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PYRAMIDAL CENTRAL CONFIGURATIONS AND PERVERSE
SOLUTIONS

TIANCHENG OUYANG, ZHIFU XIE, SHIQING ZHANG

Abstract. For n-body problems, a central configuration (CC) plays an im-
portant role. In this paper, we establish the relation between the spatial

pyramidal central configuration (PCC) and the planar central configuration.

We prove that the base of PCC is also a CC and we also prove that for some
given conditions a planar CC can be extended to a PCC. In particular, if the
pyramidal central configuration has a regular polygon base, then the masses

of base are equal and the distance between the top vertex and the base is fixed
and the mass of the top vertex is selective. Furthermore, the pyramidal central
configuration gives rise to an example of a perverse solution in R3.

1. Introduction and Main Results

In this paper, we investigate the quantitative relationship between the spatial
pyramidal central configuration and its base. We also investigate perverse solution
in R3. The Newtonian n-body problem concerns the motion of n point particles
with masses mj ∈ R+ and positions q̄j ∈ R3 (j = 1, . . . , n). This motion is governed
by the Newton’s law

mj ¨̄qj =
∂U(q̄)
∂q̄j

, (1.1)

where q̄ = (q̄1, . . . , q̄n) and the Newtonian potential is

U(q̄) =
∑

1≤k<j≤n

mkmj

|q̄k − q̄j |
. (1.2)

Consider the space

X =
{
q̄ = (q̄1, . . . , q̄n) ∈ R3n :

n∑
k=1

mk q̄k = 0
}

i.e. suppose that the center of mass is fixed at the origin of the space. Because
the potential is singular when two particles have the same position, it is natural to
assume that the configuration avoids the set 4 = {q̄ : q̄k = q̄j for some k 6= j}.
The set X\4 is called the configuration space.
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Definition A configuration q̄ = (q̄1, . . . , q̄n) ∈ X\4 is called a central configuration
(CC) if there exists a constant λ such that

n∑
j=1,j 6=k

mjmk

|q̄j − q̄k|3
(q̄j − q̄k) = −λmk q̄k, 1 ≤ k ≤ n. (1.3)

The value of the constant λ in (1.3) is uniquely determined by

λ =
U

I
, (1.4)

where I =
∑n

k=1 mk|q̄k|2.
Definition A central configuration of N + 1 bodies, N of which are coplanar, the
(N + 1)th being off the plane, is called a pyramidal central configuration (PCC).
Equivalently, we will say that the CC has the shape of a pyramid, where the N
bodies or the N positions are called the base of the corresponding pyramidal central
configuration.

Central configurations give rise to simple, explicit solutions of the N-body prob-
lem [9]. If the bodies are placed in a central configuration and released with zero
initial velocity, they will collapse homothetically to a collision at center of mass. If
the central configuration is planar, one can also choose initial velocities which lead
to a periodic solution for which the configuration rigidly rotates around center of
mass with angular velocity

√
λ.

A complete understanding of the nature of the central configurations is of funda-
mental importance to the n-body problem of celestial mechanics as these configu-
rations play an essential role in the global structures of the solutions of the n-body
problem.

Although three centuries have passed since Euler, Lagrange, etc. studied these
problems, the classification of the central configuration is still unknown even for 4
bodies. It continues to attract much attention and some marvellous results have
been obtained [4, 6]. In the celebrated work [1] of 1996, Albouy was able to establish
a symmetry and prove that there are exactly three central configurations for the
planar 4-body problem with equal masses. In 2002, Yiming Long and Sanzhong
Sun studied the central configuration for the 4-body problem under the weaker
condition that only the opposite masses are equal.

In 1996, Nelly Faycal established a classification of all PCC of the five-body
problem with its base admitting a plane of reflexive symmetry. She studied the
four cases which corresponds to the base of the pyramid of five bodies that admits
one axis of symmetry, two axes of symmetry, or more axes of symmetry. The four
cases are: pyramid with a square base, pyramid with a rectangular base, pyramid
with a kite-shaped base and pyramid with a trapezoid base. She also generalized
some of the results in the case of five masses to N+1 masses. She proved that
the coplanar masses are concyclic (i.e. all lie on the same circle), and that the
mass off the plane is equidistant from them [5, Theorem 6.1.1]. She also proved
that in a pyramidal central configuration the mass off the plane is arbitrary [5,
Theorem 6.2.2]. She also investigated the relation between the pyramidal central
configuration and its base [5, Corollary 6.2.1].

This paper is distributed as follows. In section 2, we collect some basic properties
of PCC that will be useful in the proof of the main theorem in section 3 and section
4. In section 3 we show the relation between spatial pyramidal central configuration
and its base and also find the quantitative formulas of masses and distance for a
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PCC with regular polygon base. In section 4 we construct an example which gives
rise to a perverse solution in R3. Although some results in section 2 and 3 follow
straight ahead from the main theorems of Nelly Faycal [5], we have decided to
include our proofs here so that our paper will be completely self-contained.

2. Some General Lemmas

The proof to the following Lemmas can be found in Nelly Faycal [4, 5].

Lemma 2.1 ([5, Theorem 6.1.1]). If q̄ = (q̄1, . . . , q̄N+1) is a PCC such that q̄N+1

is at the top vertex which is off the plane containing m1, . . . ,mN , then mN+1 is
equidistant from m1, . . . ,mN .

Proof. Since q̄ = (q̄1, . . . , q̄N+1) forms a CC, then there exists a scalar λ such that
N+1∑

j=1,j 6=i

mjmi

|q̄j − q̄i|3
(q̄j − q̄i) = −λmiq̄i, 1 ≤ i ≤ N + 1. (2.1)

Writing q̄i = (x̄i, ȳi, z̄i) ∈ R3 in terms of its coordinate Gx̄ȳz̄, and Dj,i = |q̄j − q̄i|
for 1 ≤ i, j ≤ N + 1. Since the masses m1, . . . ,mN lie on a common plane, we may
assume then, without loss of generality, that this plane is parallel to Gx̄z̄. Hence
ȳ1 = ȳ2 = · · · = ȳN . Multiplying (2.1) by ȳ which is the unit vector of ȳ−direction.
We obtain

N+1∑
j=1,j 6=i

mjmi

D3
j,i

(q̄j − q̄i)ȳ = −λmiq̄iȳ, 1 ≤ i ≤ N + 1. (2.2)

From (2.2), for i = 1, 2, we obtain
mN+1m1

D3
N+1,1

(ȳN+1 − ȳ1) = −λm1ȳ1. (2.3)

mN+1m2

D3
N+1,2

(ȳN+1 − ȳ2) = −λm2ȳ2. (2.4)

Hence (2.3), (2.4) give

mN+1

( 1
D3

N+1,1

− 1
D3

N+1,2

)
(ȳN+1 − ȳ1) = 0. (2.5)

Since ȳN+1− ȳ1 6= 0 otherwise m1, . . . ,mN+1 are coplanar which contradicts to the
definition of yramidal central configuration, then

DN+1,1 = DN+1,2.

Similarly, we readily obtain

DN+1,i = DN+1,j1 ≤ i, j ≤ N.

So mN+1 is equidistant from m1, . . . ,mN . �

Remark 2.2. The position q̄1, . . . , q̄N are concyclic. In fact, they lie on the inter-
section of a plane with a sphere, since they are coplanar by assumption and they
belong to a sphere centered at mN+1 by Lemma 2.1.

Remark 2.3. For N = 3, q̄1, . . . , q̄4 form a PCC in addition to the symmetry of
the positions then q̄1, . . . , q̄4 are at the vertices of regular tetrahedron.

Lemma 2.4 ([5, Theorem 6.2.1]). If q̄ = (q̄1, . . . , q̄N+1) is a PCC then λ = MN+1g,
where MN+1 = m1 + · · ·+ mN+1 is the total masses and g = 1

D3
N+1,i

1 ≤ i ≤ N .
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Proof. Denote by Oxyz, the coordinate system obtained from Gx̄ȳz̄ by parallel
translation to a new origin O ∈ P , where O belongs to the plane P containing
m1, . . . ,mN . Let q1, . . . , qN+1 be the position vectors of m1, . . . ,mN+1 in Oxyz.
Obviously

OG =
1
m

N+1∑
j=1

mjqj . (2.6)

Since q̄ = (q̄1, . . . , q̄N+1) is a CC, there exists a λ such that
N+1∑

j=1,j 6=i

mjmi

|q̄j − q̄i|3
(q̄j − q̄i) = −λmiq̄i, 1 ≤ i ≤ N + 1. (2.7)

Take for the scalar multiple of equation (2.7) with ȳ a unit vector in ȳ-direction.
For i = 1, . . . , N + 1, we use q̄i = qi −OG to get

N+1∑
j=1j 6=i

mjmi

|qj − qi|3
(qj − qi) = −λmi(qi −OG), (2.8)

that is
N+1∑

j=1,j 6=i

mjmi

|qj − qi|3
(qj − qi) = −λmi

( 1
MN+1

N+1∑
j=1

mjqi −
1

MN+1

N+1∑
j=1

mjqj

)
,

or
N+1∑

j=1,j 6=i

mjmi

( 1
D3

j,i

− λ

MN+1

)
(qj − qi) = 0, (2.9)

then
N+1∑

j=1,j 6=i

mjmi

( 1
D3

j,i

− λ

MN+1

)
(qj − qi)ȳ = 0. (2.10)

But ȳ is perpendicular to the plane P containing the vectors q1, . . . , qN then

mN+1mi

( 1
D3

N+1,i

− λ

MN+1

)
(qN+1 − qi)ȳ = 0

Hence

λ =
MN+1

D3
N+1,i

1 ≤ i ≤ N.

Note (2.7) holds if and only if (2.9) holds. �

3. Relation Between Pyramidal Central Configuration and Its Base

The following theorem is an extension to arbitrary masses of the Faycal five-body
results [5, Corollary 2.3.1 and Theorem 2.3.1].

Theorem 3.1. If q̄ = (q̄1, . . . , q̄N+1)(N ≥ 3) is a PCC, such that q̄N+1 is at the
top vertex which is off the plane containing m1, . . . ,mN , then the particles of the
base m1, . . . ,mN also form a CC.

Conversely, if m1,m2, . . . ,mN with position q1, q2, . . . , qN , are coplanar and form
a CC with multiplier λ and if there exists a position qN+1 such that

1
|qN+1 − qi|3

=
λ

MN
, 1 ≤ i ≤ N,
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where MN =
∑N

i=1 mi, then for any mass mN+1 with position qN+1, m1,m2, . . . ,
mN+1 form a PCC

Proof. If q̄ = (q̄1, . . . , q̄N+1) is a PCC, similar to the proof of Lemma 2.4 and
according to the results (2.9) of Lemma 2.4, we have

N∑
j=1,j 6=i

mj(
1

D3
j,i

− 1
D3

N+1,1

)(qj − qi) = 0 . (3.1)

Furthermore, we choose the new origin O in Lemma 2.4 as the center of masses
m1, . . . ,mN , (i.e.

∑N
j=1 mjqj = 0). Then we have

N∑
j=1,j 6=i

mj

D3
j,i

(qj − qi) =
N∑

j=1,j 6=i

mj

D3
N+1,1

(qj − qi)

=
1

D3
N+1,1

N∑
j=1,j 6=i

mj(qj − qi)

=
1

D3
N+1,1

N∑
j=1

mj(qj − qi)

=
1

D3
N+1,1

N∑
j=1

mjqj −
1

D3
N+1,1

N∑
j=1

mjqi

= −
∑N

j=1 mj

D3
N+1,1

qi = − MN

D3
N+1,1

qi.

Let λ = (
∑N

j=1 mj)/D3
N+1,1. Then q1, . . . , qN form a central configuration. Con-

versely because m1,m2, . . . ,mN with positions q1, q2, . . . , qN , form a CC then

N∑
j=1,j 6=i

mjmi

|qj − qi|3
(qj − qi) = −λmiqi, 1 ≤ i ≤ N. (3.2)

Let

z0 =
1

MN+1

N+1∑
j=1

mjqj , q̄j = qj − z0. (3.3)
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Then
∑N

j=1 mj q̄j = −mN+1q̄N+1. For i 6= N + 1, we obtain

N+1∑
j=1,j 6=i

mjmi

|q̄j − q̄i|3
(q̄j − q̄i) +

λMN+1

MN
miq̄i

=
N+1∑

j=1,j 6=i

mjmi

|q̄j − q̄i|3
(q̄j − q̄i) +

λ

MN
mi

N+1∑
j=1,j 6=i

mj(q̄i − q̄j)

=
N+1∑

j=1,j 6=i

mjmi

( 1
|q̄j − q̄i|3

− λ

MN

)
(q̄j − q̄i)

=
N∑

j=1,j 6=i

mjmi

( 1
D3

j,i

− λ

MN

)
(q̄j − q̄i)

=
N∑

j=1,j 6=i

mjmi

( 1
D3

j,i

− λ

MN

)
(qj − qi) = 0.

That is
N+1∑

j=1,j 6=i

mjmi

|q̄j − q̄i|3
(q̄j − q̄i) = −λMN+1

MN
miq̄i = −λ′miq̄i,

where

λ′ =
MN+1

|qj − qN+1|3
.

And for i = N + 1,
N∑

j=1

mjmN+1

|q̄j − q̄N+1|3
(q̄j − q̄N+1) =

mN+1

D3
N+1,j

N∑
j=1

mj(q̄j − q̄N+1)

=
mN+1

D3
N+1,j

(−mN+1q̄N+1 −MN q̄N+1)

= − MN+1

D3
N+1,j

mN+1q̄N+1

= −λ′mN+1q̄N+1.

The proof is complete. �

The following theorem is an extension to the case of arbitrary masses of the
Faycal five-body result [5, Theorem 3.1.1].

Theorem 3.2. For N ≥ 3 the N + 1 body problem with masses m1,m2, . . . ,mN+1

in R+, and positions q̄1, . . . , q̄N+1 ∈ R3, assume q̄1, . . . , q̄N are coplanar and lie at
the vertices of a regular polygon inscribed on a unit circle, and the (N + 1)th is off
the plane. Then the N + 1 bodies form a PCC if and only if the distance between
top vertex and the vertices of the base satisfies

1
D3

N+1,k

=
1

4N

N−1∑
j=1

csc
(πj

N

)
< 1, 1 ≤ k ≤ N, (3.4)

where Dk,j = |q̄k − q̄j |, and the masses in the base are equal m1 = m2 = · · · = mN ,
the masse mN+1 in the top vertex is arbitrary.
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We remark that there is no loss of generality in assuming that the regular polygon
is inscribed on the unit circle since the CC (1.3) is invariant under the transfor-
mation q̄k → q̄k/a, λ → a2λ. In addition, the distance between top vertex and the
vertices of the base doesn’t depend on the masses and is completely determined by
the base. The central configurations of N bodies cannot be extended to any pyrami-
dal central configuration for N ≥ 473 because for N ≥ 473, 1

4N

∑N−1
j=1 csc(πj

N ) > 1.
So a planar central configuration can not always be extended to a pyramidal central
configuration.You can find more comments in Moeckel [9].

Proof of Theorem 3.2. By lemma 2.1, for 1 ≤ k, j ≤ N .
1

D3
N+1,k

=
1

D3
N+1,j

. (3.5)

By theorem 3.1, q̄1, q̄2, . . . , q̄N form a planar central configuration. Then these
particles can rotate about the center of masses by theorem (Perko-Walter [10] and
Xie-Zhang [12]).

λ =
MN+1γ

N
=

MN+1

D3
N+1,i

, (3.6)

where γ = 1
4N

∑N−1
j=1 csc(πj

N ). Then

1
D3

N+1,i

=
1

4N

N−1∑
j=1

csc
(πj

N

)
. (3.7)

By Theorem 3.1, q̄1, . . . , q̄N form a planar central configuration. As a result of
[10, 12], m1 = m2 = · · · = mN . Although the proof in [12] is not complete, the
flaw pointed out by Chenciner [2] does not affect the conclusion, m1 = m2 = · · · =
mN . �

Conversely, by Theorem 3.1, we know that we can put an arbitrary mass body
at the top vertex and the N + 1 bodies form a pyramidal central configuration.

4. Perverse Solutions in R3

Let q̄(t) = (q̄1(t), q̄2(t), . . . , q̄n(t)) be a solution of the n-body problem with New-
tonian potential and masses m1,m2, . . . ,mn. Chenciner [2] proposed the following
two questions:

(1) Does there exist another system of masses, (m′
1,m

′
2, . . . ,m

′
n), for which q̄(t)

is still a solution?
(2) The same as question 1 but insisting that the sum M =

∑n
i=1 mi of the

masses and the center of mass C = 1
M

∑n
i=1 miq̄i do not change.

Definition. If the answer to the first (resp. second) question is yes, we shall say
q̄(t) is a perverse (resp. really perverse) solution and the allowed systems of masses
will be called admissible.

Chenciner investigated the perverse solutions in the planar case. He proved for
n=2 that no solution is perverse, and for n ≥ 3 that perverse solutions do exist by
constructing an example of a regular polygon rotating around the body lying in the
center of the regular polygon. Now, we construct a perverse solution in R3. Let
q̄(t) = (q̄1(t), q̄2(t), . . . , q̄N (t), q̄N+1(t), 0) be a total collision solution with N + 2
masses (m1,m2, . . . ,mN ,mN+1,mN+2) and satisfy the following initial conditions:
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(1) (q̄1(0), q̄2(0), . . . , q̄N (0), q̄N+1(0)) is a pyramidal central configuration such
that q̄N+1(0) is at the top vertex which is off the plane containing q̄1(0),
q̄2(0), . . . , q̄N (0)

(2) The center of mass is at the origin i.e. m1q̄1(0) + · · · + mN+1q̄N+1(0) +
mN+2 · 0 = 0

(3) |q̄i| = |q̄j |, 1 ≤ i, j ≤ N + 1
(4) The initial velocity is zero i.e. q̄′(0) = 0.

Theorem 4.1. q̄(t) is a perverse solution with a one parameter family of admissible
sets of masses.

Proof. q̄(t) is a solution of the Newton’s equation

mj ¨̄qj =
N+2∑

k=1,k 6=j

mkmj

|q̄k − q̄j |3
(q̄k − q̄j), 1 ≤ j ≤ N + 2. (4.1)

where q̄N+2(t) = 0 for all t. Because q̄(t) satisfies the above initial conditions,
q̄(t) will collapse homothetically to a collision at the center of mass at zero while
keeping the shape in the whole motion. Therefore, q̄(t) is a perverse solution and
(m′

1,m
′
2, . . . ,m

′
N ,m′

N+1,m
′
N+2) is an admissible system of masses if and only if

the accelerations ¨̄qi(t) (for all 1 ≤ i ≤ N + 2) do not change with respect to the
admissible masses. In fact, for j 6= N + 2, we have

¨̄qj =
N+2∑

k=1,k 6=j

mk

|q̄k − q̄j |3
(q̄k − q̄j)

=
N+1∑

k=1,k 6=j

mk

|q̄k − q̄j |3
(q̄k − q̄j) +

mN+2

|q̄N+2 − q̄j |3
(q̄N+2 − q̄j)

= − MN+1

D3
N+1,j

q̄j −
mN+2

|q̄j |3
q̄j by lemma 2.4

= −βMN+1

|q̄j |3
q̄j −

mN+2

|q̄j |3
q̄j

= −(βMN+1 + mN+2)
q̄j

|q̄j |3

where β = |q̄j |3/D3
N+1,j is a constant for all 1 ≤ j ≤ N + 1 and for all t because

|q̄j | = |q̄k|, DN+1,j = DN+1,k and the motion keeps the same shape. In addition, for
j = N +2, q̄N+2 is fixed at origin. Therefore, (m′

1,m
′
2, . . . ,m

′
N ,m′

N+1,m
′
N+2) is an

admissible masses if βM ′
N+1 + m′

N+2 = βMN+1 + mN+2 and the initial conditions
are satisfied. For example, we can choose m′

j = ρmj for 1 ≤ j ≤ N + 1 which leads
the initial conditions to be satisfied and choose m′

N+2 = βMN+1+mN+2−βρMN+1.
It follows that ρ may be chosen as a parameter of the set of admissible masses. In
particular, q̄(t) is perverse but not really perverse since β < 1. �

Corollary 4.2. Under the same conditions as theorem 4.1, but inscribing the base
q̄1(0), . . . , q̄N (0) on the vertex of a unit regular polygon, the function q̄(t) is a per-
verse solution for N = 3, 4, 5, 6, 7, 8.

Proof. We only need to check the conditions (1) and (2) are satisfied if we choose
m1 = · · · = mN and the distance DN+1,k between the q̄N+1 and q̄k satisfying
(3.4). For N = 3, 4, 5, 6, 7, 8, it could choose masses such that (3) and (4) are
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satisfied. But for N ≥ 9, DN+1,i < 1.394 then it is impossible to make |q̄i| = |q̄j |
for 1 ≤ i, j ≤ N + 1. �

Acknowledgments. The authors wish to express their gratitude to the anony-
mous referee for the advice to investigate perverse solutions of N-body problems.
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