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THE EIGENVALUE PROBLEM FOR A SINGULAR
QUASILINEAR ELLIPTIC EQUATION

BENJIN XUAN

Abstract. We show that many results about the eigenvalues and eigenfunc-

tions of a quasilinear elliptic equation in the non-singular case can be extended
to the singular case. Among these results, we have the first eigenvalue is as-

sociated to a C1,α(Ω) eigenfunction which is positive and unique (up to a

multiplicative constant), that is, the first eigenvalue is simple. Moreover the
first eigenvalue is isolated and is the unique positive eigenvalue associated to a

non-negative eigenfunction. We also prove some variational properties of the

second eigenvalue.

1. Introduction

In this paper, we shall study the eigenvalue problem of the singular quasilinear
elliptic equation

−div(|x|−ap|Du|p−2Du) = λ|x|−(a+1)p+c|u|p−2u, in Ω
u = 0, on ∂Ω,

(1.1)

where Ω ⊂ Rn is an open bounded domain with C1 boundary, 0 ∈ Ω, 1 < p < n,
0 ≤ a < (n− p)/p, and c > 0.

For a = 0, c = p, there are many results about the eigenvalues and eigenfunctions
of problem (1.1), such as λ1 is associated to a C1,α(Ω) eigenfunction which is
positive in Ω and unique (up to a multiplicative constant), that is, λ1 is simple.
Moreover λ1 is isolated, and is the unique positive eigenvalue associated to a non-
negative eigenfunction (cf. [11, 1, 6] and references therein).

In this paper, we will show that many results about the eigenvalues and eigen-
functions in the case where a = 0, c = p can be extended to the more general case
where 0 ≤ a < (n− p)/p, c > 0. The starting point of the variational approach to
these problems is the following weighted Sobolev-Hardy inequality due to Caffarelli,
Kohn and Nirenberg [3], which is called the Caffarelli-Kohn-Nirenberg inequality.
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Let 1 < p < n. For all u ∈ C∞0 (Rn), there is a constant Ca,b > 0 such that

( ∫
Rn

|x|−bq|u|q dx
)p/q

≤ Ca,b

∫
Rn

|x|−ap|Du|p dx, (1.2)

where

−∞ < a <
n− p

p
, a ≤ b ≤ a+ 1,

q = p∗(a, b) =
np

n− dp
, d = 1 + a− b.

(1.3)

Let Ω ⊂ Rn be an open bounded domain with C1 boundary and 0 ∈ Ω, and let
D1,p

a (Ω) be the completion of C∞0 (Rn), with respect to the norm ‖ · ‖ defined by

‖u‖ =
( ∫

Ω

|x|−ap|Du|p dx
)1/p

.

From the boundedness of Ω and the standard approximation argument, it is easy
to see that (1.2) holds for any u ∈ D1,p

a (Ω) in the sense

( ∫
Ω

|x|−α|u|r dx
)p/r

≤ C

∫
Ω

|x|−ap|Du|p dx, (1.4)

for 1 ≤ r ≤ np
n−p , α ≤ (1 + a)r + n(1 − r

p ); that is, the imbedding D1,p
a (Ω) ↪→

Lr(Ω, |x|−α) is continuous, where Lr(Ω, |x|−α) is the weighted Lr space with norm

‖u‖r,α := ‖u‖Lr(Ω,|x|−α) =
( ∫

Ω

|x|−α|u|r dx
)1/r

.

In fact, we have the following compact imbedding result which is an extension of
the classical Rellich-Kondrachov compactness theorem (cf. [4] for p = 2 and [15]
for the general case). For the convenience of the reader, we include its proof here.

Theorem 1.1 (Compact imbedding theorem). Let Ω ⊂ Rn be an open and bounded
domain with C1 boundary and 0 ∈ Ω, 1 < p < n, −∞ < a < n−p

p . The imbedding
D1,p

a (Ω) ↪→ Lr(Ω, |x|−α) is compact if 1 ≤ r < np
n−p and α < (1 + a)r + n(1− r

p ).

Proof. The continuity of the imbedding is a direct consequence of the Caffarelli-
Kohn-Nirenberg inequality (1.2) or (1.4). To prove the compactness, let {um} be a
bounded sequence in D1,p

a (Ω). For any ρ > 0 with Bρ(0) ⊂ Ω is a ball centered at
the origin with radius ρ, it follows that {um} ⊂W 1,p(Ω\Bρ(0)). Then the classical
Rellich-Kondrachov compactness theorem guarantees the existence of a convergent
subsequence of {um} in Lr(Ω \ Bρ(0)). By taking a diagonal sequence, we can
assume without loss of generality that {um} converges in Lr(Ω \ Bρ(0)) for any
ρ > 0.

On the other hand, for any 1 ≤ r < np
n−p , there exists a b ∈ (a, a + 1] such

that r < q = p∗(a, b) = np
n−dp , d = 1 + a − b ∈ [0, 1). From the Caffarelli-Kohn-

Nirenberg inequality (1.2) or (1.4), {um} is also bounded in Lq(Ω, |x|−bq). By
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Hölder inequality, for any δ > 0, it follows that∫
|x|<δ

|x|−α|um − uj |r dx

≤
( ∫

|x|<δ

|x|−(α−br) q
q−r dx

)1− r
q
( ∫

Ω

|x|−br|um − uj |r dx
)r/q

≤ C
( ∫ δ

0

rn−1−(α−br) q
q−r dr

)1− r
q

= Cδn−(α−br) q
q−r ,

(1.5)

where C > 0 is a constant independent of m. Since α < (1 + a)r + n(1 − r
p ), it

follows that n − (α − br) q
q−r > 0. Therefore, for a given ε > 0, we first fix δ > 0

such that ∫
|x|<δ

|x|−α|um − uj |r dx ≤
ε

2
, ∀ m, j ∈ N.

Then we choose N ∈ N such that∫
Ω\Bδ(0)

|x|−α|um − uj |r dx ≤ Cα

∫
Ω\Bδ(0)

|um − uj |r dx ≤
ε

2
, ∀ m, j ≥ N,

where Cα = δ−α if α ≥ 0 and Cα = (diam(Ω))−α if α < 0. Thus∫
Ω

|x|−α|um − uj |r dx ≤ ε, ∀ m, j ≥ N,

that is, {um} is a Cauchy sequence in Lq(Ω, |x|−bq). �

For studying the eigenvalue problem (1.1), we introduce the following two func-
tionals on D1,p

a (Ω):

Φ(u) :=
∫

Ω

|x|−ap|Du|p dx, J(u) :=
∫

Ω

|x|−(a+1)p+c|u|p dx.

For c > 0, J is well-defined. Furthermore, Φ, J ∈ C1(D1,p
a (Ω),R), and a real value

λ is an eigenvalue of problem (1.1) if and only if there exists u ∈ D1,p
a (Ω)\{0} such

that Φ′(u) = λJ ′(u). At this point, let us introduce the set

M := {u ∈ D1,p
a (Ω) : J(u) = 1}.

Then M 6= ∅ and M is a C1 manifold in D1,p
a (Ω). It follows from the standard

Lagrange multiplier argument that eigenvalues of (1.1) correspond to critical values
of Φ|M. From Theorem 1.1, Φ satisfies the (PS) condition onM. Thus a sequence of
critical values of Φ|M comes from the Ljusternik-Schnirelman critical point theory
on C1 manifolds. Let γ(A) denote the Krasnoselski genus on D1,p

a (Ω) and for any
k ∈ N, set

Γk := {A ⊂M : A is compact, symmetric and γ(A) ≥ k}.

Then the values
λk := inf

A∈Γk

max
u∈A

Φ(u) (1.6)

are critical values and hence are eigenvalues of problem (1.1). Moreover, λ1 ≤ λ2 ≤
· · · ≤ λk ≤ · · · → +∞.
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One can also define another sequence of critical values minimaxing Φ along a
smaller family of symmetric subsets of M. Let us denote by Sk the unit sphere of
Rk+1 and

O(Sk,M) := {h ∈ C(Sk,M) : h is odd}.
Then for any k ∈ N, the value

µk := inf
h∈O(Sk−1,M)

max
t∈Sk−1

Φ(h(t)) (1.7)

is an eigenvalue of (1.1). Moreover λk ≤ µk. This new sequence of eigenvalues
was first introduced by [9] and later used in [7, 6] for a = 0, c = p. From the
Caffarelli-Kohn-Nirenberg inequality (1.2) or (1.4), it is easy to see that

λ1 = µ1 = inf{Φ(u) : u ∈ D1,p
a (Ω), J(u) = 1} > 0,

and the corresponding eigenfunction e1 ≥ 0.
To obtain the properties of the eigenvalues of problem (1.1), first we need some

boundedness and regularity results of the eigenfunctions of problem (1.1). In section
2, based on the Moser’s iteration technique, we shall deduce the L∞ boundedness
and C1,α(Ω \ {0}) regularity results. In section 3, we shall obtain the simplicity of
the first eigenvalue λ1. In section 4, we shall prove that the first eigenvalue λ1 is
isolated. Section 5 is concerned with the properties of the second eigenvalue λ2.

2. Regularity results

In this section, we will prove the L∞ boundedness and C1,α(Ω \ {0}) regularity
results of the weak solution to problem (1.1) (cf. [4, 5] for the case p = 2).

Theorem 2.1. Assume that 1 < p < n, 0 ≤ a < n−p
p , c > 0, and u ∈ D1,p

a (Ω) is a
solution of (1.1). Then u ∈ L∞(Ω, |x|−α) and u ∈ C1,α(Ω \ {0}) for some α ≥ 0.

Proof. By the standard elliptic regularity theory (e.g. [13]), it suffices to show the
L∞ boundedness of u. To do this, we apply the Moser’s iteration as in [10] and [5].

For k > 0, q ≥ 1, we define two C1 functions on R, h and H by

h(t) =

{
sign(t)|t|q, if |t| ≤ k,

sign(t){qkq−1|t|+ (1− q)kq}, if |t| > k,
(2.1)

and H(t) =
∫ t

0
(h′(s))p ds. Thus, it is easy to see that h′(t) ≥ 0 for all t ∈ R and

H(u(x)) ∈ D1,p
a (Ω) if u ∈ D1,p

a (Ω). In fact, a simple calculation shows that

h′(t) =

{
q|t|q−1, if |t| ≤ k,

qkq−1, if |t| > k
(2.2)

and

H(t) =


qp

p(q − 1) + 1
|t|p(q−1)+1 sign(t), if |t| ≤ k,

qp
( 1
p(q − 1) + 1

kp(q−1)+1 + kp(q−1)(|t| − k)
)
sign(t), if |t| > k.

(2.3)

It is trivial to verify that

|H(t)| ≤ q|h(t)|(h′(t))p−1, |H(t)||t|p−1 ≤ qp|h(t)|p, (2.4)
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for all t ∈ R. In fact, for all |t| ≤ k, q ≥ 1, we see that

|H(t)| = qp

p(q − 1) + 1
|t|p(q−1)+1 ≤ q|h(t)|(h′(t))p−1 = qp|t|p(q−1)+1

and

|H(t)||t|p−1 =
qp

p(q − 1) + 1
|t|pq ≤ qp|h(t)|p = qp|t|pq.

For |t| > k, q ≥ 1, a direct calculation shows that

|H(t)| − q|h(t)|(h′(t))p−1

= qp
(
(

1
p(q − 1) + 1

− 1)kp(q−1)+1 + (1− q)kp(q−1)(|t| − k)
)
≤ 0

and

|H(t)||t|p−1 − qp|h(t)|p = qp
(
(

1
p(q − 1) + 1

− 1)kp(q−1)+1|t|p−1

− qpkp(q−1)(|t| − k)p + kp(q−1)(|t|p − kp)
)
≤ 0

Let ψ(x) = ηpH(u(x)) be a test function defined in Ω, where η is a non-negative
smooth function in Ω to be specified later. Then from (1.1), it follows that∫

Ω

|x|−ap|Du|p−2Du ·Dψ dx = λ

∫
Ω

|x|−(a+1)p+c|u|p−2uψ dx. (2.5)

From the definitions of h,H, ψ, (2.4) implies that∫
Ω

|x|−ap|Du|p−2Du ·Dψ dx

=
∫

Ω

|x|−apηp|Du|p−2Du ·DH(u) dx+ p

∫
Ω

|x|−apηp−1H(u)|Du|p−2Du ·Dη dx

≥
∫

Ω

|x|−apηp|Dh(u)|p dx− pq

∫
Ω

|x|−apηp−1|Du|p−1|Dη||h(u)|(h′(u))p−1 dx.

(2.6)
By the Hölder inequality, it follows that

pq

∫
Ω

|x|−apηp−1|Du|p−1|Dη||h(u)|(h′(u))p−1 dx

≤ 1
2

∫
Ω

|x|−apηp|Dh(u)|p dx+ Cqp

∫
Ω

|x|−ap|h(u)|p|Dη|p dx,
(2.7)

where and hereafter C is a universal positive constant independent of k, q. Inserting
(2.7) into (2.6), we see that∫

Ω

|x|−ap|Du|p−2Du ·Dψ dx

≥ 1
2

∫
Ω

|x|−apηp|Dh(u)|p dx− Cqp

∫
Ω

|x|−ap|h(u)|p|Dη|p dx .
(2.8)

Equation (2.4) also implies

λ

∫
Ω

|x|−(a+1)p+c|u|p−2uψ dx = λ

∫
Ω

|x|−(a+1)p+c|u|p−2uηpH(u) dx

≤ λqp

∫
Ω

|x|−(a+1)p+cηp|h(u)|p dx.
(2.9)
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For any r ∈ (p,
np

n− p
), let α = n + (a + 1)r − nr

p
∈ (ar, (a + 1)r), from the

Caffarelli-Kohn-Nirenberg inequality (1.4), it follows that( ∫
Ω

|x|−α|ηh(u)|r dx
)p/r ≤ C

∫
Ω

|x|−ap|D(ηh(u))|p dx. (2.10)

Thus, substituting (2.8)–(2.10) into (2.5), it is easy to show that( ∫
Ω

|x|−α|ηh(u)|r dx
)p/r

≤ qpC
{ ∫

Ω

|x|−ap|h(u)|p|Dη|p dx+
∫

Ω

|x|−(a+1)p+cηp|h(u)|p dx
}
.

(2.11)

For each x0 ∈ Ω̄, let η ∈ C∞0 (B2R(x0)), R < 1, such that

0 ≤ η ≤ 1, η ≡ 1 in BR(x0), |Dη| < 2/R.

Then (2.11) implies that( ∫
BR(x0)

|x|−α|h(u)|r dx
)p/r

≤ qpC
{ ∫

B2R(x0)

|x|−ap

Rp
|h(u)|p dx+

∫
B2R(x0)

|x|−(a+1)p+c|h(u)|p dx
}
.

(2.12)

Letting k →∞ in (2.11), the Hölder inequality implies( ∫
BR(x0)

|x|−α|u|qr dx
)p/r

≤ qpC
{ ∫

B2R(x0)

|x|−ap

Rp
|u|pq dx+

∫
B2R(x0)

|x|−(a+1)p+c|u|pq dx
}

≤ qpC
( ∫

B2R(x0)

|x|−α|u|pqs dx
)1/s

,

(2.13)

where
s ∈

(
max

{
1,

n− α

n− (a+ 1)p+ c
,
n− α

n− ap

}
,
r

p

)
.

A simple covering argument yields that( ∫
Ω

|x|−α|u|qr dx
)p/r ≤ qpC

( ∫
Ω

|x|−α|u|pqs dx
)1/s

, (2.14)

that is,
‖u‖Lqr(Ω,|x|−α) ≤ (Cq)1/q‖u‖Lpqs(Ω,|x|−α),

which is a reversed Hölder inequality and implies that u ∈ Lqr(Ω, |x|−α) for all
q > 1. Then letting q = χm,m = 0, 1, 2, · · · , χ = r

ps > 1, the Moser’s iteration
technique (cf. [12]) implies

‖u‖LpsχN (Ω,|x|−α) ≤
N−1∏
m=0

(Cχm)χ−m

‖u‖Lps(Ω,|x|−α)

≤ Cσχτ‖u‖Lps(Ω,|x|−α)

≤ C‖u‖Lps(Ω,|x|−α),

where σ =
∑N−1

m=0 χ
−m, τ =

∑N−1
m=0mχ

−m. Letting N → ∞, we therefore obtain
‖u‖L∞(Ω,|x|−α) <∞. �
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Based on the above regularity result, the strong maximum principle due to
Vazquez [14] implies the following positivity of nonnegative eigenfunction.

Corollary 2.2. Suppose that 1 < p < n, 0 ≤ a < n−p
p , c > 0, u ≥ 0 is an

eigenfunction corresponding to λ > 0. Then u > 0 in Ω \ {0}.

3. Simplicity of λ1

In this section, we prove the simplicity of λ1, that is, any two eigenfunctions
both corresponding to λ1 are proportional.

Theorem 3.1. Suppose that 1 < p < n, 0 ≤ a < n−p
p c > 0, u ≥ 0 and v ≥ 0 are

eigenfunctions both corresponding to λ1. Then u and v are proportional.

Proof. From Theorem 2.1, u, v are bounded. We use the modified test-functions as
in [11]:

η =
(u+ ε)p − (v + ε)p

(u+ ε)p−1
and

(v + ε)p − (u+ ε)p

(v + ε)p−1
(3.1)

in the corresponding equations for u and v, respectively, where ε is a positive
parameter. Direct calculation implies

Dη =
{

1 + (p− 1)
( v + ε

u+ ε

)p
}
Du− p

( v + ε

u+ ε

)p−1
Dv, (3.2)

and, by symmetry, the gradient of the test-function in the corresponding equations
for v has a similar expression with u and v interchanged. Set

uε = u+ ε, vε = v + ε.

Inserting the chosen test-functions into their respective equations and adding these,
it follows that

λ1

∫
Ω

|x|−(a+1)p+c
[up−1

up−1
ε

− vp−1

vp−1
ε

]
(up

ε − vp
ε ) dx

=
∫

Ω

|x|−ap
{

1 + (p− 1)
( vε

uε

)p
}
|Duε|p dx

+
∫

Ω

|x|−ap
{

1 + (p− 1)
(uε

vε

)p
}
|Dvε|p dx

−
∫

Ω

|x|−app
( vε

uε

)p−1|Duε|p−2Duε ·Dvε dx

−
∫

Ω

|x|−app
(uε

vε

)p−1|Dvε|p−2Dvε ·Duε dx

=
∫

Ω

|x|−ap(up
ε − vp

ε )(|D log uε|p − |D log vε|p) dx

−
∫

Ω

|x|−appvp
ε |D log uε|p−2D log uε · (D log vε −D log uε) dx

−
∫

Ω

|x|−appup
ε |D log vε|p−2D log vε · (D log uε −D log vε) dx

≥ 0,

(3.3)

where the last inequality is a consequence of the following simple calculus inequality
(cf. [11]):

|w2|p > |w1|p + p|w1|p−2w1 · (w2 − w1) (3.4)
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for points in Rn, w1 6= w2, p > 1. By the Lebesgue’s Dominated Convergence
Theorem, it follows that

lim
ε→0+

∫
Ω

|x|−(a+1)p+c
[up−1

up−1
ε

− vp−1

vp−1
ε

]
(up

ε − vp
ε ) dx = 0. (3.5)

The same argument as in [11] implies that vDu = uDv a.e. in Ω, which implies
that u and v are proportional. �

4. Isolation of λ1

In this section, we prove the isolation of λ1. First, we show that only the first
eigenfunctions are non-negative.

Theorem 4.1. Suppose that 1 < p < n, 0 ≤ a < n−p
p , c > 0. If v ≥ 0 is any

eigenfunction corresponding to the eigenvalue λ, then λ = λ1.

Proof. Let u ≥ 0 denote a first eigenfunction, then the same procedure as in Section
3 yields ∫

Ω

|x|−(a+1)p+c
[
λ1
up−1

up−1
ε

− λ
vp−1

vp−1
ε

]
(up

ε − vp
ε ) dx ≥ 0, (4.1)

and arguing as before, it follows that

(λ1 − λ)
∫

Ω

|x|−(a+1)p+c(up − vp) dx ≥ 0. (4.2)

This leads to a contradiction, if λ > λ1, since u can be replaced by any of the
functions 2u, 3u, 4u, · · · . Thus λ = λ1. �

From Theorem 4.1, for any eigenvalue λ > λ1, the corresponding eigenfunction v
must change sign. Next, we need an estimate of the measure of the nodal domains
of an eigenfunction v. We recall that a nodal domain of v is a connected component
of Ω \ {x ∈ Ω : u = 0}.

Theorem 4.2. Suppose that 1 < p < n, 0 ≤ a < n−p
p , c > 0. If v is any

eigenfunction corresponding to the eigenvalue λ > λ1 > 0 and N is a nodal domain
of v, then

|N | ≥ (Cλ)−1/σ (4.3)

for some positive constant C > 0, where σ = 1 − p
r −

1
s , r ∈ (p, n−p

np ), s > r
r−p if

c ≥ n− np
r , s ∈ ( r

r−p , nr
nr−cr−np ) if 0 < c < n− np

r .

Proof. Assume that v > 0 in N , the case v < 0 being completely analogous. Since
v ∈ D1,p

a (Ω), then v|N ∈ D1,p
a (N ). Hence the function w(x) = v(x) if x ∈ N and

w(x) = 0 if Ω \ N belongs to D1,p
a (Ω). Using w as a test function in the weak

equation satisfied by v yields∫
N
|x|−ap|Dv|p dx = λ

∫
N
|x|−(a+1)p+c|v|p dx. (4.4)
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For r ∈ (p, n−p
np ), let α = (1 + a)r + n(1 − r

p
). Then the Hölder inequality implies

that∫
N
|x|−(a+1)p+c|v|p dx ≤ |N |σ

( ∫
N
|x|(−(a+1)p+c+ αp

r )s dx
)1/s( ∫

N
|x|−α|v|r

)p/r

≤ C|N |σ
( ∫

N
|x|−α|v|r

)p/r

,

(4.5)
since the choice of s implies that (−(a+ 1)p+ c+ αp

r )s > −n. On the other hand,
the Caffarelli-Kohn-Nirenberg inequality (1.2) or (1.4) implies that( ∫

N
|x|−α|v|r

)p/r

≤ C

∫
N
|x|−ap|Dv|p dx, (4.6)

where C = C(a, α). Thus (4.4)–(4.6) imply (4.3). �

Corollary 4.3. Each eigenfunction has a finite number of nodal domains.

Proof. Let Nj be a nodal domain of an eigenfunction associated to some positive
eigenvalue λ. It follows from (4.3) that

|Ω| ≥
∑

j

|Nj | ≥ (Cλ)−1/σ
∑

j

1

and the claim follows. �

Theorem 4.4. Suppose that 1 < p < n, 0 ≤ a < n−p
p , c > 0. λ1 is isolated.

Proof. Suppose, on the contrary, there exists a sequence of eigenvalues {νm} such
that νm 6= λ1 and νm → λ1 as m → ∞. Let um be an eigenfunction associated to
νm such that ‖um‖D1,p

a (Ω) = 1. Thus, up to a subsequence, {um} converge weakly
in D1,p

a (Ω) and strongly in Lp(Ω, |x|−(a+1)p+c) to a function u ∈ D1,p
a (Ω). Further-

more, the limit function u is an eigenfunction associated to the first eigenvalue λ1.
Without loss of generality, assume that u ≥ 0. Then for any δ > 0, by the Egorov
theorem, um converges uniformly to u on a subset Ωδ ⊂ Ω, with |Ω \ Ωδ| < δ. Let
Nm be a nodal domain of um such that um < 0 in Nm, then |Nm| → 0 as m→∞,
which contradicts (4.3). �

5. Variational property of the second eigenvalue

Since λ1 is isolated in the spectrum and there exist eigenvalues different from
λ1, it makes sense to define the second eigenvalue of (1.1) as

λ2 := inf{λ ∈ R : λ is eigenvalue and λ > λ1} > λ1.

It follows from the closure of the set of eigenvalues of (1.1) that λ2 is a different
eigenvalue of (1.1) from λ1.

Theorem 5.1. λ2 = λ2, where λ2 is defined by (1.6).

Proof. It is trivial that λ2 ≤ λ2. It suffices to show that λ2 ≤ λ2. Suppose that v
is the eigenfunction associated to λ2, then from Theorem 4.1 and Corollary 4.3, let
N1, · · · ,Nr, r ≥ 2 denote the nodal domains of v. For i = 1, · · · , r, set

vi(x) =


v(x)[ ∫

Ni
|x|−(a+1)p+c|v|p dx

]1/p
, if x ∈ Ni

0, if x ∈ Ω \ Ni.
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It is easy to see that vi ∈ D1,p
a (Ω). Let Fr denote the subspace of D1,p

a (Ω) spanned
by {v1, · · · , vr} and Ar = {u ∈ Fr : J(u) = 1}. For each u ∈ Fr, u =

∑r
i=1 αivi,

it follows that

J(u) =
r∑

i=1

|αi|pJ(vi) =
r∑

i=1

|αi|p.

Thus the set Ar can also be represented as

Ar =
{ r∑

i=1

αivi :
r∑

i=1

|αi|p = 1
}
.

It is easy to see that Ar is compact, symmetric and γ(Ar) = r ≥ 2, that is, Ar ∈ Γ2.
On the other hand, inserting vi into the corresponding equation of v yields∫

Ni

|Dvi|p dx = λ2

∫
Ni

|x|−(a+1)p+c|vi|p dx. (5.1)

Then for any u =
∑r

i=1 αivi ∈ Ar, it follows that

Φ(u) =
r∑

i=1

|αi|pΦ(vi) = λ2

r∑
i=1

|αi|pJ(vi) = λ2. (5.2)

Thus, it follows that

λ2 := inf
A∈Γ2

max
u∈A

Φ(u) ≤ max
u∈Ar

Φ(u) = λ2 , (5.3)

which implies the conclusion. �

The above argument implies the following further variation characterization of
the second eigenvalue (cf. [9, 8, 2] for a = 0, c = p).

Theorem 5.2. λ2 = λ2 = µ2 = infh∈ athcalF maxu∈h([−1,1]) Φ(u), where F := {h ∈
C([−1, 1],M) : h(±1) = ±e1} and e1 ∈ M is the positive eigenfunction associated
to λ1.
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[7] M. Cuesta, On the Fučik spectrum of the Laplacian and p-Laplacian, Proceedings of 2000
Seminar in Differential Equations, Kvilda (Czech Republic), to appear.

[8] M. Cuesta, D. DeFigueiredo and J. P. Gossez, The beginning of the Fučik spectrum for the
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