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NORMAL FORMS FOR SINGULARITIES OF ONE
DIMENSIONAL HOLOMORPHIC VECTOR FIELDS

ANTONIO GARIJO, ARMENGOL GASULL, XAVIER JARQUE

Abstract. We study the normal form of the ordinary differential equation

ż = f(z), z ∈ C, in a neighbourhood of a point p ∈ C, where f is a one-
dimensional holomorphic function in a punctured neighbourhood of p. Our
results include all cases except when p is an essential singularity. We treat all

the other situations, namely when p is a regular point, a pole or a zero of order
n. Our approach is based on a formula that uses the flow associated with the

differential equation to search for the change of variables that gives the normal

form.

1. Introduction and Main Result

This note provides a proof for the following result:

Theorem 1.1. Let f(z) be a one-dimensional holomorphic function in a punctured
neighbourhood U ⊂ C of a point p. Consider the ordinary differential equation

dz

dt
= f(z), z ∈ U , t ∈ C. (1.1)

Then, in a neighbourhood of p, this equation is conformally conjugate, in a neigh-
bourhood of the origin, to

(a) ż = 1, if f(p) 6= 0,
(b) ż = f ′(p)z, if p is a zero of f of order 1 (i.e. f ′(p) 6= 0),
(c) ż = zn/(1 + czn−1), where c = Res(1/f, p), if p is a zero of f of order

n > 1,
(d) ż = 1/zn, if p is a pole of order n.

Statements (a), (b) and (c) are well-known, see for instance [1]. To our knowledge
statement (d), as it is presented here, is new. Just topological conjugacy between
equation (1.1) and ż = 1/zn has been proved in [4, 5, 6, 8]. In [3] a similar result is
also given. Our approach is based in the one dimensional version of a nice formula,
as far as we know, firstly introduced in the unpublished thesis of Pazzi [7] and
recently used in [2, 9, 10]. This formula allows to look for the conjugacy between
the original differential equation (1.1) and its normal form by using the flow of
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the primer. In Lemma 2.1, for the sake of completeness, we prove it in the one
dimensional framework. Notice that the case of f having an essential singularity
at p is not covered by the above theorem. In a forthcoming paper we will consider
this situation.

Also we observe that by using Theorem 1.1 it is easy to describe the phase
portrait, for t ∈ R, of meromorphic equations in a small punctured neighbourhood
of their singularities and poles. Furthermore, except for the simple zeroes of f , it
can be shown that the index at the point fully characterizes the dynamics near the
singularity.

2. Proof of main Theorem

Without loss of generality, we assume that the point p in Theorem 1.1 is moved
to the origin. The solution of (1.1) passing through z ∈ U at t = 0 is denoted by
ϕf (t, z).

Let f and g be analytic functions in a punctured neighbourhood of 0. It is said
that the differential equations ż = f(z) and ż = g(z) are conformally conjugated
near the origin if there exists a conformal map Φ : V → W, V and W being two
open neighbourhoods of 0, such that Φ(0) = 0 and

Φ(ϕf (t, z)) = ϕg(t,Φ(z)), for all z ∈ V \ {0}, (2.1)

and all t for which the above expressions are well defined and the corresponding
points are in V and W.

Lemma 2.1 ([2, 10]). Let z, w ∈ C be given implicitly by the equation z =
ϕf (h(w), w). Then if h is a holomorphic function, the expression of (1.1) in the
w-variable is

ẇ =
f(w)

1 + f(w)h′(w)
.

Proof. By taking derivative with respect to t of z = ϕf (h(w), w), we obtain

ż =
(
h′(w)

∂ϕf

∂t
(h(w), w) +

∂ϕf

∂z
(h(w), w)

)
ẇ .

Thus
ż =

(
h′(w)f(z) +

∂ϕf

∂z
(h(w), w)

)
ẇ . (2.2)

To compute ∂ϕf (t, z)/∂z we note that it is the solution of the Cauchy problem
given by the variational equation u̇ = f ′(ϕf (t, z))u with initial condition u(0) = 1.
Observe that the function f(ϕf (t, z))/f(z) is the solution of this Cauchy problem.
Hence by the uniqueness of solutions we have

∂ϕf

∂z
(t, z) =

f(ϕf (t, z))
f(z)

.

Evaluating the above expression at (t, z) = (h(w), w) we obtain

∂ϕf

∂z
(h(w), w) =

f(z)
f(w)

.

Consequently (2.2) becomes

f(z) =
(
h′(w)f(z) +

f(z)
f(w)

)
ẇ,

as desired. �
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This lemma points out that a suitable choice for the function h may reduce
equation (1.1) to its normal form, as it is stated in Theorem 1.1. Before proving
the theorem we show, in two steps, a useful condition for two differential equations
to be conformally conjugated.

Lemma 2.2. The equation z = ϕf (t, w), associated to the flow of (1.1) is, in a
punctured neighbourhood of the origin, implicitly given by the equation

exp
( ∫ z

w

1
cf(s)

ds
)

= exp
( t

c

)
, when c := Res(1/f, 0) 6= 0, (2.3)

or by ∫ z

w

1
f(s)

ds = t, when Res(1/f, 0) = 0. (2.4)

Observe that the case Res(1/f, 0) = 0 also includes the situation in which 1/f is
holomorphic at z = 0.

Proof. To show the first statement, where c 6= 0, we claim that, on one hand, both
sides of equation (2.3) are well defined in a punctured neighbourhood of the origin,
and, on the other hand, the solution, z = η(t, w) (such that η(0, w) = w), of the
equation (2.3) is indeed the flow associated to equation (1.1). To see the claim we
integrate ż = f(z) in the “formal” way to obtain∫ z

w

1
f(s)

ds = t. (2.5)

The left-hand side of the above equation is not well defined since its value depends,
in general, of the path from w to z in C. In other words, the integral is only defined
in a neighbourhood of z = 0 slit along the negative real line. However, from the
Residue Theorem, we know that such difference is either zero, if the two paths do
not cross the negative real line, or it is ±2πi times the residue of 1/f at z = 0, if
they enclose z = 0. Thus, dividing by c 6= 0 and taking exponential, we uniquely
determine the value of the left hand side of equation (2.3) and, moreover, it has
meaning in a whole punctured neighbourhood of z = 0 (including the negative real
line).

To complete the proof of the claim, we need to show that the solution, z = η(t, w)
(such that η(0, w) = w 6= 0), of the equation (2.3) is the flow associated to equation
(1.1). To do so we use the Implicit Function Theorem. If we denote by F (z, w, t) = 0
the equation (2.3) we note that

∂

∂z
F (z, w, t) = exp

( ∫ z

w

1
cf(s)

ds
) 1

cf(z)
6= 0.

Hence we know of the existence of z = η(t, w) with η(0, w) = w. Now, if we compute
∂
∂tη(t, w), we easily get

exp
( ∫ η(t,w)

w

1
cf(s)

ds
) 1

cf(η(t, w))
∂

∂t
η(t, w) =

1
c

exp(
t

c
),

or, equivalently, ∂
∂tη(t, w) = f(η(t, w)), as desired.

The latter statement of the lemma, i.e. when Res(1/f, 0) = 0, follows from the
fact that, under this hypothesis, the left-hand side of equation (2.5) is well defined
in a punctured neighbourhood of the origin. �
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Proposition 2.3. Let f(z) and g(z) be holomorphic functions in a punctured neigh-
bourhood of the origin and set c = Res(1/f, 0). Assume that the function

H(z) :=
f(z)− g(z)
f(z)g(z)

=
1

g(z)
− 1

f(z)
(2.6)

is a holomorphic map at z = 0, and define h(z) =
∫ z

0
H(s) ds. Then the transfor-

mation z = ϕf (h(w), w), which is not necessarily bijective, transforms the equation
ż = f(z) into the equation ẇ = g(w). Moreover, in a punctured neighbourhood of
the origin, the transformation can be implicitly written as

exp
( ∫ z

w

1
cg(s)

ds
)

= exp
(1

c

∫ z

0

( 1
g(s)

− 1
f(s)

)
ds

)
, (2.7)

when c 6= 0 or as ∫ z

w

1
g(s)

ds =
∫ z

0

( 1
g(s)

− 1
f(s)

)
ds, (2.8)

when c = 0. Moreover, this later equation simplifies to∫ w

0

1
g(s)

ds =
∫ z

0

1
f(s)

ds, (2.9)

if 1/g(z) and 1/f(z) are both holomorphic at the origin.

Remark 2.4. Note that by using the above proposition, but interchanging the
roles of f and g, it can be shown that the local inverse of the map z = ϕf (h(w), w)
is given by w = ϕg(−h(z), z).

Corollary 2.5. Under the hypotheses of Proposition 2.3, let w = W (z) be a so-
lution, in a punctured neighbourhood of the origin, of (2.7) if c 6= 0 or of (2.8) if
c = 0, satisfying that W (z) tends to 0 when z tends to 0. If this solution can be
extended to a conformal map in a full neighbourhood of the origin, then the ordinary
differential equations

dz

dt
= f(z), and

dz

dt
= g(z),

are conformally conjugated near the origin.

Proof of Proposition 2.3. We define w = W (z) as a solution of z = ϕf (h(w), w),
satisfying W (0) = 0, where h is an unknown function. By Lemma 2.1, the suitable
condition over h which implies that the expression of ż = f(z) in the variable w is
ẇ = g(w), reads as

h′(w) = H(w) =
f(w)− g(w)
f(w)g(w)

=
1

g(w)
− 1

f(w)
.

By hypothesis, the right hand side of the above equation is holomorphic. Hence
choosing h(w) =

∫ w

0
H(s) ds, the transformation given by z = ϕf (

∫ w

0
H(s) ds, w),

transforms ż = f(z) into ẇ = g(w). When Res(1/f, 0) = c 6= 0, we apply equation
(2.3) in Lemma 2.2 to write equation z = ϕf (t, w) as

exp
( ∫ z

w

1
cf(s)

ds
)

= exp(
t

c
).

Hence equation z = ϕf (h(w), w) writes as

exp
( ∫ z

w

1
cf(s)

ds
)

= exp
(h(w)

c

)
= exp

(1
c

∫ w

0

( 1
g(s)

− 1
f(s)

)
ds

)
.
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which is equivalent to (2.7) by using that∫ w

0

( 1
g(s)

− 1
f(s)

)
ds =

∫ z

0

( 1
g(s)

− 1
f(s)

)
ds +

∫ w

z

( 1
g(s)

− 1
f(s)

)
ds.

When c = 0 we can perform similar computations but using (2.4) instead of (2.3)
to arrive to the desired result. Finally if both, 1/f(z) and 1/g(z) are holomorphic
at zero, easy manipulations transform equation (2.8) into (2.9). �

It only remains to prove the main theorem.

Proof of Theorem 1.1. We deal first with statements (a) and (d), i.e. for f having
either a regular point (n = 0) or a pole of order n at the origin. Hence n ∈ N∪{0}.
In these cases f(z) = 1/(znG(z)) with G(0) = g0 6= 0. We choose g(z) = 1/(g0z

n).
Notice that H(z) = zn(g0−G(z)) is a holomorphic map at z = 0 and we are under
the hypotheses of Proposition 2.3. Furthermore, since 1/f(z) and 1/g(z) are also
holomorphic, again by Proposition 2.3, the transformation z = ϕf (h(w), w), writes
as (2.9), which is ∫ w

0

g0s
n ds =

∫ z

0

snG(s) ds.

Thus

w = W (z) := z
n+1

√
(n + 1)

∫ z

0
snG(s) ds

g0zn+1
,

is a conformal change of variables (notice that W (0) = 0 and W ′(0) 6= 0) between
ż = 1/(znG(z)) and ẇ = 1/(g0w

n). A new change of variables w → αw, for a
convenient α ∈ C, finishes the proof of cases (a) and (d).

We consider now statement (b). Write f(z) = z/G(z), with G(0) = g0 6= 0 and
g(z) = z/g0. Thus H(z) is a holomorphic map at z = 0 and we are again under
the hypotheses of Proposition 2.3. Arguing like in the precedent case, but using
equation (2.7) instead of (2.9), we get that z = ϕf (h(w), w) writes as

exp
( ∫ z

w

1
s

ds
)

= exp
( 1

g0

∫ z

0

g0 −G(s)
s

ds
)
.

It is easy to see that the function

w = W (z) := z exp
( ∫ z

0

G(s)− g0

g0s
ds

)
,

is a solution of the above equation. Furthermore it is a conformal map and satisfies
W (0) = 0,W ′(0) 6= 0. Hence by Corollary 2.5 it is a conformal conjugacy between
ż = z/G(z) and ẇ = w/g0, as stated.

Finally we deal with statement (c). In this case f(z) = zn/G(z) where n ≥ 2 is
an integer number, and G(0) = g0 6= 0. As usually, if G(z) = g0+gmzm +O(m+1),
by considering a conformal change of variables of the form z = z1(1 + azm

1 ) we get
ż1 = zn

1 /(g0 + [(m + 1 − n)ag0 + gm]zm
1 + O(m + 1)). Hence, if 1 ≤ m ≤ n − 2,

we can choose the parameter a in such a way that ż1 = zn
1 /(g0 + O(m + 1)), and

so, it is not restrictive to assume that f(z) = zn/(g0 + gn−1z
n−1 + G̃(z)), G̃(z)/zn

being analytic at the origin. We consider g(z) = zn/(g0 + gn−1z
n−1), and we

proceed as in the previous cases. It is convenient, however, to deal with the cases
Res(1/f, 0) = gn−1 6= 0 and gn−1 = 0 separately. We start with the case gn−1 6= 0.
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By using (2.7) we get that z = ϕf (h(w), w) writes as

exp
( ∫ z

w

g0 + gn−1s
n−1

gn−1sn
ds

)
= exp

( ∫ z

0

−G̃(s)
gn−1sn

ds
)
. (2.10)

Although the above equation is well defined in a punctured neighbourhood N of
the origin, in order to take logarithms (principal determination), we consider it
restricted to N slit along the negative real line. Thus, it writes as

g0

1− n

[ 1
zn−1

− 1
wn−1

]
+ gn−1 log

z

w
+

∫ z

0

G̃(s)
sn

ds = 0, (2.11)

We note that if gn−1 = 0, using (2.8) instead of (2.7), we would have arrived also to
(2.11). So, in what follows, we proceed with the two cases together. By multiplying
the above equation by zn−1 and introducing the new variable u = z/w we get the
equation

F (u, z) =
g0

1− n

[
1− un−1

]
+ gn−1z

n−1 log u + zn−1

∫ z

0

G̃(s)
sn

ds = 0.

Note that F (1, 0) = 0 and ∂F (1, 0)/∂u 6= 0. Therefore, by the Implicit Function
Theorem, near (u, z) = (1, 0), there exists a unique analytic function u = U(z) such
that F (U(z), z) ≡ 0 and U(0) = 1. Hence w = W (z) := z/U(z) is a conformal
solution of (2.11) on N slit along the negative real line, which is indeed a solution of
(2.10) on N . Furthermore, since it is also conformal at the origin and W (0) = 0, by
using Corollary 2.5 we know that it gives a conformal change of variables between
the equations ż = zn/(g0 + gn−1z

n−1 + G̃(z)) and ẇ = wn/(g0 + gn−1w
n−1).

By introducing a final change of the form w → αw we can impose that g0 = 1
and the expression of the normal form given in the theorem follows. It is easy
to check that Res(1/f, 0) = gn−1 is an invariant for conformal conjugation, see
Remark 2.6 or [1]. Hence c is Res(1/f, 0) and the proof of statement (c) in Theorem
1.1 follows. �

Remark 2.6. As we have already mentioned, in [1] it is proved that under the
hypotheses of Proposition 2.3 a necessary condition for equations ż = f(z) and ż =
g(z) to be conformally conjugated near the origin is that Res(1/f, 0) = Res(1/g, 0).
Notice that the condition (2.6) in Proposition 2.3, implies, among other things,
that Res(1/f, 0) = Res(1/g, 0).

Remark 2.7. Observe that in case that both ż = f(z) and ż = g(z) have a pole
at the origin (not necessarily of the same order), the map given by (2.9) transforms
one equation into the other. However, this transformation is not bijective (so, it is
not a change of variables) unless both poles have the same order.

Remark 2.8. In case (c) of Theorem 1.1, it is not difficult to find other simple
models for the normal form. For instance, the one given in the statement can be
replaced by ż = zn − c1/(n−1)zn+1 or by ż = zn − cz2n−1.

Remark 2.9. The main results given in this paper remain true for real analytic
vector fields. Only some constants have to be added in the real normal forms.

Concluding Remarks. If we are not interested in a constructive proof of items
(a), (b) or (d) of Theorem 1.1 we can check the following assertions, which give a
straightforward proof (modulus a final rescalling of the variable w in cases (a) and
(d)):
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(i) For n ∈ N ∪ {0} the conformal change of variables

w = z
n+1

√
(n + 1)

∫ z

0
snG(s) ds

g0zn+1
,

transforms ż = 1/(znG(z)) with G(0) = g0 6= 0 into ẇ = 1/(g0w
n).

(ii) The conformal change of variables

w = z exp
( ∫ z

0

G(s)− g0

g0s
ds

)
,

transforms ż = z/G(z) with G(0) = g0 6= 0 into ẇ = w/g0.
As it has been shown in the previous section, the change of variables which

proves item (c) is not explicit.

Acknowledgements. The authors want to thank Jordi Villadelprat for letting us
know about the formula given in Lemma 2.1.
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Dep. de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Gran Via 585, 08007

Barcelona, Spain

E-mail address: xavier.jarque@ub.edu


