
Electronic Journal of Differential Equations, Vol. 2004(2004), No. 27, pp. 1–13.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu (login: ftp)

A RADIALLY SYMMETRIC ANTI-MAXIMUM PRINCIPLE AND
APPLICATIONS TO FISHERY MANAGEMENT MODELS

JUNPING SHI

Abstract. For a boundary-value problem of an ordinary differential equation,

we prove that the anti-maximum principle holds when the forcing term satisfies
an integral inequality. As applications, we consider linear and nonlinear models
arising from fishery management problems.

1. Introduction

The maximum principle is one of most important tools to study linear and non-
linear elliptic equations. Let L be a uniformly elliptic operator,

Lu =
n∑

i,j=1

aij
∂2u

∂xi∂xj
+

n∑
i=1

ai
∂u

∂xi
+ au, (1.1)

where aij ∈ C(Ω), aij = aji, and
∑n

i,j=1 aij(x)ξiξj > 0 for x ∈ Ω and ξ = (ξi) ∈
Rn\{0}, and ai, a ∈ L∞(Ω). We consider a Dirichlet boundary-value problem

Lu+ λmu = f, x ∈ Ω,
u = 0, x ∈ ∂Ω,

(1.2)

where m ∈ L∞(Ω).
The maximum principle holds if for f > 0, the solution (if exists) u of (1.2)

is negative. It is known that the maximum principle holds for any f > 0 if and
only if λ < λ1, the principal eigenvalue of the homogeneous equation Lφ+ λmφ =
0. When λ crosses λ1, it was proved by Clément and Peletier [3] (for the case
m ≡ 1) and Hess [7] (for sign-changing m) that for f > 0 and λ ∈ (λ1, λ1 + δf ),
the solution u of (1.2) is positive. This phenomenon is called the anti-maximum
principle. More general anti-maximum principles are proved in [2], [14], [4], [1] and
[13]. In particular, the author of the present paper shows in [13] that the set of
nontrivial solutions of the equation Lu+ λmu = (λ− λ1)2f near (λ1, 0) is a curve
{(λ, u(λ))} ⊂ R × C2,α(Ω), and u(λ) ≈ −(λ − λ1)φ1 where φ1 is a multiple of the
positive principal eigenfunction. That provides an explanation of the transition
from the maximum principle to the anti-maximum principle.
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In this paper, we discuss the question whether the anti-maximum principle holds
for λ > λ1 and certain f but beyond a small interval (λ1, λ1 + δf ). In particular,
we are interested in that for which f the anti-maximum principle holds for all
λ ∈ (λ1, λ2), where λ2 is the second eigenvalue of Lφ + λmφ = 0. (In general,
λ2 may not be a real number, but in the situations we will consider, L is always
self-adjoint, so λ2 is real.) For general f > 0 the anti-maximum principle obviously
fails when λ → λ−2 since the solution of (1.2) uf ≈ (λ − λ2)−1φ2 (which is a
sign-changing function) if

∫
Ω
fφ2dx 6= 0. Thus a necessary condition for the anti-

maximum principle to be extended up to λ = λ2 is that
∫
Ω
fφ2dx = 0. For

many domains with symmetry, it can be proved that φ1 is symmetric, and φ2

is asymmetric. Thus the necessary condition can be fulfilled if f has the same
symmetry as Ω, and such situations do arise often from applications. So we will
consider the anti-maximum principle when Ω, L and f have a compatible symmetry.

First we consider the one-dimensional case: a Sturm-Liouville boundary-value
problem

[p(r)u′]′ + s(r)u+ λq(r)u = f(r), r ∈ (−1, 1),

u(−1) = u(1) = 0.
(1.3)

Here p, p′, s, q, f are continuous, p and q are positive, and p, s, q, f are even functions.
for the homogeneous equation, it is well-known that the principal eigenfunction φ1

is an even function with one sign, and the eigenfunction φ2 corresponding to λ2 is
an odd function. For f satisfying an integral constraint (2.6), we show that the
anti-maximum principle holds for λ ∈ (λ1, λ2]. In the special case of

u′′ + λu = f(r), r ∈ (−1, 1),

u(−1) = u(1) = 0,
(1.4)

we show that the anti-maximum principle holds for all λ ∈ (λ1, λ2] if∫ 1

0
f(r) cos(πr)dr ≥ 0. In [8], Korman proved the anti-maximum principle holds

for λ = λ2 and f satisfying the same integral inequality. Our result is much more
general (for general Strum-Liouville problem (1.3) instead of (1.4)), and the proof
is also different. We point out that an alternate proof of the result can also be given
via the Green function of the problem, by using the ideas in, for example, Schröder
[12].

Our second result is about the radially symmetric solutions of Schödinger type
equation

∆u+K(x)u+ λV (x)u = f(x), x ∈ Bn,

u = 0, x ∈ ∂Bn,
(1.5)

where Bn is the unit ball in Rn with n ≥ 2, and V,K and f are positive and radially
symmetric. The principal eigenfunction φ1 of the homogeneous equation is radially
symmetric and is of one sign. We show that the anti-maximum principle holds
for λ ∈ (λ1, λ

∗] for some λ∗ < λ2 when an integral inequality is satisfied. Note
that the solution uf of (1.5) in this case is also radially symmetric, thus satisfies a
Sturm-Liouville problem:

(rn−1u′)′ + rn−1K(r) + λrn−1V (r)u = rn−1f(r), r ∈ (0, 1),

u′(0) = u(1) = 0.
(1.6)

We will study the Sturm-Liouville boundary-value problem (1.3) in Section 2,
and we will discuss (1.5) and (1.6) in Section 3. In Section 4, we consider an
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Figure 1. Precise bifurcation diagram for λ1 < a < λ1 + δ

equation arising from models of fishery management

u′′ + au− bu2 − ch(x) = 0, x ∈ (−1, 1),

u(−1) = u(1) = 0,
(1.7)

where a > 0, b ≥ 0, c > 0, and h(x) is an even non-negative function on [−1, 1].
The solutions of (1.7) are the steady state solutions of a reaction-diffusion equation
(with spatial dimension n = 1)

∂u

∂t
= ∆u+ au− bu2 − ch(x), (t, x) ∈ (0, T )× Ω;

u(t, x) = 0, (t, x) ∈ (0, T )× ∂Ω;

u(0, x) = u0(x) ≥ 0, x ∈ Ω,

(1.8)

where Ω is a smooth domain in Rn. Here u(t, x) is the population density of a
fish species, Ω ⊂ Rn (n ≥ 1) is the habitat of the fish; the population is assumed
to have a logistic growth when b > 0, and it is a Malthus growth when b = 0;
c · h(x) represents harvesting effect, and we assume that h(x) ≥ 0 for x ∈ Ω
and maxx∈Ω h(x) = 1 (thus h(·) determines the spacial fishing patterns, and c
determines the quantity of the fishing.) The steady state solutions of (1.8) was
studied by Oruganti, Shivaji and the author in [10]. In particular, it was proved
in [10] that when b > 0, a ∈ (λ1, λ1 + δ) for some δ > 0, then there exists c2 > 0
such that (1.8) has exactly two positive steady state solution when c ∈ (0, c2), has
exactly one positive steady state solution when c = c2, and has no non-negative
steady state solution when c > c2 (see Figure 1.) This result is valid for general
smooth domain Ω but only for a ∈ (λ1, λ1+δ) since we use a perturbation argument
and the classical anti-maximum principle. In Section 4, we will show that a similar
result can be extended to a ∈ (λ1, λ2) and the one-dimensional case (1.7) with a
more restrictive but natural h(x) by using the ideas in Section 2 and a bifurcation
approach. We will also consider the case when b = 0 (Malthus growth.)

2. One-Dimensional Problem

We consider a linear non-homogeneous Strum-Liouville boundary-value problem

[p(r)u′]′ + s(r)u+ λq(r)u = f(r), r ∈ (−1, 1),

u(−1) = u(1) = 0.
(2.1)

Here we assume that
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(A1) p, p′, s, q, f are continuous in [−1, 1];
(A2) p, s, q, f are all even functions, i.e. g(−x) = g(x);
(A3) q(r) > 0 for r ∈ [−1, 1];
(A4) p(r) > 0 for r ∈ [−1, 1];
(A5) f(r) ≥ 0 for r ∈ [−1, 1].

It is well-known that if (A1), (A3) and (A4) are satisfied, then the homogeneous
equation

[p(r)φ′]′ + s(r)φ+ λq(r)φ = 0, r ∈ (−1, 1),

φ(−1) = φ(1) = 0,
(2.2)

has a sequence of eigenvalues {λi}∞i=1, such that λi < λi+1, limi→∞ λi = ∞, and the
eigenfunction φi corresponding to λi changes sign exactly (i− 1) times in (−1, 1),
and all zeros of φi are simple. If in addition (A2) is satisfied, one can easily show
that φ1 is an even function of one sign on [−1, 1], and φ2 is an odd function on
[−1, 1] which only changes sign at r = 0. Similarly, the homogeneous equation with
no-flux boundary condition

[p(r)φ′]′ + s(r)φ+ λq(r)φ = 0, r ∈ (−1, 1), φ′(−1) = φ′(1) = 0, (2.3)

has a sequence of eigenvalues {λN
i }∞i=1, such that λN

i < λN
i+1, limi→∞ λN

i = ∞, and
the eigenfunction φN

i corresponding to λN
i satisfies that (φN

i )′ changes sign exactly
(i− 1) times in (−1, 1), and all zeros of (φN

i )′ are simple.
We recall a standard Sturm comparison lemma (see for example, [11]).

Lemma 2.1. Let Lu(t) = [(p(t)u′(t)]′+q(t)u(t), where p(t) and q(t) are continuous
in [a, b] and p(t) ≥ 0, t ∈ [a, b]. Suppose Lw(t) = 0, w 6≡ 0.

(1) If there exists v ∈ C2[a, b] such that v(t) ≥ 0 and Lv(t) ≤ (6≡)0, then w has
at most one zero in [a, b].

(2) If there exists v ∈ C2[a, b] such that v(t) ≥ 0 and Lv(t) ≥ (6≡)0, and
v(a) = v(b) = 0, then w has at least one zero in (a, b).

To study the solution set (λ, u) of (2.1), we first collect a few well-known facts
about the solutions of (2.1):

Lemma 2.2. Assume that (A1)-(A5) are satisfied.

(1) For any λ 6= λi, (2.1) has a unique solution u(λ, r), which is an even
function;

(2) For λ = λ1, (2.1) has no solution;
(3) For λ = λ2, (2.1) has infinite many solutions, and it has a unique even

solution u(λ, ·);
(4) When λ < λ1, then u(λ, r) < 0 for r ∈ (−1, 1), ur(λ,−1) < 0;
(5) There exists δf > 0 such that for λ ∈ (λ1, λ1 + δf ), u(λ, r) > 0 for r ∈

(−1, 1), ur(λ,−1) > 0.

Consider the homogeneous equation

[p(r)ϕ′]′ + s(r)ϕ+ λq(r)ϕ = 0, r ∈ (−1, 1),

ϕ′(0) = 0, ϕ(0) = 1 > 0.
(2.4)

From the existence and uniqueness of the solution of the initial value problem,
(2.4) has a unique solution ϕ(λ, r) for any λ > 0, and ϕ(λ, r) is an even function.
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Moreover, from Lemma 2.1, when λ1 < λ ≤ λ2, there exists r0 > 0 such that ϕ(r)
satisfies

ϕ(r)(r − r0) > 0, r ∈ (0, 1)\{r0}. (2.5)
The function ϕ(λ, r) will play an important role in our main result. We say that
(2.1) satisfies the anti-maximum principle for f if for λ ∈ (λ1, λ2] the even solution
u(λ, r) > 0 for r ∈ (−1, 1). Our main result in this section is as follows.

Theorem 2.3. Assume that (A1)-(A5) are satisfied, and u(λ, r) is the unique even
solution of (2.1) when λ ∈ (λ1, λ2]. Let ϕ(λ, r) be the solution of (2.4). Then (2.1)
satisfies the anti-maximum principle for f at λ ∈ (λ1, λ2] if and only if∫ 1

−1

f(r)ϕ(λ, r)dr = 2
∫ 1

0

f(r)ϕ(λ, r)dr ≥ 0. (2.6)

Moreover ur(λ, 1) < 0 if
∫ 1

0
f(r)ϕ(λ, r)dr > 0, and ur(λ, 1) = 0 if∫ 1

0
f(r)ϕ(λ, r)dr = 0.

Proof. From the symmetry of the solution, u(r) = u(λ, r) satisfies

[p(r)u′]′ + s(r)u+ λq(r)u = f(r), r ∈ (0, 1), u′(0) = u(1) = 0. (2.7)

We denote Lu = [p(r)u′]′ + λq(r)u. Suppose that ψ is the solution of the initial
value problem

[p(r)ψ′]′ + s(r)ψ + λq(r)ψ = 0, r ∈ (−1, 1),

u(−1) = 0, u′(−1) = a > 0 .
(2.8)

We claim that ψ has exactly one zero in (−1, 1), and ψ(1) ≤ 0. First we assume
that λ1 < λ < λ2. If we also assume that rφ2(r) > 0 for r 6= 0, then φ2 < 0 and
Lφ2 = (λ−λ2)qφ2 ≤ 0 for r ∈ (−1, 0). Hence by Lemma 2.1 part 1, ψ has no zero in
[−1, 0] besides r = −1. Similarly, φ2 > 0 and Lφ2 = (λ− λ2)qφ2 < 0 for r ∈ (0, 1).
Thus ψ has at most one zero in [0, 1], and has at most two zeros in [−1, 1]. On the
other hand, φ1 > 0, Lφ1 = (λ − λ1)qφ1 > 0, and φ1(−1) = φ1(1) = 0, then from
Lemma 2.1 part 2, ψ has at least one zero in (−1, 1). Therefore ψ has exactly one
zero in (−1, 1), and ψ(1) < 0 if λ1 < λ < λ2. If λ = λ2, then ψ = kφ2 from the
uniqueness of the equation, which implies that ψ has exactly one zero in (−1, 1),
and ψ(1) = 0.

Let I+ = {x ∈ (−1, 1) : u(λ, x) > 0}. Then I+ is the union of countable disjoint
open sub-intervals of (−1, 1). For each (a, b) ⊂ I+, u > 0 and Lu = f > 0 in (a, b),
and u(a) = u(b) = 0, thus by Lemma 2.1 part 2, ψ has at least one zero in (a, b).
However from the claim above, ψ has exactly one zero in (−1, 1). Hence I+ has
at most one connected component. Since u(λ, u) is even, then the only connected
component of I+ must be symmetric about r = 0. Therefore I+ must satisfy one
of the following three: (a) I+ = ∅; (b) I+ = (−r0, r0) for some r0 ∈ (0, 1); or (c)
I+ = (−1, 1).

Case (a) is not possible since I+ = ∅, u ≤ 0 and Lu = f ≥ 0 in [−1, 1], which
will imply ψ has at most one zero in [−1, 1] from Lemma 2.1 part 1, but ψ has two
zeros (including r = −1) in [−1, 1). Therefore, for any λ ∈ (λ1, λ2], u(λ, r) is either
positive in (−1, 1), or u(λ, r) > 0 when |r| < r0 and u(λ, r) ≤ 0 when 1 > |r| > r0. If
ur(λ, 1) < 0, then u(λ, r) > 0 for all r ∈ (−1, 1); and if ur(λ, 1) > 0, then the latter
case occurs. If ur(λ,−1) = 0, then from the equation p(1)urr(λ, 1) = f(1) > 0, u
is positive in a right neighborhood of r = 1, and consequently positive in (−1, 1).
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Therefore, u(λ, r) > 0 in (−1, 1) if and only if ur(λ, 1) ≤ 0. From (2.1) and (2.4),
we have

p(1)ϕ(λ, 1)ur(λ, 1) = [pu′ϕ− pϕ′u]|10 =
∫ 1

0

ϕ(λ, r)f(r)dr. (2.9)

Since ϕ(λ, 1) < 0 for any λ ∈ (λ1, λ2) and p(1) > 0, then ur(λ, 1) ≤ 0 is equivalent
to

∫ 1

0
ϕ(λ, r)f(r)dr ≥ 0. The last statement in the theorem is also clear from

(2.9). �

We illustrate the result in Theorem 2.3 with the special case of p(r) = q(r) ≡ 1
and s(r) ≡ 0:

u′′ + λu = f(r), r ∈ (−1, 1), u(−1) = u(1) = 0. (2.10)

The homogeneous equation (2.4) becomes

ϕ′′ + λϕ = 0, r ∈ (−1, 1),

ϕ′(0) = 0, ϕ(0) = 1,
(2.11)

and it is easy to calculate that ϕ(λ, r) = cos(
√
λr). The eigenvalues of

φ′′ + λφ = 0, r ∈ (−1, 1),

φ(−1) = φ(1) = 0,
(2.12)

are λi = i2π2/4 (i ∈ N), and the corresponding eigenfunctions are φ2i−1(r) =
cos[(2i− 1)πr/2] and φ2i(r) = sin(iπr). The condition (2.6) now becomes∫ 1

0

f(r) cos(
√
λr)dr ≥ 0. (2.13)

We observe that the family of functions {cos(
√
λr) : π2/4 < λ < π2} satisfy

∂(cos(
√
λr))

∂λ
= − sin(

√
λr)

2
√
λ

< 0, (2.14)

for r ∈ (0, 1) and λ ∈ (π2/4, π2]. We define a functional:

I(λ, f) =
∫ 1

0

f(r) cos(
√
λr)dr, (2.15)

for λ ∈ [π2/4, π2]. Then for any even positive function f , I(λ, f) is decreasing in
λ. Hence we obtain a stronger result for (2.10):

Theorem 2.4. Suppose that f ∈ C0[−1, 1], f(−r) = f(r) and f(r) ≥ (6≡)0 for
|r| ≤ 1. Let u(λ, r) be the unique even solution of (2.10) for λ ∈ (π2/4, π2].

(1) If
∫ 1

0
f(r) cos(πr)dr ≥ 0, then u(λ, r) > 0 for r ∈ (−1, 1) and all λ ∈

(π2/4, π2];
(2) If

∫ 1

0
f(r) cos(πr)dr < 0, then there exists λ∗ ∈ (π2/4, π2) such that u(λ, r) >

0 for r ∈ (−1, 1) and λ ∈ (π2/4, λ∗], and u(λ, r) changes sign exactly twice
in (−1, 1) for λ ∈ (λ∗, π2].
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3. Radially Symmetric Problem

In this section, we consider the anti-maximum principle for the equation

∆u+K(x)u+ λV (x)u = f(x), x ∈ Bn,

u = 0, x ∈ ∂Bn,
(3.1)

where Bn is the unit ball in Rn, n ≥ 2. We assume that V and f satisfy
(B1) V,K, f ∈ C(Bn);
(B2) V,K and f are radially symmetric;
(B3) V (x) > 0 for x ∈ Bn;
(B4) f(x) > 0 for x ∈ Bn.
For the homogeneous equation

∆φ+K(x)φ+ λV (x)φ = 0, x ∈ Bn,

φ = 0, x ∈ ∂Bn,
(3.2)

It is well-known that the principal eigenfunction φ1 is of one sign and is radially
symmetric. In general the second eigenvalue λ is not simple. It was shown in [9]
that three cases can happen for the solution space W of [∆+K(x)+λ2V (x)]φ = 0:

(1) dim(W ) = 1, W = span{φ2}, and φ2 is radially symmetric;
(2) dim(W ) = n, W = span{ψi ≡ ψ(|x|)xi|x|−1 : i = 1, 2, · · · , n}, where

x = (x1, x2, · · · , xn);
(3) dim(W ) = n + 1, W = span[{ψi ≡ ψ(|x|)xi|x|−1 : i = 1, 2, · · · , n} ∪

{φ2(|x|)}].
For example, for V (x) ≡ 1, it is well-known that the second case above occurs,
i.e. all eigenfunctions are asymmetric with respect to a hyperplane through the
origin. Indeed, we can define λR

i to be the i-th eigenvalue with radially symmetric
eigenfunction, and λn

i to be the i-th eigenvalue with non-radial eigenfunction. Then
λ1 = λR

1 , and λ2 = λR
2 < λn

1 or λ2 = λn
1 < λR

2 or λ2 = λR
2 = λn

1 corresponds to
one of three cases above. In all three cases, when λ ∈ (λ1, λ2), (3.1) has a unique
solution u(x) which is also radially symmetric. Thus the solution u satisfies

(rn−1u′)′ + rn−1K(r)u+ λrn−1V (r)u = rn−1f(r), r ∈ (0, 1),

u′(0) = u(1) = 0.
(3.3)

We define λ∗ to be the principal eigenvalue of the equation

(rn−1ϕ′)′ + rn−1K(r)ϕ+ λrn−1V (r)ϕ = 0, r ∈ (0, 1),

ϕ(0) = ϕ(1) = 0.
(3.4)

Then by applying Theorem 2.3, we obtain the following result.

Theorem 3.1. Suppose that (B1)-(B4) are satisfied. Let u(λ, x) be the unique
(radially symmetric) solution of (3.1) for λ ∈ (λ1, λ

∗], and let ψ be the unique
radially symmetric solution of the linear equation

∆ψ +K(x)ψ + λV (x)ψ = 0, x ∈ Bn,

ψ(0) = 1, ∇ψ(0) = 0.
(3.5)

Then (2.1) satisfies the anti-maximum principle for f at λ ∈ (λ1, λ
∗] if and only if∫

Bn

ψ(x)f(x)dx ≥ 0. (3.6)
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Moreover ∇u < 0 on ∂Ω if
∫

Bn ψ(x)f(x)dx > 0, and ∇u = 0 on ∂Ω if∫
Bn ψ(x)f(x)dx = 0.

Proof. We consider the boundary-value problem:

(p(r)u′)′ + s(r)u+ λq(r)u = rn−1f(r), r ∈ (−1, 1),

u(−1) = u(1) = 0,
(3.7)

where

p(r) =

{
rn−1, r ∈ [0, 1];
(−r)n−1, r ∈ [−1, 0].

s(r) =

{
rn−1K(r), r ∈ [0, 1];
(−r)n−1K(r), r ∈ [−1, 0].

q(r) =

{
rn−1V (r), r ∈ [0, 1];
(−r)n−1V (r), r ∈ [−1, 0].

(3.8)

Then the proof of Theorem 2.3 can be carried over although p(0) = q(0) = 0. �

Note that λ∗ is not an eigenvalue associated with the PDE operator ∆+K(x)+
λV (x). In fact, λ∗ is the second eigenvalue of the homogeneous problem associated
with (3.7):

(p(r)φ′)′ + s(r)φ+ λq(r)φ = 0, r ∈ (−1, 1),

φ(−1) = φ(1) = 0,
(3.9)

while λR
2 is the third eigenvalue of (3.9). Thus λ∗ < λR

2 . On the other hand
it is well-known (see [9]) that the eigenfunction θ corresponding to λn

1 is of form
η(r) · (xi/|x|), and η satisfies

(rn−1η′)′ + rn−1K(r)η + λrn−1V (r)η − (n− 1)rn−2η = 0, r ∈ (0, 1),

η(0) = η(1) = 0.
(3.10)

Comparing the variational characterization of η > 0 (3.10) and ϕ > 0 (3.4), we
can see that λ∗ < λn

1 . Thus λ∗ < λ2 = min(λR
2 , λ

n
1 ). It would be an interesting

question whether the anti-maximum principle holds for all λ ∈ (λ1, λ2) like the
one-dimensional case.

4. Applications to Fishery Management Problems

In this section, we consider the equation:

u′′ + au− bu2 − ch(x) = 0, x ∈ (−1, 1),

u(−1) = u(1) = 0,
(4.1)

where a > 0, b ≥ 0, c > 0, and h(x)(6≡ 0) is an even non-negative function on
[−1, 1] such that maxx∈[−1,1] h(x) = 1.

First as a direct application of the result in Section 2, we consider the case when
b = 0. Then the solution u gives the asymptotic spatial distribution of the fish
population, when the population has a uniform Malthus growth, and the population
is harvested at a constant rate ch(x). In this case, when a 6= λi, then (4.1) has a
unique solution u, and we are interested in the question whether u is positive. If
that is the case, then it is not hard to show that for any sufficiently large initial
population u0, the population will approach this equilibrium distribution when
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t → ∞, thus the population will not become extinct. From Theorem 2.3, we have
the following result.

Proposition 4.1. Suppose that a ∈ (λ1, λ2) and b = 0, and h(x) is an even
function. Then the unique solution u(x) of (4.1) is positive in (−1, 1) if and only
if ∫ 1

−1

h(x) cos(
√
ax)dx = 2

∫ 1

0

h(x) cos(
√
ax)dx ≥ 0. (4.2)

In particular, when u(x) is positive,

h ∈ C1[−1, 1] and h′(x) ≤ 0 for x ∈ (0, 1). (4.3)

The assumption (4.3) is reasonable in fishery business since fishermen tend to catch
more fish from the interior part of the habitat, where the fish has higher population
density. Note that u(x) must also be an even function because of the uniqueness of
solution.

Next we consider the case when a ∈ (λ1, λ2), b > 0 (logistic growth) and (4.3) is
satisfied. Suppose that u is a non-negative solution of (4.1). Then u is stable if all
eigenvalues µi(u) of

ϕ′′ + (a− 2u)ϕ = −µϕ, ϕ(−1) = ϕ(1) = 0, (4.4)

are positive, and otherwise it is unstable. For a unstable solution u, the Morse index
M(u) is defined as the number of negative eigenvalues of (4.4). It is well-known
that the eigenvalues µi(u) can be rearranged into an increasing order: µ1 < µ2 <
µ3 < · · · → ∞. A solution u of (4.1) is degenerate if µi(u) = 0 for some integer i,
and otherwise it is non-degenerate.

Our main result reads as follows.

Theorem 4.2. Suppose that b > 0, a ∈ (λ1, λ2), h(−x) = h(x) and h(x) ≥ 0 for
x ∈ [0, 1], and we assume that (4.3) holds. Then there exists c2 > 0 such that

(1) (4.1) has exactly two positive solutions u1(·, c) and u2(·, c) for c ∈ [0, c2),
exactly one positive solution u1(·, c) for c = c2, and no non-negative solution
for c > c2;

(2) ui(c,−x) = ui(c, x) and ∂xui(c, x) < 0 for c ∈ (0, c2], x ∈ (0, 1] and i = 1, 2;
(3) The Morse index M(u1(·, c)) = 0 (stable) and M(u2(·, c)) = 1, c ∈ [0, c2),

u1(·, c2) is degenerate with µ1(u1(·, c2)) = 0;
(4) All solutions lie on a smooth curve Σ. On (c, u) space, Σ starts from (0, 0),

continues to the right, reaches the unique turning point at c = c2 where it
turns back, then continues to the left without any turnings until it reaches
(0, va), where va is the unique positive solution of (4.1) with c = 0 (see
Figure 1.)

To prove this theorem, we first prove some lemmas.

Lemma 4.3. Suppose that b > 0, a ∈ (λ1, λ2), h(−x) = h(x) and h(x) ≥ 0 for
x ∈ [0, 1], and u is a non-negative solution of (4.1). Then

(1) µ2(u) > 0, thus the Morse index M(u) is either 0 or 1;
(2) If u is a degenerate solution, then M(u) = 0 and the eigenfunction w of

µ1(u) = 0 can be chosen as positive.



10 JUNPING SHI EJDE-2004/27

Proof. From the variational characterization of µ2(u):

µ2(u) = inf
T

sup
ϕ∈T

∫ 1

−1
[ϕ′2 − (a− 2u)ϕ2]dx∫ 1

−1
ϕ2

> inf
T

sup
ϕ∈T

∫ 1

−1
[ϕ′2 − aϕ2]dx∫ 1

−1
ϕ2

= λ2 − a > 0,

where T is any two dimensional subspace of H1
0 [−1, 1]. If u is a degenerate solution,

then µ1(u) = 0 since µ2(u) > 0, and w can be chosen as positive from the well-
known result for the principal eigenfunction. �

Lemma 4.4. Suppose that b > 0, a ∈ (λ1, λ2), h(−x) = h(x) and h(x) ≥ 0 for
x ∈ [0, 1], h(x) satisfies (4.3), and u is a non-negative even solution of (4.1). Then
either u′(x) < 0 for x ∈ (0, 1] or there exists x1 ∈ (0, 1) such that u′(x) ≥ 0 in
(0, x1) and u′(x) < 0 in (x1, 1)].

Proof. Since µ2(u) > 0 from Lemma 4.3, then similar to the proof of Theorem 2.3
about function ψ, we can show that the solution of

Ψ′′ + (a− 2u)Ψ = 0, r ∈ (−1, 1),

Ψ(−1) = 0, Ψ′(−1) = k > 0,
(4.5)

changes sign at most once in (−1, 1), Ψ(1) > 0 if u is stable, Ψ(1) < 0 if M(u) = 1,
and Ψ(1) = 0 if µ1(u) = 0 (in that case, Ψ = w.) On the other hand, u′ satisfies

(u′)′′ + (a− 2u)u′ = ch′(x), x ∈ (−1, 1),

u′(0) = 0.
(4.6)

At x = 1, u′′(1) = ch(1) ≥ 0 and u ≥ 0, thus u′(x) ≤ 0 on (1 − δ, 1] for some
δ > 0. If u′(x) ≡ 0 for (1 − δ1, 1] for some δ1 > 0, then h(x) ≡ 0 on (1 − δ1, 1],
and a contradiction can be reached by the Hopf boundary lemma. Thus we can
assume that u′(x) < 0 on (1 − δ1, 1). Let x1 be the first zero of u′ left of x = 1.
If x1 = 0, then u′(x) < 0 on (0, 1); if u′(1) = 0, then L(u′) = −ch′ ≤ 0, where
Lφ = φ′′ + (a − 2u)φ, u′ < 0 on (0, 1), and u′(0) = u′(1) = 0, thus by Lemma
2.2 (2), Ψ has at least one zero in (0, 1). From the symmetry of u and h, Ψ has
at least one zero in (−1, 0). Thus Ψ has at least two zeros in (−1, 1). That is a
contradiction. Thus u′(1) < 0, and u′(x) < 0 for x ∈ (0, 1].

If x1 > 0, then for the same reason above, u′(1) < 0. If there exists another
interval (x2, x3) ⊂ (0, 1) such that u′(x) < 0 on (x2, x3) and u′(x2) = u′(x3) = 0,
then on the interval (x2, x3), L(u′) = −ch′ ≤ 0 and u′ ≤ 0, by Lemma 2.2 (2), Ψ
has at least one zero in (0, 1) and we reach a similar contradiction as in the last
paragraph. Hence u′(x) ≥ 0 on [0, x1). �

Proof of Theorem 4.2. From [10] page 3610 Theorem 3.2, there exists c2 > 0 such
that (4.1) has a maximum solution u1(c, x) for c ∈ (0, c2). Moreover from the proof
of Theorem 3.2 in [10], Σ1 = {(c, u1(c, ·)) : c ∈ (0, c2)} is a smooth curve and
∂cu1(c, x) < 0 for x ∈ (−1, 1).

On the other hand, from [10] Theorem 3.3, (4.1) has a second solution u2(c, x)
for c ∈ (0, c3) for some c3 < c2. The solution u2(c, x) is positive if the solution w
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of the linearized equation at (c, u) = (0, 0):

w′′ + aw = h(x), x ∈ (−1, 1),

w(−1) = w(1) = 0,
(4.7)

is positive. Since h satisfies (4.3) and a ∈ (λ1, λ2), from Theorem 2.3, w(x) > 0 for
x ∈ (−1, 1). Hence u2(c, x) = cw(x) + o(|c|) > 0 for c ∈ (0, c3) and x ∈ (−1, 1).
We can use the implicit function theorem to continue the solution branch Σ2 =
{(c, u2(c, x) : c ∈ (0, c3)} as long as the linearized operator φ 7→ φ′′ + (a− 2u2)φ is
non-degenerate. Suppose Σ2 can be extended to c = c4 > c3 such that u2(c, x) is
non-degenerate for c ∈ (0, c4).

We claim that u2(c, x) > 0 for c ∈ (0, c4) and x ∈ (−1, 1) and ∂xu2(c, x) 6= 0
when x = ±1. The function ∂cu2(c, x) satisfies the equation

v′′ + [a− 2u2(c, ·)]v = h(x), x ∈ (−1, 1),

v(−1) = v(1) = 0.
(4.8)

The Morse index M(u2(c, ·)) = M(u2(0, ·)) = 1 from the implicit function theorem.
Thus all conditions of Theorem 2.3 except (2.6) are satisfied for (4.8) since λ = 0 ∈
(λ1, λ2) and (4.3). Although Theorem 2.3 cannot be applied here since the integral
condition is hard to check, as long as λ ∈ (λ1, λ2), the set I+ = {x : ∂cu2(c, x) > 0}
must be one of the two cases (b) or (c) listed in the proof of Theorem 2.3. In either
case, 0 ∈ I+ and thus ∂cu2(c, 0) > 0 for all c ∈ (0, c4). In particular, u2(c, 0) > 0
for all c ∈ (0, c4). Suppose that u2(c, x) > 0 is not true for some c ∈ (0, c4) and
x ∈ (−1, 1), then c5 = inf{c > 0 : u2(c, x) ≤ 0 for some x} > 0 since u2(c, x) > 0
for x ∈ (−1, 1) and c ∈ (0, c3). At c = c5, either there exists x1 ∈ (−1, 1) such that
u2(c5, x1) = 0 or ∂xu2(c5,±1) = 0. The latter case cannot happen from Lemma 4.4
since u2(c5, x) is a non-negative solution of (4.1). In the former case, it can only
happen when x = 0 is a local minimum of u2(c5, ·) from Lemma 4.4, thus x1 = 0.
But this cannot happen since we show that u2(c, 0) > 0 for all c ∈ (0, c4). Therefore
such c5 does not exist, and the claim holds.

At c = c4, u2(c4, x) = limc→c−4
u2(c, x) > 0 exists for x ∈ (−1, 1). From

the Schauder estimates, we can show that the u2(c, ·) → u2(c4, ·) in C2[−1, 1],
thus u2(c4, ·) is a non-negative solution of (4.1) when c = c4. Moreover, since
∂xu2(c, 1) < 0, then u2(c4, x) > 0. From the definition of c4, u2(c4, x) is degenerate,
and from Lemma 4.3, µ1(u2(c4, x)) = 0 and the principal eigenfunction w can be
assumed to be positive. Hence a bifurcation theorem of Crandall-Rabinowitz [5] can
be applied here as in the proof of Theorem 3.2 in [10], and the solution curve near
u2(c4, ·) can be written as (c(s), u(s, ·)) for s ∈ (−δ, δ), c(s) = c4 + c′′(0)s2 + o(s2),
u(s) = u2(c4, ·) + sw + o(|s|), and

c′′(0) = −
2b

∫ 1

−1
w3(x)dx∫ 1

−1
h(x)w(x)dx

< 0. (4.9)

Thus the solution continuum which contains Σ2 (which we will still call Σ2) is a
curve which turns at (c4, u2(c4, ·)). For c ∈ (c4 − δ1, c4), (4.1) has another solution
u3(c, ·) on Σ2. We denote Σ−2 = {(c, u2(c, ·) : c ∈ (0, c4)}, and Σ+

2 = {(c, u3(c, ·) :
c ∈ (c4 − δ1, c4)}. Σ+

2 can also be extended via the implicit function theorem, and
from the change of stability theorem in [5], u3 is stable (µ1(u3) > 0). In fact Σ+

2 can
be extended for all c ∈ (0, c4) with u3 always non-degenerate and stable. Suppose
not, there there is c6 ∈ (0, c4) such that u3(c4, ·) is degenerate. Then µ1(u2(c4, x)) =
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0 and w > 0 at (c6, u3(c6, ·)), thus the bifurcation theorem can be applied, and
(4.9) holds, but (c6, u3(c6, ·)) cannot be a minimum of the solution curve since the
continuation is from right to left. Hence Σ+

2 can be extended to {(c, u3(c, ·) : c ∈
(0, c4)} and also c = 0. Moreover we can show that ∂cu3(c, x) < 0 from the proof
of [10] Theorem 3.2 since u3 is stable. Thus u3(0, x) = limc→0+ u3(c, x) is a non-
negative solution of (4.1) when c = 0 which is the classical logistic equation. It is
well-known that (4.1) has a unique nonnegative (positive indeed) solution u1 when
c = 0 (see [10] Section 2.3), and the branch Σ1 emanates from (0, u1). Therefore
Σ+

2 must be coincident to Σ1, c2 = c4, and u1(c, x) = u3(c, x) for c ∈ (0, c2).
If there is any other solution for c ∈ (0, c2), then the same continuation and

bifurcation arguments above. But (4.1) has only two non-negative solutions u1 and
0 when c = 0, so no any other solution exist. This concludes the proof. �

Remarks. (1) The results in Theorem 2.3 hold for a general smooth domain Ω in
Rn and all f ≥ 0, but only for a ∈ (λ1, λ1 + δf ). That is proved in [10].
(2) We point out that although h(x) is an even function, the solution u(x) of (4.1)
may not satisfy u′(x) < 0 for x ∈ (0, 1) as in the classical Gidas-Ni-Nirenberg [6]
since h′(x) ≤ 0 on (0, 1). The result in [6] holds when h′(x) ≥ 0, thus u1 or u2 may
be the two-peak solution described in Lemma 4.4.
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