EXISTENCE OF SOLUTIONS TO SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS HAVING FINITE LIMITS AT $\pm \infty$

CEZAR AVRAMESCU \& CRISTIAN VLADIMIRESCU

$$
\begin{aligned}
& \text { AbSTRACT. In this article, we study the boundary-value problem } \\
& \qquad \ddot{x}=f(t, x, \dot{x}), \quad x(-\infty)=x(+\infty), \quad \dot{x}(-\infty)=\dot{x}(+\infty) .
\end{aligned}
$$

Under adequate hypotheses and using the Bohnenblust-Karlin fixed point theorem for multivalued mappings, we establish the existence of solutions.

1. Introduction

Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a continuous mapping. Consider the infinite boundary-value problem

$$
\begin{gather*}
\ddot{x}=f(t, x, \dot{x}) \tag{1.1}\\
x(-\infty)=x(+\infty), \quad \dot{x}(-\infty)=\dot{x}(+\infty), \tag{1.2}
\end{gather*}
$$

where $x(\pm \infty)$ and $\dot{x}(\pm \infty)$ denote the limits

$$
\begin{equation*}
x(\pm \infty)=\lim _{t \rightarrow \pm \infty} x(t) \quad \text { and } \quad \dot{x}(\pm \infty)=\lim _{t \rightarrow \pm \infty} \dot{x}(t) \tag{1.3}
\end{equation*}
$$

which are assumed to be finite. Problem (1.1)-(1.2) may be considered as a generalization of problem (1.1) with boundary condtions

$$
\begin{equation*}
x(a)=x(b), \quad \dot{x}(a)=\dot{x}(b), \tag{1.4}
\end{equation*}
$$

as $a \rightarrow-\infty$ and $b \rightarrow+\infty$. The bilocal boundary-value problem (1.1)-(1.4) is closely related to the problem of finding periodic solutions to (1.1). The reader is referred to $[17,19,20]$ where extensive use of topological degree theory is made to study this problem.

Problem (1.1)-(1.2) is related to the so-called convergent solutions, i.e. the solutions defined on $\mathbb{R}_{+}=[0,+\infty)$ (or \mathbb{R}) and having finite limit to $+\infty$ (respectively $-\infty)$, see $[4,5,14,15,16]$. For studies on (1.1)-(1.2) using variational methods, we refer the reader to $[1,2,3,13,20,21]$. In [12] the existence of the solutions to the equation (1.1) with the boundary conditions $x(\infty)=\dot{x}(\infty)=0$ is studied for $f(t, u, v)=g(t) v-u+h(t, u)$. Through the Schauder-Tychonoff and Banach fixed point Theorems estimates for the solutions are found.

[^0]When f is a differentiable function, (1.1) can be written as

$$
\begin{equation*}
\ddot{x}=a(t, x, \dot{x}) \dot{x}+b(t, x, \dot{x}) x+c(t) \tag{1.5}
\end{equation*}
$$

where $a, b: \mathbb{R}^{3} \rightarrow \mathbb{R}, c: \mathbb{R} \rightarrow \mathbb{R}, a(t, u, v):=\int_{0}^{1} \frac{\partial f}{\partial u}(t, s u, s v) d s, b(t, u, v):=$ $\int_{0}^{1} \frac{\partial f}{\partial v}(t, s u, s v) d s$ and $c(t):=f(t, 0,0)$, for all $t, u, v \in \mathbb{R}$.

Sufficient conditions for the existence of solutions to the linear problem

$$
\begin{equation*}
\ddot{x}=a(t) \dot{x}+b(t) x+c(t) \tag{1.6}
\end{equation*}
$$

with boundary condition (1.2), were given in [11]. By using this result, in the real Banach space

$$
X:=\left\{x \in C^{2}(\mathbb{R}):(\exists) x(\pm \infty),(\exists) \dot{x}(\pm \infty)\right\}
$$

endowed with the uniform convergence topology on \mathbb{R} one defines an operator T : $X \rightarrow 2^{X}$ which maps $u \in X$ into the set of the solutions to the problem (1.7)-(1.2), where

$$
\begin{equation*}
\ddot{x}=a(t, u(t), \dot{u}(t)) \dot{x}+b(t, u(t), \dot{u}(t)) x+c(t) . \tag{1.7}
\end{equation*}
$$

Next one considers the restriction of T to a bounded, convex and closed set M, conveniently chosen so that the Bohnenblust-Karlin Theorem can be applied. The compactness of $T(M)$ is established by using a characterization developed by the the first author in $[4,6]$.

The use of a multivalued operator T is motivated by the fact that one cannot determine a solution to the problem (1.7)-(1.2) through an "initial" condition independent of u.

2. Main result

Let $a, b: \mathbb{R}^{3} \rightarrow \mathbb{R}, c: \mathbb{R} \rightarrow \mathbb{R}$ be continuous functions, and let

$$
\begin{array}{ll}
\alpha_{1}(t):=\inf _{u, v \in \mathbb{R}}\{a(t, u, v)\}, & \alpha_{2}(t):=\sup _{u, v \in \mathbb{R}}\{a(t, u, v)\} \\
\beta(t):=\sup _{u, v \in \mathbb{R}}\{b(t, u, v)\}, & A_{i}(t):=\exp \left(\int_{0}^{t} \alpha_{i}(s) d s\right)
\end{array}
$$

for $i \in\{1,2\}$ and $t \in \mathbb{R}$. We shall assume that $\alpha_{1}, \alpha_{2}, \beta$ are defined on \mathbb{R}.
Consider the following hypotheses, where the integrals are considered in the Riemann sense:
(A1) The mappings α_{1} and α_{2} are bounded on \mathbb{R}, and $\lim _{t \rightarrow \pm \infty} \alpha_{i}(t)=0$, for $i \in\{1,2\}$
(A2) $\lim _{t \rightarrow \pm \infty} A_{i}(t)=0$ for $i \in\{1,2\}$
(B1) $0 \leq b(t, u, v)$ for every $t, u, v \in \mathbb{R}$ and $\lim _{t \rightarrow \pm \infty} \beta(t)=0$
(B2) $\int_{-\infty}^{+\infty}\left(A_{i}(t) \cdot \int_{0}^{t} \frac{\beta(s)}{A_{i}(s)} d s\right) d t \in \mathbb{R}$ for $i \in\{1,2\}$
(B3) $\int_{-\infty}^{+\infty} \frac{\beta(t)}{A_{i}(t)} d t<+\infty$, for $i \in\{1,2\}$
(C1) $\int_{-\infty}^{+\infty}|c(t)| d t<+\infty$
(C2) $\int_{-\infty}^{+\infty}\left(\int_{-t}^{t} \frac{|c(s)|}{A_{i}(s)} d s\right) d t \in \mathbb{R}$ for $i \in\{1,2\}$.
Our main result is as follows:
Theorem 2.1. If the hypotheses (A1)-(A2), (B1)-(B3), (C1)-(C2) are satisfied, then (1.5)-(1.2) has a solution.

Since

$$
\lim _{t \rightarrow \pm \infty} \frac{A_{i}(t)}{A_{i}(t) \cdot \int_{0}^{t} \frac{\beta(s)}{A_{i}(s)} d s}=\lim _{t \rightarrow \pm \infty} \frac{1}{\int_{0}^{t} \frac{\beta(s)}{A_{i}(s)} d s}
$$

is a real number by hypothesis (B3), it follows by hypothesis (B2), via a well known convergence criterion for Riemann integrals, that for each $i \in\{1,2\}$,

$$
\begin{equation*}
\int_{-\infty}^{+\infty} A_{i}(t) d t<+\infty \tag{2.1}
\end{equation*}
$$

Similarly, by hypothesis (A2),

$$
\lim _{t \rightarrow \pm \infty} \frac{\beta(t)}{\frac{\beta(t)}{A_{i}(t)}}=0, \quad \lim _{t \rightarrow \pm \infty} \frac{|c(t)|}{\frac{|c(t)|}{A_{i}(t)}}=0
$$

it follows, by hypothesis (B3), that

$$
\begin{equation*}
\int_{-\infty}^{+\infty} \beta(t) d t<+\infty \tag{2.2}
\end{equation*}
$$

and, by hypothesis (C1),

$$
\begin{equation*}
\int_{-\infty}^{+\infty} \frac{|c(t)|}{A_{i}(t)} d t<+\infty \tag{2.3}
\end{equation*}
$$

for each $i \in\{1,2\}$.
Remark 2.2. (i) One can replace the hypothesis (B2) by
(B2') $\int_{-\infty}^{+\infty} A_{i}(t) d t<+\infty$.
(ii) Assumption (B2') does not imply (C2).
(i) Indeed, since (B3) implies the boundedness of the mapping $\int_{0}^{(\cdot)} \frac{\beta(s)}{A_{i}(s)} d s$ and therefore, (B2') implies (B2).
(ii) It is sufficient to choose $c(t)=A_{i}(t)$, for all $t \in \mathbb{R}$, where $i=1$ or $i=2$.

For proving our main result we use the following theorem.
Theorem 2.3 (Bohnenblust-Karlin [22, p. 452]). Let X be a Banach space and $M \subset X$ be a convex closed subset of it. Suppose that $T: X \rightarrow 2^{X}$ is a multivalued operator on X satisfying the following hypotheses:
(a) $T(M) \subset 2^{M}$ and T is upper semicontinuous
(b) the set $T(M)$ is relatively compact
(c) for every $x \in M, T(x)$ is a non-empty convex closed set.

Then T admits fixed points.
Recall that $T: M \rightarrow 2^{M}$ is upper semicontinuous if for every closed subset A of M, the set

$$
T^{-1}(A):=\{x \in M: T(x) \cap A \neq \emptyset\}
$$

is also a closed subset of M. Another useful result is the following Lemma.
Lemma 2.4 (Barbălat). If $f:[0,+\infty) \rightarrow \mathbb{R}$ satisfies: (a) f is uniformly continuous and (b) the integral $\int_{0}^{+\infty} f(t) d t$ exists and is finite, then $\lim _{t \rightarrow+\infty} f(t)=0$.

The main idea of this paper is to build a multivalued operator T defined on an adequate space which satisfies the hypotheses of the Bohnenblust-Karlin Theorem. We define

$$
X:=\left\{x \in C^{2}(\mathbb{R}):(\exists) x(\pm \infty) \text { and } \dot{x}(\pm \infty)\right\}
$$

which, endowed with the usual norm,

$$
\|x\|:=\sup _{t \in \mathbb{R}} \max \{|x(t)|,|\dot{x}(t)|\}
$$

becomes a real Banach space. The relative compactness of the set $T(M)$ be will be proved by using the following Proposition.

Proposition 2.5 (Avramescu [4, 6]). A set $\mathcal{A} \subset X$ is relatively compact if and only if the following conditions are fulfilled:
(a) There exist $h_{1}, h_{2} \geq 0$ such that for every $x \in \mathcal{A}$ and $t \in \mathbb{R}$, we have $|x(t)| \leq h_{1}$ and $|\dot{x}(t)| \leq h_{2}$
(b) For every $K=[a, b] \subset \mathbb{R}$ and $\varepsilon>0$ there exists $\delta=\delta(K, \varepsilon)>0$ such that for every $x \in \mathcal{A}$ and $t_{1}, t_{2} \in K$ with $\left|t_{1}-t_{2}\right|<\delta$, we have $\left|x\left(t_{1}\right)-x\left(t_{2}\right)\right|<\varepsilon$ and $\left|\dot{x}\left(t_{1}\right)-\dot{x}\left(t_{2}\right)\right|<\varepsilon$
(c) For every $\varepsilon>0$ there exists $T=T(\varepsilon)>0$ such that for every t_{1}, t_{2} with $\left|t_{1}\right|,\left|t_{2}\right|>T$ and $t_{1} \cdot t_{2}>0$, and for every $x \in \mathcal{A}$, we have $\left|x\left(t_{1}\right)-x\left(t_{2}\right)\right|<\varepsilon$ and $\left|\dot{x}\left(t_{1}\right)-\dot{x}\left(t_{2}\right)\right|<\varepsilon$.

3. Construction of the multivalued operator T

Let $u \in C^{2}(\mathbb{R})$ be arbitrary. Consider the problem

$$
\begin{align*}
\ddot{x} & =a_{u}(t) \dot{x}+b_{u}(t) x+c(t) \\
x(+\infty) & =x(-\infty), \quad \dot{x}(+\infty)=\dot{x}(-\infty), \tag{3.1}
\end{align*}
$$

where $a_{u}(t):=a(t, u(t), \dot{u}(t))$ and $b_{u}(t)=b(t, u(t), \dot{u}(t))$. Consider the homogeneous problem

$$
\begin{gather*}
\ddot{x}=a_{u}(t) \dot{x}+b_{u}(t) x \\
x(+\infty)=x(-\infty), \quad \dot{x}(+\infty)=\dot{x}(-\infty) . \tag{3.2}
\end{gather*}
$$

Since

$$
x(t)=\exp \left(\int_{0}^{t} y(s) d s\right), \quad t \in \mathbb{R}
$$

is a solution to $\ddot{x}=a_{u}(t) \dot{x}+b_{u}(t) x$ if and only if y is a solution to

$$
\begin{equation*}
\dot{y}=a_{u} y+b_{u}-y^{2} \tag{3.3}
\end{equation*}
$$

we have $a_{u}(t) y-y^{2} \leq \dot{y} \leq a_{u}(t) y+b_{u}(t)$, for every $t \in \mathbb{R}$.
Let v, w satisfy

$$
\begin{gather*}
\dot{v}=a_{u}(t) v-v^{2} \tag{3.4}\\
v(0)=\xi
\end{gather*}
$$

and

$$
\begin{gather*}
\dot{w}=a_{u}(t) w+b_{u}(t) \\
w(0)=\xi . \tag{3.5}
\end{gather*}
$$

Hence

$$
\begin{gathered}
\dot{y}=a_{u} y+b_{u}-y^{2} \\
y(0)=\xi
\end{gathered}
$$

which implies

$$
\begin{array}{cl}
v(t) \leq y(t) \leq w(t), & \text { if } t \geq 0 \\
w(t) \leq y(t) \leq v(t), & \text { if } t \leq 0
\end{array}
$$

Let $\alpha_{u}(t):=\exp \left(\int_{0}^{t} a_{u}(s) d s\right)$, for every $t \in \mathbb{R}$. Thus

$$
\begin{gather*}
v(t)=\frac{\xi \alpha_{u}(t)}{1+\xi \int_{0}^{t} \alpha_{u}(s) d s} \tag{3.6}\\
w(t)=\alpha_{u}(t)\left[\xi+\int_{0}^{t} \frac{b_{u}(s)}{\alpha_{u}(s)} d s\right] .
\end{gather*}
$$

Therefore,

$$
\begin{gathered}
\frac{\xi \alpha_{u}(t)}{1+\xi \int_{0}^{t} \alpha_{u}(s) d s} \leq y(t) \leq \alpha_{u}(t)\left[\xi+\int_{0}^{t} \frac{b_{u}(s)}{\alpha_{u}(s)} d s\right], \quad \text { if } t \geq 0 \\
\alpha_{u}(t)\left[\xi+\int_{0}^{t} \frac{b_{u}(s)}{\alpha_{u}(s)} d s\right] \leq y(t) \leq \frac{\xi \alpha_{u}(t)}{1+\xi \int_{0}^{t} \alpha_{u}(s) d s}, \quad \text { if } t \leq 0
\end{gathered}
$$

We write

$$
\begin{equation*}
g_{u}(t) \leq y(t) \leq G_{u}(t), \quad \text { for } t \in \mathbb{R} \tag{3.7}
\end{equation*}
$$

where

$$
g_{u}(t):= \begin{cases}\frac{\xi \alpha_{u}(t)}{1+\xi \int_{0}^{t} \alpha_{u}(s) d s}, & \text { if } t \geq 0 \tag{3.8}\\ \alpha_{u}(t)\left[\xi+\int_{0}^{t} \frac{b_{u}(s)}{\alpha_{u}(s)} d s\right], & \text { if } t \leq 0\end{cases}
$$

and

$$
G_{u}(t):= \begin{cases}\alpha_{u}(t)\left[\xi+\int_{0}^{t} \frac{b_{u}(s)}{\alpha_{u}(s)} d s\right], & \text { if } t \geq 0 \tag{3.9}\\ \frac{\xi \alpha_{u}(t)}{1+\xi \int_{0}^{t} \alpha_{u}(s) d s}, & \text { if } t \leq 0\end{cases}
$$

Let y_{u} denote the solution to the equation (3.3) with the initial condition

$$
y_{u}(0)=\xi .
$$

Hence, $g_{u}(t) \leq y_{u}(t) \leq G_{u}(t)$, for every $t \in \mathbb{R}$. From (3.6) we see that y_{u} is defined for all $t \in \mathbb{R}$ if and only if

$$
\xi \in\left(-\frac{1}{\int_{0}^{+\infty} \alpha_{u}(s) d s}, \frac{1}{\int_{-\infty}^{0} \alpha_{u}(s) d s}\right):=\left(\lambda_{u}, \mu_{u}\right) .
$$

We let $\lambda:=\sup _{u \in C^{2}(\mathbb{R})}\left\{\lambda_{u}\right\}$ and $\mu:=\inf _{u \in C^{2}(\mathbb{R})}\left\{\mu_{u}\right\}$. Since

$$
\begin{array}{ll}
A_{1}(t) \leq \alpha_{u}(t) \leq A_{2}(t), & \text { for every } t \geq 0 \text { and } u \in C^{2}(\mathbb{R}) \\
A_{2}(t) \leq \alpha_{u}(t) \leq A_{1}(t), & \text { for every } t \leq 0 \text { and } u \in C^{2}(\mathbb{R}) \tag{3.10}
\end{array}
$$

it follows that

$$
-\frac{1}{\int_{0}^{+\infty} A_{1}(t) d t} \leq-\frac{1}{\int_{0}^{+\infty} \alpha_{u}(s) d s} \leq-\frac{1}{\int_{0}^{+\infty} A_{2}(t) d t}:=\lambda
$$

and

$$
\mu:=\frac{1}{\int_{-\infty}^{0} A_{1}(t) d t} \leq \frac{1}{\int_{-\infty}^{0} \alpha_{u}(s) d s} \leq \frac{1}{\int_{-\infty}^{0} A_{2}(t) d t}
$$

Therefore,

$$
\begin{equation*}
-\frac{1}{\int_{0}^{+\infty} A_{2}(t) d t}:=\lambda<0<\mu:=\frac{1}{\int_{-\infty}^{0} A_{1}(t) d t} \tag{3.11}
\end{equation*}
$$

Let

$$
g(t):=\inf _{u \in C^{2}(\mathbb{R})} g_{u}(t) \quad \text { and } \quad G(t):=\sup _{u \in C^{2}(\mathbb{R})} G_{u}(t), \text { for } t \in \mathbb{R}
$$

For $t \leq 0$, we have

$$
g_{u}(t) \geq \alpha_{u}(t)\left[\lambda+\int_{0}^{t} \frac{b_{u}(s)}{\alpha_{u}(s)} d s\right] \geq A_{1}(t)\left[\lambda+\int_{0}^{t} \frac{\beta(s)}{A_{2}(s)} d s\right]
$$

and for $t \geq 0$,

$$
g_{u}(t) \geq \frac{\lambda \alpha_{u}(t)}{1+\lambda \int_{0}^{t} \alpha_{u}(s) d s} \geq \frac{\lambda A_{2}(t)}{1+\lambda \int_{0}^{t} A_{2}(s) d s}
$$

Thus

$$
g(t):= \begin{cases}\frac{\lambda A_{2}(t)}{1+\lambda \int_{0}^{t} A_{2}(s) d s}, & \text { if } t \geq 0 \tag{3.12}\\ A_{1}(t)\left[\lambda+\int_{0}^{t} \frac{\beta(s)}{A_{2}(s)} d s\right], & \text { if } t \leq 0\end{cases}
$$

Similarly

$$
G(t):= \begin{cases}A_{2}(t)\left[\mu+\int_{0}^{t} \frac{\beta(s)}{A_{1}(s)} d s\right], & \text { if } t \geq 0 \tag{3.13}\\ \frac{\mu A_{1}(t)}{1+\mu \int_{0}^{t} A_{1}(s) d s}, & \text { if } t \leq 0\end{cases}
$$

By hypothesis (A2), one has $g(\pm \infty)=G(\pm \infty)=0$. Thus for every $\xi \in(\lambda, \mu)$ and for every y solution to the equation (3.3) with the initial condition $y(0)=\xi$, we have

$$
\begin{equation*}
g(t) \leq y(t) \leq G(t), \quad \text { for every } t \in \mathbb{R} \tag{3.14}
\end{equation*}
$$

Let $\xi_{1}, \xi_{2} \in(\lambda, \mu), \xi_{1} \neq \xi_{2}$ be arbitrary, and y_{i}^{u} be the solution to the problem

$$
\begin{gathered}
\dot{y}=a_{u}(t) y+b_{u}(t)-y^{2} \\
y(0)=\xi_{i}
\end{gathered}
$$

where $i \in\{1,2\}$ and $u \in C^{2}(\mathbb{R})$. Let $x_{i}^{u}(t):=\exp \left(\int_{0}^{t} y_{i}^{u}(s) d s\right)$, for $t \in \mathbb{R}, i \in\{1,2\}$ and $u \in C^{2}(\mathbb{R})$. Then $x_{i}^{u}(0)=1, \dot{x}_{i}^{u}(0)=\xi_{i}, \dot{x}_{i}^{u}(t)=y_{i}^{u}(t) \cdot x_{i}^{u}(t)$, for $t \in \mathbb{R}$, $i \in\{1,2\}$ and $u \in C^{2}(\mathbb{R})$.

Let us prove that, for every $i \in\{1,2\}$ and $u \in C^{2}(\mathbb{R}), x_{i}^{u}(\pm \infty), \dot{x}_{i}^{u}(\pm \infty)$, exist and are finite. Indeed, by relation (2.1),

$$
\begin{aligned}
x_{i}^{u}(+\infty) & =\exp \left(\int_{0}^{+\infty} y_{i}^{u}(t) d t\right) \\
& \leq \exp \left(\int_{0}^{+\infty} A_{2}(t)\left[\mu+\int_{0}^{t} \frac{\beta(s)}{A_{1}(s)} d s\right] d t\right) \\
& \leq \exp \left\{\left(\int_{0}^{+\infty} A_{2}(t) d t\right) \cdot\left[\mu+\int_{0}^{+\infty} \frac{\beta(s)}{A_{1}(s)} d s\right]\right\}<+\infty
\end{aligned}
$$

and

$$
\begin{aligned}
x_{i}^{u}(-\infty) & =\exp \left(\int_{0}^{-\infty} y_{i}^{u}(t) d t\right) \\
& \leq \exp \left\{\left(\int_{0}^{-\infty} A_{1}(t) d t\right) \cdot\left[\lambda+\int_{0}^{-\infty} \frac{\beta(s)}{A_{1}(s)} d s\right]\right\}<+\infty
\end{aligned}
$$

for every $i \in\{1,2\}$ and $u \in C^{2}(\mathbb{R})$. For $i \in\{1,2\}$ and $u \in C^{2}(\mathbb{R})$,

$$
\left|x_{i}^{u}(t)\right|=\exp \left(\int_{0}^{t} y_{i}^{u}(s) d s\right)
$$

Hence, for $t \geq 0$,

$$
\exp \left(\int_{0}^{t} y_{i}^{u}(s) d s\right) \leq \exp \left\{\left(\int_{0}^{+\infty} A_{2}(t) d t\right) \cdot\left[\mu+\int_{0}^{+\infty} \frac{\beta(s)}{A_{1}(s)} d s\right]\right\}=: \delta_{1}
$$

and for $t \leq 0$,

$$
\exp \left(\int_{0}^{t} y_{i}^{u}(s) d s\right) \leq \exp \left\{\left(\int_{0}^{-\infty} A_{1}(t) d t\right) \cdot\left[\lambda+\int_{0}^{-\infty} \frac{\beta(s)}{A_{1}(s)} d s\right]\right\}=: \delta_{2}
$$

Therefore, taking $M_{1}:=\max \left\{\delta_{1}, \delta_{2}\right\}>0$, we have $\left|x_{i}^{u}(t)\right| \leq M_{1}$, for every $t \in \mathbb{R}$, $i \in\{1,2\}$, and $u \in C^{2}(\mathbb{R})$.

Since g and G are continuous with $g(\pm \infty)=G(\pm \infty)=0$ it follows that they are bounded on \mathbb{R}. But

$$
g(t) \leq y_{i}^{u}(t) \leq G(t), \quad \text { for every } t \in \mathbb{R}, i \in\{1,2\} \text { and } u \in C^{2}(\mathbb{R})
$$

Hence, there exists a constant $\delta_{3}>0$ such that

$$
\left|y_{i}^{u}(t)\right| \leq \delta_{3}, \quad \text { for } t \in \mathbb{R}, i \in\{1,2\} \text { and } u \in C^{2}(\mathbb{R})
$$

and so

$$
\left|\dot{x}_{i}^{u}(t)\right| \leq M_{1} \cdot \delta_{3}=: M_{2}, \quad \text { for } t \in \mathbb{R}, i \in\{1,2\} \text { and } u \in C^{2}(\mathbb{R})
$$

For $u \in C^{2}(\mathbb{R})$ the general solution to the nonhomogeneous equation

$$
\begin{equation*}
\ddot{x}=a_{u}(t) \dot{x}+b_{u}(t) x+c(t) \tag{3.15}
\end{equation*}
$$

is

$$
\begin{align*}
x(t)= & \gamma_{1}^{u} x_{1}^{u}(t)+\gamma_{2}^{u} x_{2}^{u}(t)+x_{2}^{u}(t) \cdot \int_{0}^{t} x_{1}^{u}(s) \cdot \frac{c(s)}{\left(\xi_{2}-\xi_{1}\right) \alpha_{u}(s)} d s \\
& -x_{1}^{u}(t) \cdot \int_{0}^{t} x_{2}^{u}(s) \cdot \frac{c(s)}{\left(\xi_{2}-\xi_{1}\right) \alpha_{u}(s)} d s, \tag{3.16}
\end{align*}
$$

with $\gamma_{1}^{u}, \gamma_{2}^{u} \in \mathbb{R}$. From the condition $x(+\infty)=x(-\infty)$, we have

$$
\begin{align*}
\gamma_{1}^{u} & \cdot\left[x_{1}^{u}(+\infty)-x_{1}^{u}(-\infty)\right]+\gamma_{2}^{u} \cdot\left[x_{2}^{u}(+\infty)-x_{2}^{u}(-\infty)\right] \\
= & x_{1}^{u}(+\infty) \cdot \int_{0}^{+\infty} x_{2}^{u}(s) \cdot \frac{c(s)}{\left(\xi_{2}-\xi_{1}\right) \alpha_{u}(s)} d s \\
& -x_{1}^{u}(-\infty) \cdot \int_{0}^{-\infty} x_{2}^{u}(s) \cdot \frac{c(s)}{\left(\xi_{2}-\xi_{1}\right) \alpha_{u}(s)} d s \tag{3.17}\\
& +x_{2}^{u}(-\infty) \cdot \int_{0}^{-\infty} x_{1}^{u}(s) \cdot \frac{c(s)}{\left(\xi_{2}-\xi_{1}\right) \alpha_{u}(s)} d s \\
& -x_{2}^{u}(+\infty) \cdot \int_{0}^{+\infty} x_{1}^{u}(s) \cdot \frac{c(s)}{\left(\xi_{2}-\xi_{1}\right) \alpha_{u}(s)} d s
\end{align*}
$$

Now we prove that the relation (3.17) is satisfied by infinitely many pairs $\left(\gamma_{1}^{u}, \gamma_{2}^{u}\right)$, $u \in C^{2}(\mathbb{R})$. Indeed, if we denote by

$$
d_{1}:=x_{1}^{u}(+\infty)-x_{1}^{u}(-\infty), \quad d_{2}:=x_{2}^{u}(+\infty)-x_{2}^{u}(-\infty),
$$

and d_{3} the right hand side of (3.17), then we have to consider only three cases.

Case 1. If $d_{1} \neq 0$ and $d_{2}=0$, it follows that $\gamma_{1}^{u}=\frac{d_{3}}{d_{1}}$ and $\gamma_{2}^{u} \in \mathbb{R}$; similarly, if $d_{1}=0$ and $d_{2} \neq 0$, it follows that $\gamma_{1}^{u} \in \mathbb{R}$ and $\gamma_{2}^{u}=\frac{d_{3}}{d_{2}}$.
Case 2. If $d_{1} \neq 0$ and $d_{2} \neq 0$, it follows that

$$
\gamma_{1}^{u}=\frac{d_{3}-d_{2} \gamma_{2}^{u}}{d_{1}} \quad \text { and } \quad \gamma_{2}^{u} \in \mathbb{R}
$$

Case 3. If $d_{1}=0$ and $d_{2}=0$, we show that $d_{3}=0$ (and so the solutions are γ_{1}^{u}, $\left.\gamma_{2}^{u} \in \mathbb{R}\right)$.

Indeed, in this case, $x_{1}^{u}(+\infty)=x_{1}^{u}(-\infty)$ and $x_{2}^{u}(+\infty)=x_{2}^{u}(-\infty)$, and we have to prove that

$$
\begin{equation*}
x_{1}^{u}(+\infty) \cdot \int_{-\infty}^{+\infty} x_{2}^{u}(s) \cdot \frac{c(s)}{\alpha_{u}(s)} d s=x_{2}^{u}(+\infty) \cdot \int_{-\infty}^{+\infty} x_{1}^{u}(s) \cdot \frac{c(s)}{\alpha_{u}(s)} d s \tag{3.18}
\end{equation*}
$$

To prove (3.18) we shall apply Lemma 2.4 to the mapping $f:[0,+\infty) \rightarrow \mathbb{R}$, defined by

$$
f(t):=x_{1}^{u}(t) \cdot \int_{-t}^{+t} x_{2}^{u}(s) \cdot \frac{c(s)}{\alpha_{u}(s)} d s-x_{2}^{u}(t) \cdot \int_{-t}^{+t} x_{1}^{u}(s) \cdot \frac{c(s)}{\alpha_{u}(s)} d s
$$

Thus

$$
\begin{aligned}
\frac{d f}{d t}(t)= & \dot{x}_{1}^{u}(t) \cdot \int_{-t}^{+t} x_{2}^{u}(s) \cdot \frac{c(s)}{\alpha_{u}(s)} d s-\dot{x}_{2}^{u}(t) \cdot \int_{-t}^{+t} x_{1}^{u}(s) \cdot \frac{c(s)}{\alpha_{u}(s)} d s \\
& +\frac{c(-t)}{\alpha_{u}(-t)}\left[x_{1}^{u}(t) \cdot x_{2}^{u}(-t)-x_{2}^{u}(t) \cdot x_{1}^{u}(-t)\right]
\end{aligned}
$$

Since $\dot{x}_{i}^{u}(\pm \infty)=x_{i}^{u}(\pm \infty) \cdot y_{i}^{u}(\pm \infty)=0, i \in\{1,2\}$, the mapping $\frac{c}{\alpha_{u}}$ is bounded on \mathbb{R} (see hypothesis (C2)), and

$$
\lim _{t \rightarrow+\infty}\left[x_{1}^{u}(t) \cdot x_{2}^{u}(-t)-x_{2}^{u}(t) \cdot x_{1}^{u}(-t)\right]=0
$$

it follows that $\lim _{t \rightarrow+\infty} \frac{d f}{d t}(t)=0$. Therefore f is uniformly continuous on $[0,+\infty)$, being Lipschitz on $[0,+\infty)$. Since $x_{i}^{u}, i \in\{1,2\}$ are bounded, from (C2) it follows that $\int_{0}^{+\infty} f(t) d t$ exists and is finite. Hence, by Lemma 2.4 we obtain

$$
\lim _{t \rightarrow+\infty} f(t)=0
$$

Now we define the multivalued operator $T: X \rightarrow 2^{X}$, by

$$
\begin{aligned}
T u:= & \left\{\gamma_{1}^{u} x_{1}^{u}(\cdot)+\gamma_{2}^{u} x_{2}^{u}(\cdot)+x_{2}^{u}(\cdot) \cdot \int_{0}^{(\cdot)} x_{1}^{u}(s) \cdot \frac{c(s)}{\left(\xi_{2}-\xi_{1}\right) \alpha_{u}(s)} d s\right. \\
& -x_{1}^{u}(\cdot) \cdot \int_{0}^{(\cdot)} x_{2}^{u}(s) \cdot \frac{c(s)}{\left(\xi_{2}-\xi_{1}\right) \alpha_{u}(s)} d s, \\
& \text { with } \left.\left|\gamma_{1}^{u}\right|+\left|\gamma_{2}^{u}\right| \leq 1, \gamma_{1}^{u}, \gamma_{2}^{u} \text { satisfying (3.17) }\right\},
\end{aligned}
$$

for every $u \in X$. By (3.15)-(3.16) we have

$$
|x(t)| \leq 2 M_{1}+\frac{M_{1}}{\left|\xi_{2}-\xi_{1}\right|}\left(\left|\int_{0}^{t} x_{1}^{u}(s) \frac{c(s)}{\alpha_{u}(s)} d s\right|+\left|\int_{0}^{t} x_{2}^{u}(s) \frac{c(s)}{\alpha_{u}(s)} d s\right|\right)
$$

Hence $|x(t)| \leq k_{1}$, for every $t \in \mathbb{R}$, where

$$
k_{1}:=\max \left\{2 M_{1}+\frac{2 M_{1}^{2}}{\left|\xi_{2}-\xi_{1}\right|} \int_{0}^{+\infty} \frac{|c(s)|}{A_{1}(s)} d s, 2 M_{1}+\frac{2 M_{1}^{2}}{\left|\xi_{2}-\xi_{1}\right|} \int_{-\infty}^{0} \frac{|c(s)|}{A_{2}(s)} d s\right\}
$$

Similarly

$$
|\dot{x}(t)|=\left|\gamma_{1}^{u} \dot{x}_{1}^{u}(t)+\gamma_{2}^{u} \dot{x}_{2}^{u}(t)+\dot{x}_{2}^{u}(t) \int_{0}^{t} x_{1}^{u}(s) \frac{c(s)}{\alpha_{u}(s)} d s-\dot{x}_{1}^{u}(t) \int_{0}^{t} x_{2}^{u}(s) \frac{c(s)}{\alpha_{u}(s)} d s\right|,
$$

and there exists another constant $k_{2} \geq 0$,

$$
k_{2}:=\max \left\{2 M_{2}+\frac{2 M_{1} M_{2}}{\left|\xi_{2}-\xi_{1}\right|} \int_{0}^{+\infty} \frac{|c(s)|}{A_{1}(s)} d s, 2 M_{2}+\frac{2 M_{1} M_{2}}{\left|\xi_{2}-\xi_{1}\right|} \int_{-\infty}^{0} \frac{|c(s)|}{A_{2}(s)} d s\right\}
$$

such that $|\dot{x}(t)| \leq k_{2}$, for every $t \in \mathbb{R}$. Remark that, by relation (2.3), k_{1}, k_{2} are finite. We let $k:=\max \left\{k_{1}, k_{2}\right\}$, and

$$
M:=\left\{x \in C^{2}(\mathbb{R}),|x(t)| \leq k,|\dot{x}(t)| \leq k, \text { for every } t \in \mathbb{R}\right\} .
$$

4. Proof of main result

To prove Theorem 2.1 it is sufficient to prove that the operator T has a fixed point. We do this in three steps.
Step 1: For every $u \in M, T(u)$ is a non-empty convex closed set. Let $u \in M$ be arbitrary.

From the definition of T we see that $T(u)$ is non-empty and convex.
Let $\left(x^{n}\right)_{n \in \mathbb{N}} \subset T(u)$ be such that $x^{n} \rightarrow x$ and $\dot{x}^{n} \rightarrow \dot{x}$ uniformly on \mathbb{R} as $n \rightarrow \infty$. We have

$$
x^{n}(t):=\gamma_{1, n}^{u} x_{1}^{u}(t)+\gamma_{2, n}^{u} x_{2}^{u}(t)+H^{u}(t),
$$

for every $n \in \mathbb{N}$, with $\left|\gamma_{1, n}^{u}\right|+\left|\gamma_{2, n}^{u}\right| \leq 1, \gamma_{1, n}^{u}, \gamma_{2, n}^{u}$ satisfying (3.17), and
$H^{u}(t):=x_{2}^{u}(t) \cdot \int_{0}^{t} x_{1}^{u}(s) \cdot \frac{c(s)}{\left(\xi_{2}-\xi_{1}\right) \alpha_{u}(s)} d s-x_{1}^{u}(t) \cdot \int_{0}^{t} x_{2}^{u}(s) \cdot \frac{c(s)}{\left(\xi_{2}-\xi_{1}\right) \alpha_{u}(s)} d s$.
Then there exist subsequences such that $\gamma_{1, k_{n}}^{u} \rightarrow \gamma_{1}^{u}$ and $\gamma_{2, k_{n}}^{u} \rightarrow \gamma_{2}^{u}$, as $n \rightarrow \infty$.
Since $\left(x^{k_{n}}\right)_{n \in \mathbb{N}}$ converges uniformly to $y:=\gamma_{1}^{u} x_{1}^{u}+\gamma_{2}^{u} x_{2}^{u}+H^{u}$, it follows that $x=y$. Also

$$
\dot{x}^{k_{n}} \rightarrow \dot{y}=\dot{x}, \quad \text { as } n \rightarrow \infty
$$

So $x \in T(u)$, that is $T(u)$ is a closed set.
Step 2: $T(M)$ is relatively compact. The relative compactness of $T(M)$ will be proved by using Proposition 2.5.

From the definitions of T and M we see that $|x(t)| \leq k,|\dot{x}(t)| \leq k$, for all $t \in \mathbb{R}$. Thus the first condition of Proposition 2.5 is fulfilled with $h_{1}=h_{2}=k$.

Conditions (b) and (c) of Proposition 2.5 are implied by the following assumption:
(d) There exist $f_{1}, f_{2}: \mathbb{R} \rightarrow \mathbb{R}_{+}$integrable on \mathbb{R} such that for every $x \in \mathcal{A}$

$$
|\dot{x}(t)| \leq f_{1}(t) \quad \text { and } \quad|\ddot{x}(t)| \leq f_{2}(t), \quad \text { for } t \in \mathbb{R} .
$$

This last assertion follows from the fact that, for every $t_{1}, t_{2} \in \mathbb{R}$,

$$
x\left(t_{1}\right)-x\left(t_{2}\right)=\int_{t_{1}}^{t_{2}} \dot{x}(t) d t \quad \text { and } \quad \dot{x}\left(t_{1}\right)-\dot{x}\left(t_{2}\right)=\int_{t_{1}}^{t_{2}} \ddot{x}(t) d t
$$

For $i \in\{1,2\}$ let

$$
g_{1 i}(t):= \begin{cases}\max \left\{A_{2}(t)\left[\mu+\int_{0}^{t} \frac{\beta(s)}{A_{1}(s)} d s\right], \frac{\left|\xi_{i}\right| A_{2}(t)}{\left|1+\xi_{i} \int_{0}^{t} A_{2}(s) d s\right|}\right\}, & t \geq 0 \\ \max \left\{\frac{\left|\xi_{i}\right| A_{1}(t)}{\left|1+\xi_{i} \int_{0}^{t} A_{1}(s) d s\right|}, A_{1}(t)\left[-\lambda+\int_{t}^{0} \frac{\beta(s)}{A_{2}(s)} d s\right]\right\}, & t \leq 0 .\end{cases}
$$

Hence $\left|\dot{x}_{i}^{u}\right|$ is bounded by the integrable function $M_{1} \cdot g_{1 i}, i \in\{1,2\}$. Furthermore, since

$$
\left|\int_{0}^{t} x_{2}^{u}(s) \cdot \frac{c(s)}{\left(\xi_{2}-\xi_{1}\right) \cdot \alpha_{u}(s)} d s\right|
$$

is bounded (on the positive semiaxis by $\frac{M_{1}}{\left|\xi_{2}-\xi_{1}\right|} \cdot \int_{0}^{+\infty} \frac{|c(s)|}{A_{1}(s)} d s$ and on the negative semiaxis by $\left.\frac{M_{1}}{\left|\xi_{2}-\xi_{1}\right|} \cdot \int_{-\infty}^{0} \frac{|c(s)|}{A_{1}(s)} d s\right)$, and $\left|\dot{x}_{1}^{u}\right|$ is bounded by an integrable function, we see that

$$
\left|\dot{x}_{1}^{u} \cdot \int_{0}^{(\cdot)} x_{2}^{u}(s) \cdot \frac{c(s)}{\left(\xi_{2}-\xi_{1}\right) \cdot \alpha_{u}(s)} d s\right|
$$

is bounded by an integrable function. Similarly,

$$
\left|\dot{x}_{2}^{u} \cdot \int_{0}^{(\cdot)} x_{1}^{u}(s) \cdot \frac{c(s)}{\left(\xi_{2}-\xi_{1}\right) \cdot \alpha_{u}(s)} d s\right|
$$

is bounded by an integrable function. Therefore, the existence of f_{1} in assertion (d) follows. Now, since

$$
\ddot{x}(t)=a_{u}(t) \dot{x}(t)+b_{u}(t) x+c(t)
$$

a_{u} is bounded (hypothesis (A1)), $|\dot{x}|$ is bounded by an integrable function, $|x|$ is bounded (by k), b_{u} is integrable on \mathbb{R} (by relation (2.2), hypothesis (B1), and $|c|$ is integrable on \mathbb{R} (by hypothesis (C1)), we see that $|\ddot{x}|$ is bounded by an integrable function. This proves the existence of f_{2}, and hence assertion (d) is verified.
Step 3: T is upper semicontinuous. Let A be a closed subset of M. Hence if $\left(u_{n}\right)_{n} \subset A$ such that $u_{n} \rightarrow u$ and $\dot{u}_{n} \rightarrow \dot{u}$ uniformly on \mathbb{R}, as $n \rightarrow \infty$, it follows that $u \in A$.

Let $z_{n} \in T^{-1}(A)$ be such that $z_{n} \rightarrow z$ and $\dot{z}_{n} \rightarrow \dot{z}$ uniformly on \mathbb{R}, as $n \rightarrow \infty$. We have to prove that $z \in T^{-1}(A)$. Since $z_{n} \in T^{-1}(A)$ there exists $x_{n} \in A$, $x_{n} \in T z_{n}$. Thus

$$
\begin{equation*}
\ddot{x}_{n}=a\left(t, z_{n}, \dot{z}_{n}\right) \dot{x}_{n}+x\left(t, z_{n}, \dot{z}_{n}\right) x_{n}+c(t), \quad n \in \mathbb{N} \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{n}(+\infty)=x_{n}(-\infty), \quad \dot{x}_{n}(+\infty)=\dot{x}_{n}(-\infty), \quad n \in \mathbb{N} \tag{4.2}
\end{equation*}
$$

Since $x_{n} \in T(M)$ and $T(M)$ is relatively compact, the sequence x_{n} contains subsequence converging in C^{2} to some x. One can assume that $x_{n} \rightarrow x, \dot{x}_{n} \rightarrow \dot{x}$ uniformly on \mathbb{R}, as $n \rightarrow \infty$.

Since $a\left(t, z_{n}(t), \dot{z}_{n}(t)\right) \rightarrow a(t, z(t), \dot{z}(t))$ and $b\left(t, z_{n}(t), \dot{z}_{n}(t)\right) \rightarrow b(t, z(t), \dot{z}(t))$, uniformly on compact subsets of \mathbb{R}, it follows that x is solution to the equation

$$
\ddot{x}=a(t, z(t), \dot{z}(t)) \dot{z}+b(t, z(t), \dot{z}(t)) z+c(t)
$$

with

$$
x(0)=\lim _{n \rightarrow \infty} x_{n}(0) \quad \text { and } \quad \dot{x}(0)=\lim _{n \rightarrow \infty} \dot{x}_{n}(0)
$$

Furthermore, by (4.2) we find, by passing to the limit as $n \rightarrow \infty$,

$$
x(+\infty)=x(-\infty) \quad \text { and } \quad \dot{x}(+\infty)=\dot{x}(-\infty)
$$

Since the set A is closed, $x \in A$. Therefore, $z \in T^{-1}(A)$, which completes the proof of Theorem 2.1.

References

[1] S. Adly, D. Goeleven and D. Motreanu, Periodic and homoclinic solutions for a class of unilateral problems, Discrete Cont. Dyn. Systems, 3(1997), pp. 579-590.
[2] S. Adly and D. Goeleven, Homoclinic orbits for a class of hemivariational inequalities, Applicable Analysis, 58(1995), pp. 229-240.
[3] A. Ambrosetti and M. L. Bertotti, Homoclinics for second order conservative systems, in: Partial differential equations and related subjects (Proc. conf. in honor of L. Nirenberg), Longman Scientific Technical, Harbour, England, 1992, pp. 21-37.
[4] C. Avramescu, Sur l'existence des solutions convergentes des systèmes d'équations différentielles ordinaires, Ann. Mat. Purra ed Appl., LXXXI(IV)(1969), pp. 147-168.
[5] C. Avramescu, Sur l'existence des solutions des équations intégrales dans certains espaces fonctionnels, Ann. Univ. Sc. Budapest, XIII(1970), pp. 19-34.
[6] C. Avramescu, Existence problems for homoclinic solutions, Abstract and Applied Analysis, 7(1)(2002), pp. 1-27.
[7] C. Avramescu, Continuation theorems and ω-closed orbits for ordinary differential equations, University of the West Timişoara, Preprint Series in Math., Seminar of Math. Analysis, 131(2001).
[8] C. Avramescu, Evanescent solutions for linear ordinary differential equations, Electronic Journal of Qualitative Theory of Differential Equations, 9 (2002), pp.1-12.
[9] C. Avramescu and C. Vladimirescu, Homoclinic solutions for linear and linearizable ordinary differential equations, Abstract and Applied Analysis, 5(2)(2000), pp. 65-85.
[10] C. Avramescu and C. Vladimirescu, Existence results for generalized bilocal boundaryvalue problems, Ann. Univ. Craiova, XXVI(1999), pp. 5-14.
[11] C. Avramescu and C. Vladimirescu, Homoclinic solutions for second order linear differential equations, Ann. Univ. Craiova, XXVII(2000), pp. 14-23.
[12] C. Avramescu and C. Vladimirescu, Limits of solutions of a perturbed linear differential equation, Electronic Journal of Qualitative Theory of Differential Equations, 3(2002), pp. 1-11.
[13] V. Coti Zelati and P. H. Rabinovici, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc., 4(1992), pp. 693-727.
[14] G. Th. Hallam, Convergence of solutions of perturbed nonlinear differential equations, J. Diff. Eqs., 12(1972), pp. 63-80.
[15] A.G. Kartsatos, Convergence in perturbed nonlinear systems, Tohoku Math. J., 4(1972), pp. 1-7.
[16] A. G. Kartsatos, Advanced Ordinary Differential Equations, Mariner Publishing Co., Inc., 1980.
[17] J. Mawhin, Topological degree methods in nonlinear boundary-value problems, CBMS Regional Conf. Soc. Math., 40, Amer. Math. Soc., Providence, R. I., 1979.
[18] J. Mawhin, Continuation theorems and periodic solutions of ordinary differential equations, in: Topological Methods in Differential Equations and Inclusion (Montreal 1996), Kluwer, 1997.
[19] J. Mawhin, Topological degree and boundary-value problems for nonlinear differential equations, Lectures Notes in Math., 1537, Springer-Verlag, Berlin, 1993.
[20] P. H. Rabinowitz, Homoclinic orbits for a class of Hamiltonian systems, Proc. Royal Edinburg, 114 A(1990), pp. 33-38.
[21] D. Yanheng and M. Girardi, Periodic and homoclinic solutions to a class of Hamiltonian systems with the potentials changing sign, Dyn. Syst. Appl., 2(1993), pp. 131-145.
[22] E. Zeidler, Nonlinear Functional Analysis and its Applications, I, Fixed - Point Theorems, Springer-Verlag, Berlin, 1993.

Cristian Vladimirescu
Department of Mathematics, University of Craiova, Al.I. Cuza Street, No. 13, Craiova RO-200585, Romania

E-mail address: cvladi@central.ucv.ro, vladimirescucris@hotmail.com

[^0]: 2000 Mathematics Subject Classification. 34B15, 34B40, 34C37, 54C60.
 Key words and phrases. Nonlinear boundary-value problem, set-valued mappings, boundary-value problems on infinite intervals.
 © 2004 Texas State University - San Marcos.
 Submitted February 14, 2003. Published February 9, 2004.

