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SOLVABILITY OF SOME INTEGRAL EQUATIONS IN HILBERT
SPACES

ONUR ALP ILHAN

Abstract. We consider an integral equation of Fredholm and Volterra type
with spectral parameter depending on time. Conditions of solvability are es-
tablished when the initial value of the parameter coincides with an eigenvalue
of Fredholm operator.

1. introduction

Let H be a Hilbert space. We consider the integral equation∫ t

0

K(t, s)u(s)ds + Au(t)− λ(t)u(t) = f(t), t > 0, (1.1)

where u : R+ → H is unknown, A : H → H is a linear bounded self-adjoint
operator, K : Q → R is the kernel, f(t) is a given function, and λ(t) is a function
which we may interpret as spectral parameter. Here R+ = {t ∈ R : t ≥ 0} is the
positive half-line, and

Q = {(t, s) ∈ R2 : 0 ≤ s ≤ t < ∞}. (1.2)

The following equation is a typical example of this integral equation:∫ t

0

K(t, s)P (x, s)ds−
∫ a

0

R(x, y)P (y, t)dy − λ(t)P (x, t) = f(x, t), (1.3)

where 0 ≤ x ≤ a and t > 0. We consider in Hilbert space H = L2(0, a), where
a > 0. Equations of this type arise in the theory of elasticity [2, 3]. The kernels
K(t, s) and R(x, y) are connected with some elastic creeping base and λ(t) is the
given value which describes the elastic properties of deformable body. We may
reference also to work [4], where the similar integral equation was considered. In
case when λ(t) is constant, (1.1) was considered in [1].

2. results

We assume that λ(t) is a continuous function for t ≥ 0. We denote the range of
λ(s) on the interval [0, t] by

Λ(t) = {λ(s), 0 ≤ s ≤ t}. (2.1)
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It is clear that Λ(t) is a closed subset of R.
We consider function u : R+ → H in an abstract setting, i. e., u(t) ∈ H for

t ≥ 0. Assuming that u(t) is bounded on each interval [0 ≤ t ≤ T ], we denote

‖u‖t = sup
0≤s≤t

‖u(s)‖.

We Assume also that the kernel K(t, s) is continuous on the set Q, as defined by
(1.2). Denote

M(t) = sup
0≤s≤τ≤t

|K(τ, s)|. (2.2)

It is clear that M(t) is a monotonically increasing function.
We denote by σ(A) the spectrum of a bounded self-adjoint operator A. When

parameter λ is outside this spectrum, i.e. λ /∈ σ(A), there exists the resolvent
Rλ = (A− λI)−1 of the operator A.

We consider the auxilary equation∫ t

0

K(t, s)Rλ(s)v(s)ds + v(t) = f(t), t > 0. (2.3)

Assuming that we have a solution v(t) of this equation, by putting u(t) = Rλ(t)v(t)
or v(t) = (A− λ(t)I)u(t), we obtain∫ t

0

K(t, s)u(s)ds + (A− λ(t)I)u(t) = f(t), t > 0.

This implies u(t) is a solution of the equation (1.1).
At first we assume that λ(t) does not intersect the spectrum of A, i.e. Λ(t) ∩

σ(A) = ∅. Then obviously the norms of resolvent ‖Rλ‖ are bounded for every
λ ∈ Λ(t).

Denote

B(t) = sup
λ∈Λ(t)

‖Rλ‖. (2.4)

The following simple result shows that outside the spectrum of the operator A there
is the solvability of the equation (1.1) without any additional condition.

Theorem 2.1. Let Λ(t) ∩ σ(A) = ∅ for all t ≥ 0. Then there exists the unique
solution u(t) of equation (1.1) and

‖u(t)‖ ≤ ‖f‖tB(t) exp{tM(t)B(t)}..

To prove this theorem it is sufficient to show that there exists the unique solution
of the auxiliary equation (2.3). This fact is evident from the following lemma.

Lemma 2.2. Let v0(t) = f(t) and

vk(t) = −
∫ t

0

K(t, s)Rλ(s)vk−1(s)ds, k = 1, 2, . . . (2.5)

Then

‖vk‖t ≤ ‖f‖t
[M(t)B(t)]k

k!
tk.
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Proof. We shall use induction. The estimate is trivial for k = 0. Assume that
it is true for some k and then prove it for k + 1. It follows from the equality
vk+1(t) = −

∫ t

0
K(t, s)Rλ(s)vk(s)ds that

‖vk+1(t)‖ ≤
∫ t

0

M(t)‖Rλ(s)‖ ‖f‖s
[M(s)B(s)]k

k!
skds

≤ M(t)B(t)‖f‖t
[M(t)B(t)]k

k!

∫ t

0

skds

= ‖f‖t
[M(t)B(t)]k+1

(k + 1)!
tk+1.

�

Using this lemma, it is easy to show that the function

v(t) =
∞∑

k=0

(−1)k+1vk(t)

is the unique solution of the equation (2.3) and it proves Theorem 2.1.
The problem is more complicated when Λ(t) has a common point with spectrum

of A and that is the main idea of our consideration. Suppose that λ(0) coincides
with one of the isolated points of the spectrum of the operator A = A∗. We suppose
also that λ(t) /∈ σ(A) for all t > 0. It will be proved below that in this case the
following quantity is finite:

B1(t) = sup
0<s≤t

s‖Rλ(s)‖ < ∞, t > 0. (2.6)

Remember that the set Q is defined by equality (1.2). We introduce the class of
kernels, which vanish at the point (0, 0) with some order α > 0.

We say that K(t, s) ∈ Mα(Q) if K(t, s) ∈ C(Q), K(0, 0) = 0 and

|K(t, s)| ≤ Kαtα, 0 < s < t, (2.7)

with some constant Kα > 0.
Analogously we say that f ∈ Nα(R+) if f : R+ → H is continuous on the

half-line t ≥ 0, f(0) = 0 and

‖f‖(α) = sup
t>0

t−α‖f(t)‖ < ∞. (2.8)

Theorem 2.3. Let K(t, s) ∈ Mα(Q), 0 < α < 1. Suppose that λ(t) is continuously
differentiable function on the half-line t ≥ 0. Let λ(0) be an isolated point of the
spectrum σ(A) and λ(t) /∈ σ(A) for all t > 0. If

λ′(0) 6= 0 , (2.9)

then for an arbitrary function f ∈ Nα(R+) there exists a solution u(t) of (1.1)
such that

‖u(t)‖ ≤ ‖f‖(α)t
α exp[C(t)tα] (2.10)

where C(t) = KαB1(t)/α. The function B1(t) and constant Kα are defined by
equalities (2.6) and (2.7) respectively.

As we will show in Example 1, condition (2.9) is essential. This condition means
that spectral parameter λ(t) has to move away from the point λ(0) with non-zero
velocity.

First we prove some lemmas.
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Lemma 2.4. Suppose that λ(t) is a continuously differentiable function for t ≥ 0.
Let λ(0) = λ0 be an isolated point of the spectrum σ(A) and λ(t) /∈ σ(A) for all
t > 0. If condition (2.9) holds for every T > 0, then

|λ(t)− λ0| ≥ c(T )t, 0 ≤ t ≤ T . (2.11)

Proof. We divide the interval [0, T ] into two parts: [0, δ) and [δ, T ].
(1) According to the conditions of this lemma, for every δ > 0 we have λ(t) /∈ σ(A)
if δ ≤ t ≤ T . Hence λ(t)− λ0 6= 0 on this interval. Then because of continuity,

|λ(t)− λ0| ≥ c1(T, δ) ≥ c1(T, δ)
t

T
, δ ≤ t ≤ T. (2.12)

(2) Further, since λ′(0) 6= 0 then for small enough δ > 0 we have |λ′(t)| ≥ c2(δ) > 0,
0 ≤ t < δ. Then using Lagrange formulae we get

|λ(t)− λ0| = |λ(t)− λ(0)| = |λ′(τ)|(t− 0) ≥ c2(δ)t, 0 ≤ t ≤ δ. (2.13)

The required estimate (2.11) obviously follows from (2.12) and (2.13) with c(T ) =
min{ 1

T c1(T, δ), c2(δ)}. �

The following lemma proves the correctness of the definition (2.6).

Lemma 2.5. Under the conditions of Lemma 2.4 for an arbitrary T > 0,

t‖Rλ(t)‖ ≤ C(T ) < ∞, 0 < t ≤ T . (2.14)

Proof. We use the well known estimate (see, e.g. [5])

‖Rλ(A)‖ ≤ 1/ dist
(
λ, σ(A)

)
(2.15)

which is fulfilled for any self-adjoint operator A. We denote the distance from the
point λ to the spectrum σ(A) of operator A by

dist
(
λ, σ(A)

)
= inf

µ∈σ(A)
|λ− µ|.

It follows from estimate (2.15) that in order to get (2.14) it is enough to prove the
inequality

dist
(
λ, σ(A)

)
≥ Ct, C > 0, 0 < t ≤ T. (2.16)

Denote
d(t) = dist

(
λ, σ(A)

)
. (2.17)

On each interval [0, T ], obviously,

|λ(t)− λ0| ≤ C0(T ), 0 ≤ t ≤ T. (2.18)

Since λ(0) = λ0 is an isolated point of σ(A), the distance from point λ0 to other
points of σ(A) is positive:

ρ = dist
(
λ(0), σ(A)\λ0

)
> 0. (2.19)

(1) According to conditions of lemma d(0) = dist
(
λ(0), σ(A)

)
= 0. Then it is clear

that for small enough δ > 0 d(t) ≤ ρ/2, 0 ≤ t ≤ δ.
Hence for these t the nearest point of σ(A) to λ(t) is

λ0 : d(t) = |λ(t)− λ0| if 0 ≤ t ≤ δ. (2.20)

(2) Further, on compact interval [δ, T ] and according to condition λ(t) /∈ σ(A), we
have d(t) > 0 and hence

d(t) ≥ d0(T, δ) > 0 for δ ≤ t ≤ T.
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Taking into consideration this inequality and (2.18), we obtain

d(t) ≥ d0(T, δ) ≥ d0(T, δ)
C0(T )

|λ(t)− λ0| = C1|λ(t)− λ0|, δ ≤ t ≤ T. (2.21)

(3) From (2.20) and (2.21) it follows that

d(t) ≥ C2(T )|λ(t)− λ0|, 0 ≤ t ≤ T, (2.22)

In this case the required estimate (2.16) follows from (2.22), definition (2.17) and
Lemma 2.4. �

Lemma 2.6. Let vk(t) be as defined by (2.5) and v0(t) = f(t). If all of conditions
of Theorem 2.3 are fulfilled then

‖vk‖t ≤ ‖f‖(α)[C(t)]k
tα(k+1)

k!
, (2.23)

where C(T ) = KαB1(t)/α.

Proof. The estimate (2.23) is obviously true for k = 0. Assuming that it is true for
some k we get

‖vk+1(t)‖ ≤ Kαtα||f‖(α)

∫ t

0

‖Rλ(s)‖[C(s)]k
sα(k+1)

k!
ds.

Further we apply estimate (2.14),

‖vk+1(t)‖ ≤ ‖f‖(α)KαB1(T )[C(t)]ktα
1
k!

∫ t

0

sα(k+1)−1ds

= ‖f‖(α)[C(t)]k+1 tα(k+2)

(k + 1)!
.

�

Using this lemma we complete the proof of Theorem 2.3 as in the proof of
Theorem 2.1.

As mentioned above, the condition (2.9) in Theorem 2.3 is important as con-
firmed in the following example.

Example. Consider equation∫ t

0

tu(s, x)ds + 3x

∫ 1

0

yu(t, y)dy − (1 + t2)u(t, x) = tx, (2.24)

which is of the same type as equation (1.1). In this case K(t, s) = t, R(x, y) = −3xy,
f(t, x) = tx, λ(t) = 1 + t2. Consider the operator

Au(x) = 3x

∫ 1

0

yu(y)dy.

and look for an eigenvalue λ and eigenfunction v such that Av = λv. Obviously,

R(A) = {v ∈ L2[0, 1] : v(x) = Cx, C ∈ R}

and in as much as v ∈ R(A) we get

(A− λ)v(x) = (A− λ)Cx = 3Cx

∫ 1

0

y2dy − λCx = Cx(1− λ) = 0.
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This implies λ = 1 is an eigenvalue and hence it is isolated point of spectrum of
compact operator A. Then all of conditions of Theorem 2.3 are fulfilled except for
(2.9), because λ(0) = 1 ∈ σ(A), but λ′(0) = 0.

Assume that there exists a solution u(t, x) of (2.24). Denote

g(t, x) = u(t, x)− a(t)x, with a(t) = 3
∫ 1

0

xu(t, x)dx.

Obviously, the function f(x) = x is orthogonal to g(t, x) in the Hilbert space
L2[0, 1]:∫ 1

0

xg(t, x)dx =
∫ 1

0

xu(t, x)dx− a(t)
∫ 1

0

x2dx = a(t)/3− a(t)/3 = 0.

According to the definition u(t, x) = g(t, x)+a(t)x, and putting this representation
in (2.24), we get

t

∫ t

0

g(s, x)ds + 3x

∫ 1

0

yg(t, y)dy − (1 + t2)g(t, x)

+xt

∫ t

0

a(s)ds + 3xa(t)
∫ 1

0

y2dy − (1 + t2)a(t)x = tx.

Note that because of orthogonality of the functions x and g(t, x) this equality is
equivalent to the following two equalities:

t

∫ t

0

g(s, x)ds− (1 + t2)g(t, x) = 0, (2.25)∫ t

0

a(s)ds− ta(t) = 1− 3
t

∫ 1

0

yg(t, y)dy . (2.26)

After differentiating (2.25), we get∫ t

0

g(s, x)ds + tg(t, x)− 2tg(t, x)− (1 + t2)gt(t, x) = 0.

Hence, gt(0, x) = 0. Further, we may rewrite (2.25) as∫ t

0

g(s, x)ds− (t + 1/t)g(t, x) = 0

and after differentiating this equation, we get

g(t, x)− g(t, x) +
1
t2

g(t, x)− (t + 1/t)gt = 0,

or
t(t2 + 1)gt(t, x)− g(t, x) = 0.

Now we find the solution of this ordinary differential equation

g(t, x) = C(x)
t√

t2 + 1
.

Then

gt(t, x) =
C(x)

(t2 + 1)3/2
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and because of the condition gt(0, x) = 0, we have gt(0, x) = C(x) = 0 Conse-
quently, g(t, x) ≡ 0 Then equation (2.26) takes the form∫ t

0

a(s)ds− ta(t) = 1,

and when we put t = 0 we obtain 0 = 1. This contradiction proves that there is no
solution to (2.24) because λ′(0) = 0.
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