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OSCILLATION OF NONLINEAR IMPULSIVE HYPERBOLIC
EQUATIONS WITH SEVERAL DELAYS

ANPING LIU, LI XIAO, & TING LIU

Abstract. In this paper, we study oscillatory properties of solutions to non-

linear impulsive hyperbolic equations with several delays. Sufficient conditions

for oscillations of the solutions are established

1. Introduction

The theory of partial functional differential equations can be applied to fields,
such as to biology, population growth, engineering, medicine, physics and chemistry.
In the last few years, a few of papers have been published on oscillation theory
of partial differential equations. The qualitative theory of this class of equations,
however, is still in an initial stage of development. We may easily visualize situations
in nature where abrupt changes such as shock and disasters may occur. These
phenomena are short-time perturbations. Consequently, it is natural to assume,
in modelling these problems, that these perturbations act instantaneously, that is,
in the form of impulses. In 1991, the first paper [8] on this class of equations was
published. But for instance, on oscillation theory of impulsive partial differential
equations only a few of papers have been published. Recently, Bainov, Minchev, Fu
and Luo [4, 5, 9, 10, 19] investigated the oscillation of solutions of impulsive partial
differential equations with or without deviating argument. But there is a scarcity
in the study of oscillation theory of nonlinear impulsive hyperbolic equations with
several delays. In this paper, we discuss the oscillatory properties of solutions
for nonlinear impulsive hyperbolic equations with several delays (1.1), under the
boundary condition (1.4). It should be noted that the equation we discuss here is
nonlinear and that we could not find work for oscillations of this kind of problem.

∂2u

∂t2
= a(t)h(u)∆u +

m∑
i=1

ai(t)hi(u(t− τi, x))∆u(t− τi, x)

− q(t, x)f(u(t, x))−
n∑

j=1

gj(t, x)fj(u(t− σj , x)),

t 6= tk, (t, x) ∈ R+ × Ω = G,

(1.1)
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u(t+k , x)− u(t−k , x) = qku(tk, x), (1.2)

ut(t+k , x)− ut(t−k , x) = bkut(tk, x), k = 1, 2, . . . . (1.3)

with the boundary condition

∂u

∂n
= 0, (t, x) ∈ R+ × ∂Ω, (1.4)

and the initial condition u(t, x) = Φ(t, x), (t, x) ∈ [−δ, 0] × Ω. Here Ω ⊂ RN is a
bounded domain with boundary ∂Ω smooth enough and n is a unit exterior normal
vector of ∂Ω, δ = max{τi, σj}, Φ(t, x) ∈ C2([−δ, 0]× Ω, R).

Assume that the following conditions are fulfilled:

(H1) a(t), ai(t) ∈ PC(R+, R+), τi = const. > 0, σj = const. > 0, i = 1, 2, . . . m,
j = 1, 2, . . . n, q(t, x), gj(t, x) ∈ C(R+ × Ω, (0,∞)); where PC denote the
class of functions which are piecewise continuous in t with discontinuities
of first kind only at t = tk, k = 1, 2, . . . and left continuous at t = tk,
k = 1, 2, . . . .

(H2) h′(u), h′i(u), f(u), fj(u) ∈ C(R, R); f(u)/u ≥ C = const. > 0, fj(u)/u ≥
Cj = const. > 0, for u 6= 0; qk > −1, bk > −1, bk < qk, 0 < t1 < t2 < · · · <
tk < . . . , limt→∞ tk = ∞.

(H3) u(t, x) and their derivatives ut(t, x) are piecewise continuous in t with dis-
continuities of first kind only at t = tk, k = 1, 2, . . . and left continuous at
t = tk, u(tk, x) = u(t−k , x), ut(tk, x) = ut(t−k , x), k = 1, 2, . . . .

Let us construct the sequence {t̄k} = {tk} ∪ {tkτi
} ∪ {tkσj

}, where tkτi
= tk +

τi, tkσj
= tk + σj and t̄k < t̄k+1, i = 1, 2, . . . ,m, k = 1, 2, . . . .

Definition. By a solution of problem (1.1), (1.4) with initial condition, we mean
that any function u(t, x) for which the following conditions are valid:

(1) If −δ ≤ t ≤ 0, then u(t, x) = Φ(t, x).
(2) If 0 ≤ t ≤ t̄1 = t1, then u(t, x) coincides with the solution of the problem

(1.1)–(1.4) with initial condition.
(3) If t̄k < t ≤ t̄k+1, t̄k ∈ {tk} \ ({tki}

⋃
{tkj}), then u(t, x) coincides with the

solution of the problem (1.1)–(1.4).
(4) If t̄k < t ≤ t̄k+1, t̄k ∈ {tki}

⋃
{tkj}, then u(t, x) coincides with the solution

of the problem (1.4) and the following equations

∂2u

∂t2
= a(t)h(u(t+, x))∆u(t+, x) +

m∑
i=1

ai(t)hi(u((t− τi)+, x))∆u((t− τi)+, x)

−q(t, x)f(u(t+, x))−
n∑

j=1

gj(t, x)fj(u((t− σ+
j ), x)) (t, x) ∈ R+ × Ω = G

u(t̄+k , x) = u(t̄k, x), ut(t̄+k , x) = ut(t̄k, x),

for t̄k ∈ ({tkτi} ∪ {tkσj}) \ {tk},

or

u(t̄+k , x) = (1 + qki
)u(t̄k, x), ut(t̄+k , x) = (1 + bki

)ut(t̄k, x)

for t̄k ∈ ({tkτi
} ∪ {tkσj

}) ∩ {tk}.

Where the number ki is determined by the equality t̄k = tki .
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We introduce the notation: Γk = {(t, x) : t ∈ (tk, tk+1), x ∈ Ω}, Γ =
⋃∞

k=0 Γk,
Γ̄k = {(t, x) : t ∈ (tk, tk+1), x ∈ Ω̄}, Γ̄ =

⋃∞
k=0 Γ̄k, v(t) =

∫
Ω

u(t, x)dx and p(t) =
minq(t, x), pj(t) = mingj(t, x), x ∈ Ω̄.
Definition.The solution u ∈ C2(Γ)∩C1(Γ̄) of problem (1.1), (1.4) is called nonoscil-
latory in the domain G if it is either eventually positive or eventually negative.
Otherwise, it is called oscillatory.

2. Oscillation properties of the problem (1.1), (1.4)

For the main theorem of this paper, we need following lemmas.

Lemma 2.1. Let u ∈ C2(Γ) ∩ C1(Γ̄) be a positive solution of (1.1), (1.4) in G,
then function v(t) satisfies the impulsive differential inequality

v′′(t) + Cp(t)v(t) +
n∑

j=1

Cjpj(t)v(t− σj) ≤ 0, , t 6= tk, (2.1)

v(t+k ) = (1 + qk)v(tk) k = 1, 2, . . . . (2.2)

v′(t+k ) = (1 + bk)v′(tk) k = 1, 2, . . . . (2.3)

Proof. Let u(t, x) be a positive solution of the problem (1.1), (1.4) in G. With-
out loss of generality, we may assume that u(t, x) > 0, u(t − τi, x) > 0, i =
1, 2, . . . ,m, u(t− σj , x) > 0, j = 1, 2, . . . , n, for any (t, x) ∈ [t0,∞)× Ω.

For t ≥ t0, t 6= tk, k = 1, 2, . . . , integrating (1.1) with respect to x over Ω yields

d2

dt2
[
∫

Ω

udx] = a(t)
∫

Ω

h(u)∆udx +
m∑

i=1

ai(t)
∫

Ω

hi(u(t− τi, x))∆u(t− τi, x)dx

−
∫

Ω

q(t, x)f(u(t, x))dx−
n∑

j=1

∫
Ω

gj(t, x)fj(u(t− σj , x)).

(2.4)
By Green’s formula and the boundary condition, we have∫

Ω

h(u)∆udx =
∫

∂Ω

h(u)
∂u

∂n
ds−

∫
Ω

h′(u)|gradu|2dx ≤ −
∫

Ω

h′(u)|gradu|2dx ≤ 0,∫
Ω

hi(u(t− τi, x))∆u(t− τi, x)dx ≤ 0.

From condition (H2), we can easily obtain∫
Ω

q(t, x)f(u(t, x))dx ≥ Cp(t)
∫

Ω

u(t, x)dx,∫
Ω

qj(t, x)fj(u(t− σj , x))dx ≥ Cjpj(t)
∫

Ω

u(t− σj , x)dx.

It follows that from above that

v′′ + Cp(t)v(t) +
n∑

j=1

Cjpj(t)v(t− σj) ≤ 0, (t ≥ t0, t 6= tk). (2.5)

Where v(t) > 0. For t > t0, t = tk, k = 1, 2, . . . , we have∫
Ω

u(t+k , x)dx−
∫

Ω

u(t−k , x)dx = qk

∫
Ω

u(tk, x)dx,
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Ω

ut(t+k , x)dx−
∫

Ω

ut(t−k , x)dx = bk

∫
Ω

ut(tk, x)dx.

This implies

v(t+k ) = (1 + qk)v(tk), (2.6)

v′(t+k ) = (1 + bk)v′(tk) k = 1, 2, . . . . (2.7)

Hence we obtain that v(t) > 0 is a positive solution of differential inequality (2.1)–
(2.3). This completes the proof. �

Definition. The solution v(t) of differential inequality (2.1)–(2.3) is called even-
tually positive (negative) if there exists a number t∗ such that v(t) > 0(v(t) < 0)
for t ≥ t∗.

Lemma 2.2 ([2, Theorem 1.4.1]). Assume that
(i) m(t) ∈ PC1[R+, R] is left continuous at tk for k = 1, 2, . . . ,
(ii) For k = 1, 2, . . . and t ≥ t0,

m′(t) ≤ p(t)m(t) + q(t) (t 6= tk),

m(t+k ) ≤ dkm(tk) + ek.

where p(t), q(t) ∈ C(R+, R), dk ≥ 0 and ek are real constants, PC1[R+, R] = {x :
R+ → R;x(t) is continuous and continuously differentiable everywhere except some
tk at which x(t+k ), x(t−k ), x′(t+k ) and x′(t−k ) exist and x(tk) = x(t−k ), x′(tk) = x′(t−k )}.
Then

m(t) ≤ m(t0)
∏

t0<tk<t

dk exp(
∫ t

t0

p(s)ds) +
∫ t

t0

∏
s<tk<t

dkexp(
∫ t

s

p(r)dr)q(s)ds

+
∑

t0<tk<t

∏
tk<tj<t

djexp(
∫ t

tk

p(s)ds)ek.

From the above lemma, we can obtain the following result; see also [19].

Lemma 2.3. Let v(t) be eventually positive (negative) solution of differential in-
equality (2.1)–(2.3). Assume that there exists T ≥ t0 such that v(t) > 0(v(t) < 0)
for t ≥ T . If the following condition holds,

lim
t→+∞

∫ t

t0

∏
t0<tk<s

1 + bk

1 + qk
ds = +∞, (2.8)

then v′(t) ≥ 0(v′(t) ≤ 0) for t ∈ [T, tl]
⋃

(
⋃+∞

k=l (tk, tk+1]), where l = min{k : tk ≥
T}.

Theorem 2.4. If condition (2.8) hold and, for some j0,

lim
t→+∞

∫ t

t0

∏
t0<tk<s

1 + qk

1 + bk
pj0(s)ds = +∞, (2.9)

then each solution of (1.1)–(1.4) oscillates in G.

Proof. Let u(t, x) be a nonoscillatory solution of (1.1), (1.4). Without loss of gener-
ality, we can assume that u(t, x) > 0, u(t−τi, x) > 0, i = 1, 2, . . . ,m, u(t−σj , x) > 0,
j = 1, 2, . . . , n for any (t, x) ∈ [t0,∞)× Ω. From Lemma 2.1, we know that v(t) is
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a positive solution of (2.1)–(2.3). Thus from Lemma 2.3, we can find that v′(t) ≥ 0
for t ≥ t0.

For t ≥ t0, t 6= tk, k = 1, 2, . . . , define

w(t) =
v′(t)
v(t)

, t ≥ t0.

Then we have w(t) > 0, t ≥ t0, v′(t)−w(t)v(t) = 0. We may assume that v(t0) = 1,
thus in view of (2.1)–(2.3) we have that for t ≥ t0,

v(t) = exp(
∫ t

t0

w(s)ds) (2.10)

v′(t) = w(t) exp(
∫ t

t0

w(s)ds) (2.11)

v′′(t) = w2(t) exp(
∫ t

t0

w(s)ds) + w′(t) exp(
∫ t

t0

w(s)ds) (2.12)

We substitute (2.10)–(2.12) into (2.1) and can obtain

w2(t) exp(
∫ t

t0

w(s)ds) + w′(t) exp(
∫ t

t0

w(s)ds) + Cj0pj0(t)exp(
∫ t−σj0

t0

w(s)ds) ≤ 0.

Hence, we have

w2(t) + w′(t) + Cj0pj0(t)exp(−
∫ t

t−σj0

w(s)ds) ≤ 0 .

From above and condition bk < qk, it is easy to see that the function w(t) is
non-increasing for t ≥ t1 ≥ δ + t0. Thus w(t) ≤ w(t1), for t ≥ t1, which implies

w′(t) + Cj0pj0(t) exp(−δw(t1)ds) ≤ 0, t ≥ t1.

From (2.2), (2.3) we get

w(t+k ) =
v′(t+k )
v(t+k )

=
1 + bk

1 + qk
w(tk), k = 1, 2, . . . .

It follows that

w′(t) ≤ −Cj0pj0(t)exp(−δw(t1)ds) (t 6= tk), (2.13)

w(t+k ) =
1 + bk

1 + qk
w(tk) (t = tk). (2.14)

Using Lemma 2.2, we obtain

w(t) ≤ w(t0)
∏

t0<tk<t

1 + bk

1 + qk
+

∫ t

t0

∏
s<tk<t

1 + bk

1 + qk
(−Cj0pj0(s) exp(−δw(t1)))ds

=
∏

t0<tk<t

1 + bk

1 + qk
{w(t0)−

∫ t

t0

∏
t0<tk<s

1 + qk

1 + bk
Cj0pj0(s) exp(−δw(t1))ds}.

Since w(t) > 0, the last inequality contradicts (2.9). Therefore, the proof is com-
plete. �

It should be noted that obviously all solutions of problem (1.1)–(1.2) are oscil-
latory if there exists a subsequence nk of n such that qnk

< −1, for k = 1, 2, . . . .
So we discuss only the case of qk > −1.
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