
the first estimate

1
lvm (011 + ;va,yy(t)\lz <G (2.7)

Second Estimate Taking w = vp, yyyy(t) in the first equation of (2.3]), we obtain

1d 1

B dt[” m,yy( )H2 + ﬁnvm,yyyy(t)nﬂ
3’72 1 1

< Crer} T 0m. gy (DI 4 = [[0m,y (O Hvm,yyyy O (2.8)
Y0 Y

(a1 +72)
+ Tva,y(t)IFva,yyyy(t)H.
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From ([2.7) and using Schwartz’s inequality and Poincare’s inequality, we obtain

1d 9 1 9
= 1Vm,yy (E)]|7 + — ||Vm, t
3 i llom s + 2 om O

372 1 2 1 2 ’Y% 2
< 72% ? |V, yyyy (DI + 7274 |vm,yyyy @ + ?CSHUm,yy(t)H
+ C3|0m, gy (O 10y ()
1 3v9. 1 72 (a1 +72)
<50+ )74||”m7yyyy(t)||2 + *10302 + 7C3C2||”m,yyyy(t)”
2 v 2 Yo
1 312, 1 2 ’Y% ’Y% 2 1 2
< 5(1 + ~ )?””mwyy(t)” + 30302 + 304 + 27 [V, yyyy (O] -

Let ¢y = ((117%2)0302 and let c5 = 77%0302 + ng. Then

d 2 1 2 3’)/2 1 2
— v,y ONI° + = ||vm, t <Cs+ 2+ —)—|vm, t)||“. 2.9
g vmayy (@] v“” yyyy (D] ( o )74|| yyyy ()] (2.9)

Integrating this inequality over [0, ¢] and applying Gronwall inequality, we obtain
2, 1 2
[vm,yy (O + ﬁnvm,yyyy(t)n < Cs (2.10)
Third Estimate Taking w = vy, ((¢) in (V)1, we have

1
[ome (&)1 + ?”Um,yyt(t)HZ

1 4~'
= _;((Um(t) + U?n(t))yvvm,t(t)) + po: (Um,yyyy (1), Um,e(t)) (2.11)
(@ +7'y) (@ +7'y)
- (T’Um,yyyy(t), Um,yt(1)) + (Tvm,y(t)7 U, (t))-
;From ([2.7), (2.10), and (2.11)), we obtain
1
[vm.e (£)]I* + Fl\%,yyt(lﬁ)||2 <Cr (2.12)

These three estimates permit to pass to the limit in the approximate equation and
we obtain a weak solution v in the sense of Lemma[2.3] The uniqueness of solution
and the verification of initial data are showed by the standard arguments. O

Proof of Lemma([2.4} To prove the existence we consider two stages: First stage
f € C([0,T); H3(2)). Let (w;);en be the special basis of HZ({2) used in the proof
of Lemma Consider the sequence (f,), such that f,(t) = Y i, (f(¢), w;)w;. It
is clear that f,, — f strongly in C([0,T]; HZ(£2)).

The approximated solution z,,(t) to z + 7—14A2z =fis zm(t) = Yt gim(Dwi,
where g;,,, are solutions of the approximated system

(zm(t), w;) + %(Azm(t), Aw;) = (fm(t),w;), i=1,...m (2.13)

A priori estimate. Let us prove that (z,,) is a Cauchy sequence in C([0, T]; HZ(Q)).
In fact, let m and n be positive integer such that m > n and g¢;,(t) = 0 for
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n < i < m. Then z,, and z, are solutions of (2.13) in V,,,. Consider the Cauchy
difference z,, — z,. We have from (2.13)) that, for i =1,...,m,

1
(2m (t) = zn(t), wi) + Q(A(Zm(t) = 2 (1), Aw;) = (fm(t) = fu(t),wi),  (2.14)
Taking w; = 2y, () — 2, (t) in (2.14)), using the Cauchy-Schwarz inequality and the

equivalent norms, we obtain

[2m = Znlc(o,rmz ) < Clfm = Faloomsnz )
Then z, — 2 strongly in C([0,T]; HZ(Q)). Therefore, taking limit in (2.13)), we
obtain z + %AQZ = fin C([0,T]; H2(2)).
Second stage f € C([0,7]; H-2(2)). By density, there exists a sequence (f,),
fn € C([0,T); H3(2)), such that f, — f strongly in C([0,T]; H=%(Q)). Using the
first stage we have that there exist a sequence (z,), z, € C([0,T]; H3(€)) such that

1 . _
Zn + ?AQZn = f. in C([0,T]; H%(Q)). (2.15)
Consider the Cauchy difference z,, — z,, m > n. We obtain
1
Zm—2Zn + ?AQ(zm —2p) = fm — fn in C([0,T]; H2(Q)). (2.16)

Composing ([2.16) with z,, — z, € C([0,T]; H3(£2)). and integrating in €2, we have
|2m — Zn|0([o,T];Hg(Q)) <clfm— fn\C([o,T];H—2(Q));

therefore, z, — 2z strongly in C([0,T]; H3(2)) and taking limit in (2.15) we have
zZ4+ W%AQZ = fin C([0,T]; H=%(Q)). The uniqueness of the solutions is showed by
the standard arguments. O
Proof of Lemma[2.5 From Lemma we can define the operator B(t) = (I +
%A2)71 from C([0,T); H=2(2)) to C([0,T]; H3(?)) by B(t)f = z with f €
C([0,T); H=2(2)) where z is a solution of z + %AQZ = f. Note that B(t) is
linear and continuous.

By Lemma 2.3, v € L*(0,T; H*() N HZ(Q)) and v, € L?(0,T; H3(Q)). From
Lions-Magenes, Theorems 3.1 and 9.6, chapter I [10], we conclude that

ve C([0,T); HE(Q) N H3(Q)) (2.17)

On the other hand, from the transformed problem (2.1), we obtain

(I + %N)vt =/, (2.18)

where,
1 @+ 4 (@ +1'y)
f= *;(U + vz)y + #vy + ?”yyyy + (T)vyyyyy
From (2.17)), we conclude that f € C([0,T]; H=%(R2)). Then from (2.18)) we have
that v, = B(t) f, where v, € C([0,T]; H3(2)) and we get the required result. O

The proof of Theorem follows immediately from Lemma and the Change
of Variable Theorem. Therefore, we omit it.

Observe that Theorem in a cylindrical domain, has the regularity u €
CH[0,T); H3(Q)) N C([0,T]); HX() N HZ(Q)). In fact, as we consider an addi-
tional estimate with w; = U, tzg2s, in the Galerkin approximation, that allows us
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to obtain the regularity u; € L?(0,T; H*(2) N HZ(£2)). However, in our noncylin-
drical domain, this is not possible since the transformed problem (III), contains a
term vyyyyy that does not allow us to use the estimate with w; = vy, tyyyy in the
Galerkin approximation.

3. SOLUTIONS ON INCREASING DOMAINS

In this section we study the existence of solution for the systems (|1.1)) and (1.2)
satisfying the hypothesis (H2). We use the Penalization Method given by Lions

[10]. Let Q =]a,b[x]0,T[ be the cylinder such that Q C Q. We define the function
M:Q — R, by

1 0
wwa={, 28

To show the existence result we will use the following Lemma.

Lemma 3.1. If u,u; € L?(0,T; L*(a,b)), then

| 0u(e) (s))ds > GO 0y = 51O
Proof. We have

/(Mu()ut ))ds = + // M(u2(s)), de ds
-1 /H wM( 2(s)), dé ds.

From Fubini’s Theorem and recalling the definition of M, it follows that

/ (Mu(s), u(s))ds
0

1 o a(0)
=3 / / [u?(s)]; ds dé + = / / e dsd€
L B0 @)
+ */ / [u?(s)]; dsdé + = / / |t ds d¢
2 Ja0) Jo 5@t Jo

alt) a(0)
_ % / [W2(t,€) — u?(0, )] dé + % /am [ (2™} (2),0) — u*(0,€)] d¢

1 AE) 2 —1 2 1 ’ 2 2
5 [, O @0 w00 [ e - 0.6)a

alt) b a(t)
2ol o [ o[ 0.0

a(0) B(t) b
+ / 2(0,€) de + / 2(0,€) de + / 2(0,€) d6)

(®) B(0) B(t)

b b
= / M(t,€)w(1,€) d€ - %/ MO0t

1 1
= SIMOu) 320 — 51Oy
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which completes the proof. O

The existence of solution for (1.1)) and (1.2)), satisfying the hypothesis (H2), is
established in the next theorems.

Theorem 3.2. For eachu® € HZ(Qo), there exists a function u : @ — R, satisfying
u € L0, T; H3()), ug € L>°(0,T; HZ()) and

/Autgbdzdt—F/A(u—FuQ)qud:cdt—&—/Aumtgbm dxdt =0 (3.1)
Q Q Q

for all ¢ € L?(0,T; H3()); u(z,0) = u°(z)

Theorem 3.3. For eachu® € H}(Qo), there exists a function u : @ — R, satisfying

w € L*(0,T; HY (), ug € L°°(0,T; H(Q4)) and

/Aut¢dxdt+/A(u+u2)m¢dxdt+/Auxtqu dz dt = 0,
Q Q Q

for all ¢ € L2(0,T; HY()); u(z,0) = u’(x)
Proof of Theorem[3.4 To prove this result we use the penalization method. For

each € > 0 we consider the problem

1 1
Ue,t + (Ue + Uz)x + Ue powaat + EMUe,t - E(Mue,xt)x =0 inQ
Ue(a,t) = ue(b,t) = tep(a,t) = ueo(b,t) =0 in]0, T (3:2)
uc(z,0) =a°(x) in ]a,b[
Let {w;}ien be a basis of HZ(a,b), such that w; = %p. We denote by V,, =
[w1, ..., wm] the subspace of H3(a,b), generated by g, w2, . . ., Wy,. We seek un (1)
in V,,, solution to the approximate problem

(Uem,ta w) + ((uem + ugm)ma w) + (Uem,zzmrta U))
1 1
+=(Muem t,w) — = ((Muemzt)z,w) =0 for all w € V,, (3.3)
€ €
U (0) = u%(2) — @ in HZ(a,b)

First Estimate. Taking w = ey, in (3.3) and applying Lemma we obtain
1 1
e I + Nem e @ + = [1M Euem @) 1* + M @) emo (OI* < cs, (3.4)

where ||| - ||| denotes the norm in L?(a, b).
Second Estimate. Taking w = em +(t) in (3.3)) and using (3.4]) we have

|||u6m,t(t)”|2 + |Huem,wa:t(t)|||2 + %(M(t)uem,t(t)auem,t(t))

L M (1t (), e an (1)) (3.5)

€
1

<co+ §|||uem,t(t)|||2
From where we obtain

1 1
e, e (I + [lltem e ()[1* + <M () teem e B)N1* + ~ 1M () ttem,an B)]]* < e
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From the estimates above, we pass to the limit in the approximate equation, and
we obtain that u. is solution of the penalized problem

T b T b T b
/ / Ue v dx dt + / / (ue + uf)zv dx dt + / / Ue,pat Vs AT dt
0 a 0 a 0 a

1 (T b 1 /T b
+— / / Mue v dxdt + — / / Mue 44V dzdt =0
€ Jo a €Jo a

for all v € L?(0,T; H3(a,b)). From (3.4), (3.5) and the Banach-Steinhauss Theo-
rem, we pass to the limit as ¢ — 0 in (3.6)) and we obtain ([3.1)).
Regularity. From the first estimate, we have

1t
7/0 (MUem, i (8), Uem(s)) ds < ¢

€

(3.6)

On the other hand, from Lemma [3.1] we obtain

1

+ [ Mt s(5) () ds = 5 10 @ (0]
0

Then ||| M (t)tem (t)|||? < 2ce. Thus fOT f{f M(t)u2,, (t) dx dt < 2ceT or

T b T b
/ / | M (t)u(t)|? de dt < liminf/ / | M (t)uc(t)|? do dt < 2ceT
0 a 0 a
Then Mu, — 0 in L%(0,T; L?(a,b)).
On the other hand, Mu, — Mu in L?(0,T;L*(a,b)) and Mue, — Mu in
L*(0,T; L?(a,b)). So, we conclude that Mu =0 a.e. in Q or u=01in Q \ Q.
Analogously, applying the Lemma t0 Uem, o+ instead of uepm ¢, we obtain:
Uy = 0in Q\Q. Since u € L>=(0,T; H(a, b)) and uy € L>®(0,T; HE (a,b)), then u €
C([0,T); H}(a,b)). Therefore, u(t) € Ha(a,b) for all t and u = 0in Ja, b[\]a(t), B(¢)].
From where u(t) € Hi(a(t),B(t)), for all t. Thus u € L>(0,T; Hi(£%;)). Analo-

gously, u, € L>®(0,T; H}(Q4)). From these two statements, we have that u €
L*°(0,T; H3(Q4)). From the second estimate,

T b T b
/ / M ()t 1 (1) d it + / / M (E)ttemn ot () das it < 2€T.
0 a 0 a

By similar arguments, we obtain that uw, € L°(0,T; HZ(€;)), which prove the
regularity of the solution. O

The proof of Theorem [3.3]is similar to the proof of Theorem [3.2]and is ommitted.

Remark 3.4. Theorems 2.1, 2.2, 3.2 and 3.3 are invariable by translation. In fact,
the particular problem

w + (U + )y + Uggagr =0 in Q C QOX|Tp, T
u(z,t) =0 in 5
Uz (x,t) =0 in 5
u(z, Tp) = u’(z) in Qg,

with the change of variable u(z,t) = u(z,t—1Tp), can be transformed into a problem
of type (L.1).
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4. SOLUTIONS ON MIXED DOMAINS
Here we analyze the case when @ is a mixed domain; i.e., @ = Bj U By where
B ={(z,t) e Q:0<t<T1} and By = {(z,t) € Q : Ty <t < T}, where B; is
decreasing satisfying (H1), and Bs is increasing satisfying (H2). We define @; by
Qi = mt(Bl), 1= 1,2 i.e.,
Qi={(z.)eQ:0<t<Ty} and Qs={(x,t)eQ; Ti<t<T}.

To find a solution to (1.1]) in @ = 6,/2\1 U @\2, we consider the following two cases:
(1) Solution on Q;: For each u® € HZ(Qo) N H*(Qp), by Theorem there exist
u71 solution of

urg + (ur + u?)z + U1,zza2t =0 In @1
up(z,t) =0 inf}l
Uy g(x,t) =0 in%,
uy(x,0) =u®(z) in Qo
satisfying u; € L°(0,T1; HZ()), ui, € L®(0,T1; H3(Q)); therefore up is in
C([0,T1]; H3 ().

(2) Solution on Q>: For each u° = u1(T1) € H3(Q7,), by Theorem there exist
us solution of

(4.1)

g + (ug + u3)s + U2 zzzet =0 In @2
ug(z,t) =0 in,
Uz 5 (x,t) =0 inS,
uz(x, Th) =u"(z) in Op

satisfying ug in L°(Th, T; H3(Q4)), uge in L°(T1, T; H3(Q4)), and ug in
C(T, T); HE(4). A
(3) Solution on Q: We define u : Q — R by

ule _ Ul(xat)v (:L',t) € @
(%) {ug(x,t)7 (z,t) € Qa,

where u; and uy are solutions of (4.1) and (4.2)), respectively. Given that u® €
HZ(Qp), by Remark we deduce that the function u defined above is solution of

U+ (U + )y 4 Upgzer =0 in Q C Qx]0, T
u(z,t) =0 in 5
ugz(z,t) =0 in 5
u(z,0) = u’(z) in Q

satisfying u € L>(0,T; HZ (%)), us € L>(0,T; H3(;)) and

/Aut¢dxdt+/A(u+u2)m¢dxdt+/ Ut Pz dr dt = 0,
Q Q

Q

for all ¢ € L?(0,T; H(Q4)); u(x,0) = u’(x). This result is summarized in the
following theorem.
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Theorem 4.1. For each u® € HZ(Qo) N H*(y), and Q a mized domain defined

as
Uy

above, there exists a function u : Q — R satisfying u € L>(0,T; H3(Y)),
€ L*(0,T; H3(Q)) and

/Autgbdxdt—i—/A(u—i-uQ)qudxdt—i—/Aumtq’)mdmdt:O,
Q Q Q

for all ¢ € L?(0,T; H3()); u(z,0) = u®(z) for all z € Q.

In analogous way we have the following result

Theorem 4.2. For each u® € H}(Q0) N H?(Q), and Q a mized domain defined as
above, there exists a unique function u : Q — R, satisfying u € L°(0,T; Hi (),

Ut

€ L>(0,T; H}(Q)) and

/Aut¢da:dt+/A(u+u2)x¢dxdt+/Auxtqzﬁx dzdt =0,
Q Q Q

for all ¢ € L?(0,T; HY()); u(x,0) = u®(z), for all z € Qq.
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