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UNIQUENESS FOR DEGENERATE ELLIPTIC SUBLINEAR
PROBLEMS IN THE ABSENCE OF DEAD CORES

JORGE GARCÍA-MELIÁN

Abstract. In this work we study the problem

− div(|∇u|p−2∇u) = λf(u)

in the unit ball of RN , with u = 0 on the boundary, where p > 2, and λ is a
real parameter. We assume that the nonlinearity f has a zero ū0 > 0 of order

k ≥ p−1. Our main contribution is showing that there exists a unique positive
solution of this problem for large enough λ and maximum close to ū0. This
will be achieved by means of a linearization technique, and we also prove the

new result that the inverse of the p-Laplacian is differentiable around positive
solutions.

1. Introduction

In this paper we are concerned with the nonlinear eigenvalue problem

−∆pu = λf(u) in Ω
u = 0 on ∂Ω,

(1.1)

where ∆pu = div(|∇u|p−2∇u), p > 2, stands for the p-Laplacian operator, Ω ⊂ RN

is a bounded domain, λ a real parameter and f a C1 function with a positive zero
ū0 (see hypotheses (H) below).

In the semilinear case p = 2 (where ∆p reduces to the usual Laplacian), problems
like (1.1) have been widely considered in the literature. An important number of
works (cf. for instance [2, 5, 13, 14, 15] and references therein) deal with nonlinear-
ities f(u) with a positive zero ū0, and their interest is focused on positive solutions
u with u ≤ ū0 and max u close to ū0. The important matter is then to show that
such solutions are unique for large λ, and to ascertain their qualitative behaviour
as λ → +∞.

The results obtained in the semilinear case heavily rely on the use of lineariza-
tion around positive solutions. However, when trying to use the same tools with
problems like (1.1) we encounter an important difficulty: the formal linearization
of ∆p around a solution u becomes degenerate at points where ∇u vanishes. Since
it is a really hard task for the moment to locate the set of critical points of positive
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solutions, we are restricting our attention to a symmetric situation, where Ω = B,
the unit ball in RN . That is, we will consider

−∆pu = λf(u) in B

u = 0 on ∂B.
(1.2)

In this setting – actually the more general one of rotationally invariant domains of
RN – some problems slightly more general than (1.2) were studied in [7]. Concretely,
the function f was allowed to depend on λ:

−∆pu = λf(λ, u) in B

u = 0 on ∂B.
(1.3)

The main assumption on f was the existence of a zero ū0 > 0 of order k < p − 1.
It was proved there the existence of a unique family of solutions {uλ} with the
property that uλ ≤ ū0 and

lim
λ→+∞

uλ = ū0, uniformly on compacts. (1.4)

It is important to notice that condition (1.4) was crucial in [7] in order to obtain
uniqueness. That is, it is possible to construct functions f in such a way that
problem (1.2) admits two families of positive solutions, one of them not verifying
(1.4) (see [8]).

We shall presently consider the complementary case in which f has a positive
zero ū0 of order k ≥ p− 1, therefore closing the analysis started in [7]. It turns out
that this situation is similar to the semilinear phenomenology. Firstly, the solutions
do not have a dead core (see Remark 1.2 (a)). And secondly, it is sufficient to search
for families of solutions {uλ} with maxuλ → ū0 as λ → +∞ to obtain uniqueness
– and we have as a consequence condition (1.4).

The most important fact in this regard is that we can linearize around positive
solutions, this being a novelty in the context of the p-Laplacian.

We will assume throughout that f satisfies the following hypotheses, which will
be termed as hypotheses (H):

(H1) f ∈ C1(R)
(H2) f has a zero ū0 of order k ≥ p− 1; that is, for some positive constant γ,

lim
u→ū0−

f(u)
(ū0 − u)k

= γ .

(H3) F (u) < F (ū0) if 0 ≤ u < ū0, where F (u) =
∫ u

0
f(s)ds.

(H4) f ′(u) ≤ 0 in [ū0 − ε, ū0] for some ε > 0.
(H5) f has a finite number of zeros in the interval [0, ū0].

Note that condition (H3) is necessary in order to have a family of solutions {uλ}
with maxuλ → ū0 as λ → +∞.

Our main result can be stated in the following way:

Theorem 1.1. Assume f verifies hypotheses (H). Then there exist η0 > 0, λ∗ > 0
such that the problem (1.2)

−∆pu = λf(u) in B

u = 0 on ∂B
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has a unique positive solution uλ with ū0−η0 ≤ max uλ < ū0, if λ ≥ λ∗. Moreover,
uλ is a radial function, the family {uλ} verifies condition (1.4), and we obtain the
following exact estimate for the boundary layer near ∂B:

lim
λ→+∞

λ−1/pu′λ(1) = −(p′F (ū0))1/p , (1.5)

where F (ū0) =
∫ ū0

0
f(s)ds.

Remark 1.2. (a) Condition (H2) on f guarantees that solutions with maxu ≤ ū0

also verify maxu < ū0 (cf. [6]), that is, dead cores do not arise even for large λ.
This case is complementary to the one treated in [7].

(b) The results in Theorem 1.1 are also valid when problem (1.2) in considered
in an annulus. This will be shown elsewhere.

(c) The boundary layer estimate (1.5) can be shown to be valid even for general
domains Ω (without any knowledge of uniqueness). See [6] and [7] for related
situations.

(d) The symmetry of solutions for problems like (1.2) will play an important
rôle. We refer to §2 for details.

This paper is organized as follows: section 2 is devoted to some symmetry consid-
erations. In section 3, after proving the existence of a family of positive solutions,
we obtain some precise estimates for all possible solutions. Sections 4 and 5 form
the core of the paper: in §4 we show that it is possible to linearize problem (1.2)
around positive solutions, using this fact in §5 to prove uniqueness.

2. Symmetry of solutions

In the semilinear case p = 2, a well known theorem by Gidas, Ni and Niren-
berg (see [10]) asserts that positive solutions to (1.2) are radially symmetric. Some
attempts to generalize this result to degenerate operators have been made for in-
stance in [3] and [11]. However, the possible presence of dead cores in the solutions
prevents one to expect a quite general symmetry result.

In a recent paper of Brock ([4]) an almost complete answer to this problem has
been given. Nevertheless it is necessary to impose additional assumptions on f in
order to obtain symmetry of positive solutions. We are showing in this section how
to use the results in [4] to obtain that all positive solutions to (1.2) in our setting
are radially symmetric, without further conditions on the nonlinear term f . The
following result contains Lemmas 1 and 4, and Remark 1 in [4].

Lemma 2.1. Let u > 0 be a solution to (1.2). Then there exists m ∈ N ∪ {+∞}
so that B admits a decomposition:

B = ∪m
k=1Ck ∪ {x : ∇u(x) = 0},

where Ck = BRk
(zk) \Brk

(zk), for certain zk ∈ B and 0 ≤ rk < Rk, such that

u(x) = u(ρ), ρ = |x− zk| in Ck,

∂u

∂ρ
< 0 in Ck .

(2.1)

Moreover, u(x) ≥ u|∂Brk
(zk) in Brk

(zk) and ∇u = 0 on ∂Ck ∩ B. On the other
hand, f(u) = 0 on ∂BRk

(zk) ∩B and if rk > 0 then f(u) = 0 on ∂Brk
(zk).

Remark 2.2. This property of the solutions u to (1.2) is called local symmetry.
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By means of this result, we are defining, for an arbitrary positive solution u to
(1.2), a rearrangement u∗, that is, a positive radial solution u∗, with maxu∗ =
max u.

Let u be a positive solution to (1.2). We claim that max u is attained at some
zk (zk as in Lemma 2.1). Indeed, choose x0 ∈ B such that u(x0) = max u, and
a sequence xj ∈ ∂Cj such that dist (xj , x0) → inf dist(Ck, x0). It is easy to see
that the {xj} can be chosen in such a way that (passing through a subsequence
if necessary) one of the following situations holds: either xj → x0 or the segment
[xj , x0] is contained in the set {x : ∇u(x) = 0}.

In the first case, we have f(u(xj)) = 0 (since xj ∈ ∂Cj) and it follows that u(x0)
is an accumulation point of zeros of f unless u(xj) = u(x0) for infinitely many j’s.
Our hypotheses then imply that – passing through a subsequence – u(xj) = u(x0).
If xj ∈ ∂BRj(zj), we obtain a contradiction to (2.1). Hence, xj ∈ ∂Brj (zj). If
rj = 0 for some j, we have xj = zj , as was to be proved. If, on the contrary, rj > 0,
then u(x) ≥ u(xj) in Brj

(zj), and the maximum is attained in the whole Brj
(zj),

also showing the claim (notice in particular that {xj} reduces to a single point). In
the second case, we also arrive at u(x0) = u(xj) and the conclusion is the same.

Remark 2.3. The above reasoning also shows that if the maximum is achieved in
zk, then the solution u is radial in BRk

(zk), which is not clear from Lemma 2.1 if
rk > 0.

Figure 1. A locally symmetric solution u and its rearrangement u∗.

Without loss of generality, assume u(z1) = max u. In virtue of Lemma 2.1,
u1 = u|∂BR1 (z1) is a zero of f , and u1 < u(z1). Now we will define an auxiliary
function ū such that ū ≤ u1 in B \BR1(z1), and show that it is possible to choose
another annulus C2 such that r2 > R1 and ū = u1 on ∂Br2(z2). To this aim we
are proceeding as follows: if there is a point x ∈ Ck, k 6= 1, such that u(x) > u1

then set ū = u|∂BRk
(zk) in BRk

(zk). Otherwise define ū = u. Clearly, ū ≤ u1 in
B \BR1(z1).

Now take the sequences xj ∈ ∂BR1(z1) and x̂j ∈ ∂Cj in such a way that
dist(xj , x̂j) → infk 6=1 dist (Ck, ∂BR1(z1)). As before, it is possible to choose these
sequences such that two options may arise: |xj− x̂j | → 0 or [xj , x̂j ] ⊂ {x : ∇u(x) =
0}. Both of them lead to ū(x̂j) = ū(xj) = u1 for a subsequence, and x̂j ∈ ∂Brj (zj).
Thus, ū = u1 in Brj

(zj) \ BR1(z1). As a conclusion, the sequence {x̂j} reduces to
a point, and rj > R1, ū = u1 on ∂Brj

(zj). Assume j = 2.
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Repeating the above procedure, we arrive, after a finite number of steps, at
ul = 0 for some l ∈ N. Denoting by χ the characteristic function of a set, we define:

u∗(x) =
l∑

i=1

ū(x + zi)χ{Ri−1≤|x|<Ri} ,

where R0 = 0 (see Figure 1). The main property of the function u∗ is the following:

Lemma 2.4. Let u be a positive solution to (1.2). Then the function u∗ defined
above is a radial positive solution to (1.2). Moreover, if ∇u∗ 6= 0 in B \ {0} then
u∗ = u and u is a radial function.

Proof. It is easy to check that u∗ is a radial solution to (1.2) (see Remark 2.3).
Thus, assume ∇u∗ 6= 0 in B \ {0}. According to the definition of u∗, consider
BR1(z1). If this ball does not coincide with B then in virtue of Lemma 2.1 we
obtain ∇u = 0 on ∂BR1(z1), which is a contradiction. Thus, BR1(z1) = B and
u∗ = u. This proves the lemma. �

Remark 2.5. If we knew from the beginning that ∇u 6= 0 in B\{0}, then Theorem
1 in [3] could also be applied to conclude that u is radial.

3. Existence and estimates of solutions

In this section we are proving that, under the assumptions (H) on f (see §1),
we can guarantee the existence of a family {uλ} of positive radial solutions to
(1.2) which in addition verifies (1.4). The first important remark is that, due to
hypotheses (H)2 on the zero of f , positive solutions u to (1.2) with u ≤ ū0 also
satisfy 0 < u < ū0 (see [6]).

To begin with, notice that if u is a radial solution to (1.2), then it satisfies (see
§4):

−(rN−1ϕp(u′))′ = rN−1λf(u)

u′(0) = 0 , u(1) = 0 .

Setting v(r) = u(λ−1/pr), this problem is equivalent to

−(rN−1ϕp(u′))′ = rN−1f(u)

u′(0) = 0 , u(λ1/p) = 0 .
(3.1)

Thus, it is apparent that the Cauchy problem

−(rN−1ϕp(u′))′ = rN−1f(u)

u(0) = u0 , u′(0) = 0 ,
(3.2)

with u0 in a left neighbourhood of ū0, will play an important role. Let us just
quote that this problem has a unique solution, denoted henceforth as u(·, u0), in an
interval of the form [0, δ] (see Theorem 2.1 in [7] and references therein). Moreover,
this solution can be continued as long as u′(·, u0) 6= 0. It is also worthy of mention
that u(·, ū0) ≡ ū0 (Theorem 2.2 in [7]).

Our existence result is the following:

Theorem 3.1. Assume f satisfies hypotheses (H). Then there exist η > 0, λ0 > 0
such that for every λ ≥ λ0, problem (1.2) admits at least a radial positive solution
uλ verifying ū0 − η ≤ max uλ < ū0. In addition the family {uλ} satisfies (1.4) and
u′λ(r) < 0 for r > 0.
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Proof. Let us show that there exists η > 0 such that for the solution u = u(·, u0)
to the problem (3.2) with ū0 − η ≤ u0 < ū0 there exists T > 0 with u(T ) = 0.

First we claim that for every ε0 < ε (ε as in hypothesis (H4) on f), and R > 0,
there exists η = η(ε0, R) such that u(r, u0) is defined in [0, R], u′(r, u0) < 0 and
u(r, u0) ≥ ū0 − ε0 if 0 < r ≤ R whenever ū0 − η ≤ u0 < ū0.

To prove the claim, assume first that there exist sequences u0n → ū0− and
rn ≤ R such that u′(rn, u0n) = 0. Since

u′(r, u0n) = −ϕp′

( ∫ r

0

(ρ

r

)N−1
f(u(ρ, u0n)) dρ

)
,

and f > 0 in [ū0 − ε, ū0), it follows easily that u(rn, u0n) < ū0 − ε. Thus, there
exists r̂n < rn ≤ R such that u(r̂n, u0n) = ū0−ε0. Passing to a subsequence we can
assume r̂n → r̂0, this also implying that u(r̂n, u0n) → u(r̂0, ū0) = ū0. This clear
contradiction proves the existence of η > 0 such that u(r, u0) is defined in [0, R]
and u′(r, u0) < 0 in [0, R] when ū0− η ≤ u0 < ū0. The remaining part of the claim
is proved exactly in the same way.

Now notice that positive solutions to (3.1) together with their derivatives are
uniformly bounded in r ≥ 0. Indeed, multiplying the equation by u′ and integrating
in [0, r] we arrive at the identity

|u′(r)|p + p′(N − 1)
∫ r

0

|u′(s)|p

s
ds = p′(F (u0)− F (u(r))),

so that |u′(r)|p ≤ p′(F (u0)−F (u(r))) if r ≥ 0. Choose τ > 0 and R > 0 to achieve

(N − 1)
|u′(r)|p−1

r
≤ τ, r ≥ R.

Thus, −ϕp(u′)′ = f(u) + (N − 1)ϕp(u′)/r ≥ f(u) − τ if r ≥ R and, as long as
u′ ≤ 0, we obtain −ϕp(u′)′u′ ≤ (f(u)− τ)u′, that is,

(|u′(r)|p + p′Fτ (u(r)))′ ≥ 0, r ≥ R , (3.3)

where Fτ (u) = F (u) − τu, and F (u) =
∫ u

0
f(s)ds. Notice that f − τ has a zero

ū0(τ) < ū0 with ū0(τ) → ū0 as τ → 0, verifying in addition the energy condition
Fτ (u) < Fτ (ū), 0 ≤ u < ū, if ū ∈ [ū0(τ)− δ(τ), ū0(τ)], for some δ(τ) > 0.

Choose ε0, τ small so that ū0(τ)−δ(τ) < ū0−ε0. As the claim at the beginning
of the proof shows, we have ū0(τ) − δ(τ) ≤ u(R, u0) < ū0. Thus if r ≥ R, we
have, in virtue of (3.3), |u′(r)|p ≥ |u′(R)|p + p′(Fε(u(R))−Fε(u(r))), for r ≥ R. In
particular, u′(r) < 0 always holds, and then

u′(r) ≤ u′(R), r ≥ R .

Integrating this inequality,

u(r) ≤ u(R) + u′(R)(r −R), r ≥ R ,

and we conclude that u has to vanish for some T = T (u0). We have defined in this
way a continuous mapping T : [ū0 − η, ū0) → R+. To complete the proof of the
Theorem it suffices to show that T (u0) → +∞ as u0 → ū0− (then the construction
of the family of solutions {uλ}λ≥λ0 is performed in a standard way). Assume on
the contrary that there exists a sequence u0n → ū0 such that T (u0n) is bounded.
Without loss of generality, we can assume T (u0n) → T0 > 0, and it follows that
un := u(·, u0n) → ū0 uniformly in [0, T0] as seen before. This contradicts the fact
that u(T (u0n), u0n) = 0, finally proving the theorem. �
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Corollary 3.2. Let λ0, η be as in Theorem 3.1. Then every positive solution u to
(1.2) with ū0 − η ≤ max u ≤ ū0 and λ ≥ λ0 is radial.

Proof. Let u be a positive solution to (1.2) with ū0 − η ≤ max u ≤ ū0 and λ ≥ λ0,
where η, λ0 are as in Theorem 3.1. Consider the function u∗ defined in §2. In
virtue of Lemma 2.4, u∗ is a positive radial solution to (1.2) and maxu∗ = max u.
Since the function v(r) = u∗(λ−1/pr) solves

−(rN−1ϕp(v′))′ = rN−1f(v)

v(0) = max u , u′(0) = 0 ,

it follows by the uniqueness of this Cauchy problem that u∗ = uµ for some µ ≥ λ0,
where {uµ} is the family of functions given by Theorem 3.1. Thus u∗′(r) < 0 for
r > 0, and Lemma 2.4 implies that u = u∗, and u is a radial function. �

In the remaining part of the section we are obtaining estimates for the positive
solutions u to (1.2) with maxu close to ū0 and large λ.

First of all we are constructing a subsolution of (1.2), using ideas from [5]. To
this aim, we are redefining f outside [0, ū0]. More precisely, we can assume with
no loss of generality that f is bounded, f < 0 in [ū0,+∞), f = 0 in (−∞,−1] and
F (u) < F (ū0) for −1 ≤ u ≤ 0.

Now let ε be as in hypothesis (H)4. With no loss of generality, we can assume
that ε < η. We can find a value λ1 > λ0 such that the solution uλ1 given by
Theorem 3.1 satisfies uλ1(0) = ū0 − ε/2. Thanks to the condition verified by F
(and diminishing ε again if necessary), we can produce uλ1 to reach a value r0 > 1
such that uλ1(r0) = −1, and u′λ1

(r) < 0 if r ∈ (0, r0]. Moreover, since f = 0 in
(−∞,−1], uλ1 satisfies

−(rN−1ϕp(u′))′ = 0, r > r0

u(r0) = −1 , u′λ1
(r0) < 0 ,

that is

u(r) =

{
−1 + u′λ1

(r0)
rθ
0r1−θ−r0

1−θ , p 6= N

−1 + u′λ1
(r0)r0 log

(
r
r0

)
, p = N ,

for r ≥ r0, with θ = (N − 1)/(p − 1). In particular, uλ1(r) < 0 if r > 1. This
function will allow us to obtain a subsolution to problem (1.2).

Lemma 3.3. Let uλ1 be as before, and define

zλ(r) = uλ1

(( λ

λ1

)1/p
r
)

.

Then zλ is a subsolution to (1.2) for λ > λ1.

Proof. Clearly, zλ verifies the equation. Moreover, zλ(1) = uλ1((λ/λ1)1/p) < 0,
since uλ1(r) < 0 if r > 1. �

The existence of this subsolution is essential. Indeed, for large enough λ, every
positive solution with maximum close to ū0 lies above it.

Lemma 3.4. There exist 0 < η0 ≤ η, λ2 > λ1 such that every positive solution u
to (1.2) with λ ≥ λ2 and ū0 − η0 ≤ max u < ū0 verifies u ≥ zλ.
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Proof. In virtue of Corollary 3.2, u is a radial solution. Moreover, as seen there,
u = uµ for some µ = µ(λ). It is not hard to show that µ(λ) → +∞ as λ → +∞
and max u → ū0−. Thus, for δ > 0 fixed, there exist λ̄, 0 < η0 ≤ η such that λ ≥ λ̄
and ū0 − η0 ≤ max u < ū0 imply u(r) ≥ ū0 − ε/2, for every r ∈ [0, 1 − δ] (this is
a consequence of condition (1.4)). Since max zλ = ū0 − ε/2, we obtain u ≥ zλ in
[0, 1− δ]. In addition,

zλ(r) ≤ zλ(1− δ) = uλ1

(( λ

λ1

)1/p(1− δ)
)
≤ 0 ,

if λ ≥ λ1/(1 − δ)p, r ≥ 1 − δ. Hence, uλ ≥ zλ in [1 − δ, 1], and we can take
λ2 = max{λ1/(1− δ)p, λ̄}. This concludes the proof of the Lemma. �

Lemma 3.5. Let η0, λ2 be as in Lemma 3.4. Then there exists Λ > 0 such that
every positive solution u to (1.2) with λ ≥ λ2 and ū0 − η0 ≤ max u < ū0 verifies
u(r) ≥ ū0 − ε if 0 ≤ r ≤ 1− Λλ−1/p.

Proof. Choose e ∈ RN with |e| = 1 and define the family of subsolutions

ut,λ(x) = uλ1

(( λ

λ1

)1/p|x− te|
)

,

for x ∈ B and t ∈ [0, 1− (λ/λ1)−1/p). Since, in virtue of Lemma 3.4, u ≥ u
t
∣∣t=0

, we

are in a position to apply the sweeping principle of the Appendix to conclude that
u ≥ u

t
∣∣t=1−(λ/λ1)−1/p

. Let 0 < R < 1 be such that uλ1(r) ≥ ū0 − ε if 0 ≤ r ≤ R.

Then u(r) ≥ ū0 − ε for 0 ≤ r ≤ 1 − (1 − R)(λ/λ1)−1/p. Thus, we can take
Λ = (1−R)λ1/p

1 . �

Remark 3.6. Notice that hypothesis (H)2 suffices to guarantee that every family
of positive solutions {uλ} to (1.2) such that limλ→+∞ max uλ = ū0 verifies (1.4).
This is in contrast with the case 0 < k < p− 1 treated in [7].

4. Differentiability properties

In this section we are showing some auxiliary results, which deal with the lin-
earization of the inverse of the p-Laplacian under radial symmetry.

Let f ∈ C(B) be radially symmetric. Since p > 2, it is well known that for every
m ≥ 0 there exists a unique weak solution u to the equation

−∆pu + mu = f in B

u = 0 on ∂B ,

which is C1,β(B) for some 0 < β < 1 (cf. [16]). Moreover, u is a radial function, so
that u ∈ C1[0, 1], rN−1ϕp(u′) ∈ C1[0, 1] and u solves

−(rN−1ϕp(u′))′ + mrN−1u = rN−1f(r) 0 < r < 1

u′(0) = 0 , u(1) = 0 ,

where ′ = d/dr. Thus we can define an operator Km : C[0, 1] → C1[0, 1] given by
u = Km(f), which is compact. For m = 0 it is easily seen that

K(f)(r) := K0(f)(r) =
∫ 1

r

ϕp′

( ∫ s

0

(
ρ

s
)N−1f(ρ) dρ

)
ds .

For simplicity, we still denote Km to the restriction of those operators to C1[0, 1].



EJDE-2004/110 UNIQUENESS FOR DEGENERATE ELLIPTIC PROBLEMS 9

Back to problem (1.2), taking m > 0 such that f ′(u) + m > 0 in [0, ū0], then
radial solutions to (1.2) coincide with fixed points of the operator equation

u = Kλm(λf(u) + λmu) .

Denote Tλ(u) = Kλm(λf(u) + λmu). Tλ is a compact operator in C1[0, 1], and it
is increasing in the order interval [0, ū0]. Our first objective is to show that Tλ is
differentiable in a neighbourhood of its fixed points in the interval [zλ, ū0] (see §3).
With this in mind, it is convenient to consider first the case m = 0. See Theorem
2.1 in [8] for a related result.

Theorem 4.1. Assume f ∈ C1[0, 1] verifies f(0) 6= 0 and u′(r) 6= 0 if 0 < r ≤ 1,
where u = Kf . Then K, as an operator defined in C1[0, 1], is Fréchet-differentiable
on f , and

DK(f)g =
1

p− 1

∫ 1

r

1
|u′(s)|p−2

∫ s

0

(
ρ

s
)N−1g(ρ) dρ ds (4.1)

for every g ∈ C1[0, 1]. In particular, w = DK(f)g is a solution to the equation

−(rN−1|u′|p−2w′)′ =
rN−1

p− 1
g(r) 0 < r < 1

w′(0) = 0 , w(1) = 0 .

(4.2)

Proof. Without loss of generality, assume f(0) > 0. Thanks to Theorem 2.1 in [7],
we have

u′(r) ∼ −Cr
1

p−1 , r → 0+

with a certain constant C > 0. Thus there exists a constant c > 0 such that
|u′(s)|/s

1
p−1 ≥ c for 0 < s ≤ 1, and the expression (4.1) makes sense. Denote it by

R(g). Then

|(K(f + g)−K(f)−R(g))′(s)|

≤
∣∣∣ϕp′

( ∫ s

0

(
ρ

s
)N−1(f(ρ) + g(ρ)) dρ

)
− ϕp′

( ∫ s

0

(
ρ

s
)N−1f(ρ) dρ

)
− 1

p− 1
1

|u′(s)|p−2

∫ s

0

(
ρ

s
)N−1g(ρ) dρ

∣∣∣
≤ 1

p− 1

∣∣∣|ξ(s)|p′−2 − 1
|u′(s)|p−2

∣∣∣ ∫ s

0

(
ρ

s
)N−1|g(ρ)| dρ

≤ 1
p− 1

∣∣∣s|ξ(s)|p′−2 − s

|u′(s)|p−2

∣∣∣|g|1 ,

where ξ(s) is an intermediate function comprised between
∫ s

0
(ρ

s )N−1(f(ρ)+g(ρ)) dρ

and
∫ s

0
(ρ

s )N−1f(ρ) dρ. Thus, as |g|1 → 0 we obtain

ξ(s) →
∫ s

0

(
ρ

s
)N−1f(ρ) dρ = −|u′(s)|p−1

uniformly in [0, 1]. Let us see that ξ(s)/s → −|u′(s)|p−1/s uniformly in [0, 1] as
|g|1 → 0. Indeed,∣∣∣1

s

∫ s

0

(
ρ

s
)N−1(f(ρ) + g(ρ)) dρ− 1

s

∫ s

0

(
ρ

s
)N−1f(ρ) dρ

∣∣∣ ≤ |g|1 , (4.3)



10 J. GARCÍA-MELIÁN EJDE-2004/110

and since ξ(s)/s is an intermediate value, we are done. This implies

|(K(f + g)−K(f)−R(g))′(s)|

≤ 1
p− 1

s
1

p−1

∣∣∣( |ξ(s)|
s

)p′−2 −
( |u′(s)|p−1

s

)p′−2
∣∣∣|g|1 = o(|g|1) ,

uniformly as |g|1 → 0. In the same way |K(f + g) −K(f) − R(g)|∞ = o(|g|1) as
|g|1 → 0. This proves the differentiability assertion. That w = R(g) is a solution
to (4.2) is a direct consequence of expression (4.3). �

Corollary 4.2. Assume f ∈ C1[0, 1] verifies f(0) 6= 0 and u′(r) 6= 0 if 0 < r ≤ 1,
where u = Kf . Then K is C1 in a neighbourhood of f in C1[0, 1].

Proof. Let us show first that K is differentiable in a neighbourhood of f . Notice
that, in virtue of (4.3), if |g|1 is small, we have that

|v′(s)|p−1

s
≥ c > 0

in (0, 1], where v = K(f + g). As the proof of Theorem 4.1 shows, this condition
turns out to be sufficient for the differentiability of K on f + g. Moreover, for
h ∈ C1[0, 1],

|(DK(f + g)h−DK(f)h)′(s)|

≤ 1
p− 1

∣∣∣ 1
|u′(s)|p−2

− 1
|v′(s)|p−2

∣∣∣ ∫ s

0

(
ρ

s
)N−1|h(ρ)|dρ

≤ 1
p− 1

s
∣∣∣ 1
|u′(s)|p−2

− 1
|v′(s)|p−2

∣∣∣|h|1
≤ 1

p− 1

∣∣∣( s
1

p−1

|u′(s)|
)p−2 −

( s
1

p−1

|v′(s)|
)p−2

∣∣∣|h|1
and we obtain, in virtue of (4.3),

sup
h

|DK(f + g)h−DK(f)h|1
|h|1

→ 0

as g → 0 in C1[0, 1]. This proves the corollary. �

As a consequence of the implicit function theorem, we can now obtain the dif-
ferentiability of the operator Tλ on its fixed points in the interval [zλ, ū0].

Corollary 4.3. Let u be a fixed point of the operator Tλ in the interval [zλ, ū0],
with f(u(0)) 6= 0, and u′(r) 6= 0 if 0 < r ≤ 1. Then Tλ is C1 in a neighbourhood of
u and we have, for every g ∈ C1[0, 1], that w = DTλ(u)g solves

−(rN−1|u′|p−2w′)′ +
rN−1

p− 1
λmw =

rN−1

p− 1
(λf ′(u) + λm)g

w′(0) = 0 , w(1) = 0 .

Proof. Let us prove that Kλm is differentiable in a neighbourhood of λf(u)+λmu.
Denote f̂ = λf(u) + λmu. Solving the equation −∆pv + λmv = f is equivalent to
solving

F(v, f) := v −K(f − λmv) = 0 .

We will show that the implicit function theorem can be applied in this case. Indeed,
F(u, f̂) = 0, and in virtue of Corollary 4.2, K is C1 in a neighbourhood of f̂ −
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λmu = λf(u) (since f(u(0)) 6= 0 and u′(r) 6= 0 for 0 < r ≤ 1). Thus, F is C1

with respect to both variables. Assume there exists g such that DvF(u, f̂)g =
g + DK(f̂ − λmu)λmg = 0. Then g solves

−(rN−1|u′|p−2g′)′ +
rN−1

p− 1
λmg = 0

g′(0) = 0 , g(1) = 0 ,

and we obtain g ≡ 0. Hence, DvF(u, f̂) is an isomorphism (notice that DvF(u, f̂)
is a compact perturbation of the identity).

Implicit function theorem guarantees the existence of a unique C1 function R,
such that F(v, f) = 0 implies v = R(f) in a neighbourhood of (u, f̂). Uniqueness
yields R(f) = Kλm(f), hence Kλm is C1. In addition,

DvF(u, f̂)DKλm(f̂) + DfF(u, f̂) = 0 ,

so that w = DKλm(f̂)g is a solution to the equation

−(rN−1|u′|p−2w′)′ +
rN−1

p− 1
λmw =

rN−1

p− 1
g

w′(0) = 0 , w(1) = 0 .

The conclusion of this theorem is then a direct consequence of the chain rule. �

5. Uniqueness

This section is devoted to the proof of Theorem 1.1. First of all, we need a result
about the eigenvalues of the linearization of the operator Tλ. The spectral radius of
a bounded linear operator L will be denoted by spr(L). We recall that |µ| ≤ spr(L)
for every spectral value of L, in particular for possible eigenvalues µ (cf. [17]). We
have the following lemma.

Lemma 5.1. Let u be a fixed point of Tλ in the interval [zλ, ū0]. If σ = spr(DTλ(u))
is positive, then σ is an eigenvalue of DTλ(u) which admits an eigenfunction v such
that v(r) > 0 for 0 ≤ r < 1.

Proof. Let us see that the operator DTλ(u) is positive. That is, g ≥ 0 implies
DTλ(u)g ≥ 0. Let w = DTλ(u)g. Then

−(rN−1|u′|p−2w′)′ +
rN−1

p− 1
λmw =

rN−1

p− 1
(λf ′(u) + λm)g

w′(0) = 0 , w(1) = 0 .

Multiplying this equation by w− = max{0,−w}, integrating in (0, 1) and perform-
ing an integration by parts in the left-hand side, we obtain∫

w≤0

(
rN−1|u′|p−2(w′)2 +

rN−1

p− 1
λmw2

)
dr =

∫
w≤0

rN−1

p− 1
(λf ′(u) + λm)wg dr ≤ 0 ,

hence w− ≡ 0. Thus w ≥ 0 follows.
Since DTλ(u) is a compact operator, Krein-Rutman’s theorem [1, Theorem 3.1]

guarantees the existence of an eigenfunction v associated to σ such that v ≥ 0. Let
us show that v > 0.
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Assume on the contrary that v(r0) = 0 for some 0 ≤ r0 < 1. Since v ≥ 0, we
have v′(r0) = 0. Moreover, v satisfies

−v′(r) =
1

p− 1
λ

σ

1
|u′(r)|p−2

∫ r

r0

(ρ

r

)N−1

(f ′(u) + m(1− σ))v(ρ)dρ .

Then, letting |v|∞,δ = sup|r−r0|≤δ |v(r)|, we obtain

|v′(r)| ≤ C|v|∞,δ .

for a certain constant C > 0. After an integration we arrive at |v|∞,δ ≤ Cδ|v|∞,δ,
and thus v ≡ 0 in |r− r0| ≤ δ if δ is small. A continuation argument gives v ≡ 0 in
[0, 1], which is clearly impossible. Thus v(r) > 0 if r ∈ [0, 1). �

Remark 5.2. Note that the conclussion of Lemma 5.1 cannot be achieved by means
of the strong maximum principle, since the operator becomes degenerate for r = 0.

Proof of Theorem 1.1. As seen in §3, every positive solution to (1.2) with large λ
and maximum close to ū0 lies in the ordered interval [zλ, ū0]. Since the operator
Tλ is increasing, zλ ≤ Tλ(zλ) and Tλ(ū0) ≤ ū0, it follows that Tλ leaves the interval
[zλ, ū0] invariant.

Furthermore, Tλ is compact, and does not have fixed points in the boundary
of the interval. Thus, the Leray-Schauder degree of I − Tλ makes sense. We will
denote it by d(I − Tλ, (zλ, ū0), 0). As usual, the local index of a fixed point u will
be denoted by i(I − Tλ, u, 0).

Since (zλ, ū0) is convex, we have ([1])

d(I − Tλ, (zλ, ū0), 0) = 1 .

Let us show that, for large enough λ, every fixed point of Tλ in the interval [zλ, ū0]
is isolated, and has index 1. This will conclude the proof of the uniqueness assertion
in Theorem 1.1.

Lemma 5.3. There exists λ∗ > 0 such that for λ ≥ λ∗, every fixed point u of Tλ

in the interval [zλ, ū0] is isolated, and i(I − Tλ, u, 0) = 1.

Proof. Let u ∈ (zλ, ū0) be a fixed point of Tλ. In virtue of Corollary 4.3, Tλ

is differentiable on u. To prove the theorem it will suffice with showing that
spr(DTλ(u)) < 1, for large λ (this implies in particular the isolation of u). Then
since

i(I − Tλ, u, 0) = (−1)χ ,

where χ stands for the sum of multiplicities of the eigenvalues of DTλ(u) greater
than 1 (cf. [1, Theorem 11.4]), the conclusion follows.

Assume on the contrary that there exist sequences λn → +∞, un > 0 in such a
way that σn = spr(DTλn

(un)) ≥ 1. In virtue of Lemma 5.1, σn has an associated
eigenfunction vn > 0, which will be normalized by |vn|∞ = 1. Notice that f ′(un) ≤
0 in [0, 1− Λλ

−1/p
n ], in virtue of Lemma 3.5. Then vn verifies

−(rN−1|u′n|p−2v′n)′ ≤ rN−1

p− 1
f ′(un)vn ≤ 0

in [0, 1 − Λλ
−1/p
n ]. The maximum principle is then applicable to conclude that vn

attains its maximum in [1 − Λλ
−1/p
n , 1]. Choose rn ∈ [1 − Λλ

−1/p
n , 1] such that
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vn(rn) = 1 = max vn. We introduce the functions

Un(x) = un(1− λ−1/p
n x)

Vn(x) = vn(1− λ−1/p
n x) ,

if 0 ≤ x ≤ λ
1/p
n . Since un is a solution to (1.2), we have that

Un(x) =
∫ x

0

ϕp′

( ∫ λ1/p
n

s

(λ
1/p
n − ρ

λ
1/p
n − s

)N−1

f(Un(ρ)) dρ
)

ds .

Similarly,

Vn(x) =
1

p− 1

∫ x

0

1
|U ′

n(s)|p−2

∫ λ1/p
n

s

(λ
1/p
n − ρ

λ
1/p
n − s

)N−1

×
[ 1
σn

f ′(Un(ρ)) + m
( 1
σn

− 1
)]

Vn(ρ) dρ ds .

Now note that U ′
n 6= 0 in [0, λ

1/p
n ). Hence Un, Vn ∈ C3[0, λ

1/p
n ). Moreover, {Un},

{Vn} are precompact in C2[0, T ] for every T > 0. Thus, we can assume Un → U ,
Vn → V in C2

loc[0,+∞), where

U(x) =
∫ x

0

ϕp′

( ∫ +∞

0

f(U(ρ)) dρ
)

ds,

V (x) =
1

p− 1

∫ x

0

1

|U ′
(s)|p−2

∫ +∞

s

[
1
σ

f ′(U(ρ)) + m
( 1
σ
− 1

)]
V (ρ) dρ ds ,

and σ = limn→∞ σn (σ = +∞ is not excluded and then we should set 1/σ = 0).
Thus, U , V are solutions to the one-dimensional problems

−ϕp(U
′
)′ = f(U)

U(0) = U
′
(+∞) = 0 ,

(5.1)

and

−(|U ′|p−2V
′
)′ =

1
p− 1

(
1
σ

f ′(U) + m
( 1
σ
− 1

))
V

V (0) = V
′
(+∞) = 0 ,

(5.2)

while 0 ≤ U ≤ ū0, 0 ≤ V ≤ 1. Since the functions Vn attain their maxima in
xn = λ

1/p
n (1 − rn) ≤ Λ, we obtain that V 6≡ 0. Thus V > 0. On the other hand,

notice that U verifies |U ′|p = p′(F (ū0) − F (U)), together with U
′
> 0 in [0,+∞).

Taking derivatives in (5.1), it follows that U
′
solves the second order equation

−(|U ′|p−2(U
′
)′)′ =

1
p− 1

f ′(U)U
′
,

and consequently U
′ ∈ C2[0,+∞).

Choose the least C > 0 such that W := CU
′ − V ≥ 0 in [0,Λ + 1]. W has to

vanish in some point of [0,Λ + 1]. Furthermore, W ∈ C2[0,+∞) and satisfies the
equation

−(|U ′|p−2W ′)′ =
1

p− 1

(
f ′(U)CU

′ − 1
σ

f ′(U)V −m
( 1
σ
− 1

)
V

)
.
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The choice of m implies f ′(U) + m > 0, and, since σ ≥ 1,

−(|U ′|p−2W ′)′ ≥ 1
p− 1

f ′(U)W

in [0,Λ + 1]. This implies

−(|U ′|p−2W ′)′ +
m

p− 1
W ≥ 1

p− 1
(f ′(U) + m)W ≥ 0 (5.3)

in [0,Λ + 1]. Notice that U
′ 6= 0 in [0,Λ + 1], and the operator in (5.3) becomes

nondegenerate. The strong maximum principle gives us that W > 0 in (0,Λ + 1).
Moreover, W (0) > 0 and we obtain W (Λ + 1) = 0. Hopf’s boundary lemma then
provides with W ′(Λ + 1) < 0.

Thus, we can choose δ > 0 small so that W < 0 in (Λ + 1,Λ + 1 + δ). We claim
that this inequality holds in (Λ+1,+∞). If, on the contrary we have δ0 = sup{δ >
0 : W < 0 in (Λ + 1,Λ + 1 + δ)} < +∞, we obtain

−(|U ′|p−2W ′)′ ≥ 1
p− 1

f ′(U)W

W (Λ + 1) = W (Λ + 1 + δ0) = 0 .

Since f ′(U) ≤ 0 in [Λ+1,+∞), maximum principle implies W ≥ 0 in [Λ+1,Λ+1+δ]
– impossible. Thus W < 0 in [Λ + 1,+∞). This leads us to

−(|U ′|p−2W ′)′ ≥ 0

in [Λ + 1,+∞). Integrating this inequality we arrive at

W (x) ≤ W ′(Λ + 1)|U ′
(Λ + 1)|p−2

∫ x

Λ+1

ds

|U ′
(s)|p−2

, (5.4)

and since p > 2, we have limx→+∞ W (x) = −∞, contradicting W ≥ −1. This
finishes the proof. �

It only remains to prove estimate (1.5). Let λn → +∞ be an arbitrary se-
quence and define Un as in Lemma 5.3. As already seen, we can assume Un → U

in C2
loc[0,+∞). Thus, U ′

n(0) → U
′
(0). The proof is concluded by noticing that

U
′
(0) = (p′F (ū0))1/p and U ′

n(0) = −λ
1/p
n u′n(1). �

6. Appendix

In this Appendix we are providing a generalization of Serrin’s sweeping principle
adequate for our purposes.

Theorem 6.1 (Sweeping principle). Let {ut}t∈[0,a] ⊂ W 1,p
0 (Ω) ∩ C1,β(Ω) be a

family of subsolutions to the problem
−∆pu = f(u) in Ω

u = 0 on ∂Ω ,
(6.1)

where f is a C1 function and Ω a smooth bounded domain of RN . Let u > 0 be a
solution to (6.1). Assume that {ut} verifies

(i) ut < 0 on ∂Ω.
(ii) The mapping t → ut ∈ C(Ω) is continuous.
(iii) The set {x : ∇ut(x) = 0} reduces to a single point xt, and for every t we

have ∇u(xt) 6= 0 or u(xt) > ut(xt).
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(iv) u ≥ u
t
∣∣t=0

.

Then u ≥ u
t
∣∣t=a

.

Proof. Consider the set E = {t ∈ [0, a] : u ≥ ut in Ω}. Hypotheses (ii) and (iv)
imply that E is closed and nonempty. Let us show that it is also open.

Indeed, assume t0 ∈ E, and define Bt0 := {x ∈ Ω \ {xt0} : u(x) = ut0(x)}. The
set Bt0 is closed with respect to Ω \ {xt0}. To prove it is also open, let x0 ∈ Bt0 .
Since u ≥ ut0 , u(x0) = ut0(x0) and x0 6= xt0 , we obtain ∇u(x0) = ∇ut0(x0) 6= 0.
Thus, choosing m > 0 so that f(u)+mu is increasing in a neighbourhood of u(x0),

−∆pu + ∆put0 + m(u− ut0) ≥ 0 in Ω ,

and since the gradients of u and ut0 do not vanish, we arrive at L(u − ut0) ≥ 0,
where L is an uniformly elliptic operator in a neighbourhood of x0 (cf. Appendix
in [12]). This implies u ≡ ut0 in that neighbourhood, and Bt0 is open.

Since Ω \ {xt0} is connected, we should have Bt0 = Ω \ {xt0} or Bt0 = ∅. The
first possibility implies u ≡ ut0 in Ω, which is impossible since ut0 < 0 on ∂Ω. The
second leads to u > ut0 in Ω \ {xt0}. Hypothesis (iii) then gives u > ut0 in Ω, and
then u > ut in Ω for t ∼ t0, that is, E is open.

Finally, the connectedness of [0, a] implies E = [0, a], and u ≥ u
t
∣∣t=a

follows.

This proves the sweeping principle. �
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