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SEMICLASSICAL LIMIT AND WELL-POSEDNESS OF
NONLINEAR SCHRÖDINGER-POISSON SYSTEMS

HAILIANG LI & CHI-KUN LIN

Abstract. This paper concerns the well-posedness and semiclassical limit of

nonlinear Schrödinger-Poisson systems. We show the local well-posedness and
the existence of semiclassical limit of the two models for initial data with

Sobolev regularity, before shocks appear in the limit system. We establish

the existence of a global solution and show the time-asymptotic behavior of a
classical solutions of Schrödinger-Poisson system for a fixed re-scaled Planck

constant.

1. Introduction

Equations of (nonlinear) Schrödinger type appear in areas of physics such as
quantum fluid mechanics (superfluid film), superconductivity, semiconductor, plasma,
electromagnetism, etc. [18, 7, 24, 27, 23, 1]. In the present paper, we consider the
Cauchy problem for the nonlinear Schrödinger-Poisson (SP) system

iε ψε
t +

ε2

2
∆ψε − (V ε(x, t) + f ′(|ψε|2))ψε − (argψε)ψε = 0 , (1.1)

−∆V ε = |ψε|2 − C(x), V → 0 as |x| → ∞. (1.2)

subject to the rapidly oscillating (WKB) initial condition

ψε(x, 0) = ψε
0(x) = Aε

0(x) exp
( i
ε
S0(x)

)
, (1.3)

where f ∈ C∞(R+; R), S0 ∈ Hs(RN ), N ≥ 1, for s large enough, and Aε
0 is a

function, polynomial in ε, with coefficients of Sobolev regularity in x. The scaled
Planck constant is here denoted by ε. The superscript ε in the wave function ψε(x, t)
and in the electric potential V ε indicates the ε-dependence. The function C(x) > 0
denotes the background ions. The function f depends only on the particle density
ρε defined by

ρε(x, t) = ψ̄ε(x, t)ψε(x, t), (1.4)

where the bar on top, ψ̄, denotes complex conjugation. The last nonlinear term
serves as a friction damping of phase, used recently in modelling semiconductor
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devices [16], where the argument argψε = Sε is defined for irrotational flow by

ρε∇Sε =
ε

2i
(ψ̄ε∇ψε − ψε∇ψ̄ε). (1.5)

When we introduce the geometric optic ansatz

ψε(x, t) = Aε(x, t) exp
( i
ε
Sε(x, t)

)
=

√
ρε(x, t) exp

( i
ε
Sε(x, t)

)
, (1.6)

the so-called Madelung’s transformation and define the hydrodynamical variables
ρε as (1.4), velocity uε and momentum Jε by

uε = ∇Sε, Jε = ρεuε, (1.7)

we have the following quantum hydrodynamic form of the Schrödinger-Poisson sys-
tem (1.1)-(1.2)

∂tρ
ε + div(ρεuε) = 0, (1.8)

∂t(ρεuε) + div (ρεuε ⊗ uε) +∇P (ρε) + ρε∇V ε + ρεuε =
ε2

4
div

(
ρε∇2log ρε

)
,

(1.9)

−∆V ε = ρε − C(x), (1.10)

with initial data
ρε(x, 0) = ρε

0(x), uε(x, 0) = uε
0(x). (1.11)

Here the hydrodynamics pressure P (ρ) is related to the nonlinear potential f(ρ) by

P (ρ) = ρf ′(ρ)− f(ρ). (1.12)
Equations (1.8)–(1.9) comprise a closed system governing ρε and uε with potential
V ε given by the Poisson equation (1.10) which has a form of a perturbation of
the Euler-Poisson system. Letting ε → 0+, we have formally the following Euler-
Poisson system (the classical hydrodynamic model of semiconductors)

∂tρ+ div(ρu) = 0, (1.13)

∂t(ρu) + div (ρu⊗ u) +∇P (ρ) + ρ∇V + ρu = 0, (1.14)

−∆V = ρ− C(x), (1.15)

which can be seen formally as the dispersive (semiclassical) limit of the Schrödinger-
Poisson system.

The mathematical rigorous analysis of the semiclassical limit for Schrödinger type
equations is an issue of much importance and full of complication. The elementary
principle of quantum mechanics informs that the (classical) Newton mechanics will
dominate in a system when the space and time scale is larger enough than the
Planck constant ε (quantum effect). The mathematical analogue of the principle is
that as ε→ 0, the system of quantum mechanics becomes the one obeying Newton
mechanics, which is called the “semiclassical” limit.

Recently, much progress has been made in such area. For linear Schrödinger
equation or Schrödinger-Poisson, the idea of kinetic formulation to solve it global-
in-time is the followings. By applying the Wigner transforms, we can obtain a
kinetic integral-differential equation–the so-called Wigner equation.

The investigation of kinetic structure of the Wigner equation and the applica-
tion of the moments methods to its solutions, which yield information of macro-
scopic densities, help us to pass limit ε → 0+ in the Wigner equation and the
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macroscopic densities. We have the Vlasov (Vlasov-Poisson) equation, which is
the quantum (hydrodynamic) limiting system of the linear Schrödinger type equa-
tions [27, 22, 28, 12, 2, 33]. The analysis of the limiting system gives us the similar
macroscopic densities and results to those obtained by the geometric optics ap-
proach to the WKB limit of Schrödinger equations and reveals a close relation be-
tween the dispersive limit of quantum fluid equations and the kinetic equations [10].

However, it is quite different for nonlinear Schrödinger type equations because
the theory of Wigner transforms passing limit ε → 0+ are still under investi-
gation for nonlinear Schrödinger type equations. Up to now, the mathematical
rigorous theory is only established for the one-dimensional defocusing cubic nonlin-
ear Schrödinger equation where the inverse scattering technique for the integrable
system was used to obtain the global characterization of the weak limit of the en-
tire nonlinear Schrödinger hierarchy [15], for multi-dimensional nonlinear (includ-
ing derivative or modified) Schrödinger equations included by the WKB-hierarchy
[13, 5, 6, 20, 19] by applying Lax-Friedrich-Kato’s quasi-linear symmetric hyper-
bolic theory in Sobolev space before vortices where due to the spatial vanishing of
wave function at infinity a strictly convex entropy was required, and also in [11]
for analytic initial data. Moreover, the rigorous incompressible limit analysis of
nonlinear Schrödinger equation to incompressible fluids with vortices involved was
proven in R2 [21]. For more detailed review on such topics, one is referred to [9, 32]
and the references therein.

For nonlinear Schrödinger-Poisson system (1.1)–(1.2), it is far from well un-
derstood on the well-posedness and semiclassical limit. As C = 0 the theory of
well-posedness, scattering phenomena, stability of soliton wave, finite time blow-up
and so on for (1.16)–(1.17) is well understood [4, 31, 32]. As C0 > 0 in our case,
however, the Poisson coupling requires that |ψε(x, t)| = C0 > 0 as |x| → ∞, which
implies that the value of phase depends on the direction at space infinity. Only the
existence of (nonconstant) travelling-wave solutions with nontrivial boundary con-
dition at space infinity is proven for a nonlinear Schrödinger equation in R2 in terms
of conserved Hamiltonian [3]. For Schrödinger-Poisson system (1.1)–(1.2), however,
it is quite different since there is no (conserved and nonnegative) Hamiltonian. In
fact, even for the following Schrödinger-Poisson system

iε ψε
t +

1
2
ε2∆ψε − (V ε(x, t) + f ′(|ψε|2))ψε = 0 , (1.16)

−∆V ε = |ψε|2 − C0, (1.17)

with C0 > 0 a constant, the conservation laws only hold in the following sense∫
RN

(|ψε(x, t)|2 − C0)dx =
∫

RN

(|ψε(x, 0)|2 − C0)dx, (1.18)∫
RN

(
1
4
|∇ψε|2 +

1
4
|∇V ε(x, t)|2 + f(|ψε|2)− f(C0)

)
(x, t)dx

=
∫

RN

(
1
4
|∇ψε|2 +

1
4
|∇V ε(x, 0)|2 + f(|ψε|2)− f(C0)

)
(x, 0)dx (1.19)

which does not give the a-priori bounds of energy and density.
Our goals in the present paper are: a) present a local well-posedness theory of

Schrödinger-Poisson system (1.1)–(1.2) and a justification of the semiclassical limit
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from Schrödinger-Poisson (1.1)–(1.2) to Euler-Poisson (1.13)–(1.15); b) establish
global existence and long time behavior of (1.1)–(1.2) in RN (N ≥ 1).

To obtain local existence and perform the dispersive limit, the idea here is to
transform the Schrödinger-Poisson system as a dispersive perturbation of the Euler-
Poisson system in the form of quasi-linear symmetric hyperbolic system by Modified
Madelung transform [13] to which the Lax-Friedrich-Kato’s theory can be applied
as [13, 5, 6, 20]. Notice that the associated potential V ε determined by (1.2) is
served as an external force potential and the amplitude of the wave function should
be a complex-valued function. Unlike [13, 5, 6, 20] we do not need that the entropy is
strictly convex near vacuum. However, due to the hyperbolic nature of the limiting
system, it works before the shock singularity.

We show that, for certain initial data, a) solutions of the IVP for (1.1)–(1.3)
exist on a time interval [0, T ], where T is independent of ε; and b) solutions of the
IVP for (1.1)–(1.3) converge to solutions of the IVP for (1.13)–(1.15), as ε → 0.
Indeed, applying the theory of the quasi-linear symmetric hyperbolic system we
will obtain the existence of smooth solutions ψε of (1.1)–(1.3) on a time interval
[0, T ) independent of ε. Furthermore, the bounds that we obtained are uniformly
bounded in ε on the solutions ψε will allow to pass to the limit ε→ 0 in (2.9)–(2.10)
and justify the WKB hierarchy (Theorem 2.1). In addition, to ensure the strong
convergence of ψε to a classical solution of the Euler-Poisson system (1.13)–(1.15)
we require the hypothesis that we are near the solutions of (1.13)–(1.15) initially
(Theorem 2.2).

To prove the global existence and long time behavior of Schrödinger-Poisson
system (1.1)–(1.2) for fixed ε > 0, the idea is to make use of the hydrodynamical
form of Schrödinger-Poisson system (1.1)–(1.2) so as to take advantage of the dis-
sipations of nonlinear term and Poisson coupling and establish uniformly a-priori
estimates by energy method. These extend local solution globally in time by a con-
tinuity argument. The problems to be overcome here are to keep the positivity of
density (to make the Madelung’s transformation valid) and to control the nonlinear
dispersion term in Sobolev space. Instead of fluid equations (1.8)–(1.10), we use
another equivalent system (3.5)–(3.7) (see section 3) for variables (%ε,uε, V ε) for
amplitude, velocity and potential. We show that when initial data are a perturba-
tion of a steady state of (1.1)–(1.2), the classical solution exists globally in time
and tends to the steady state exponentially as time grows up (Theorem 3.1).

This paper is arranged as follows. In section 2, we consider the semiclassical
limit and local well-posedness of classical solution of IVP (1.1)–(1.3). The global
existence and long time behavior of IVP (1.1)–(1.3) is solved in section 3.

2. Well-posedness and semiclassical limit

2.1. Main results. Let Hs(RN ) denotes the usual Sobolev space of order s. First
we prove the local existence of solutions to the Cauchy problem for Schrödinger-
Poisson system (1.1)–(1.3) for each ε, we give sufficient conditions for the well-
posedness in Sobolev space Hs(RN ). Also, we obtain a-priori uniform estimates
with respect to ε in order to pass limit. For simplicity, we assume that C(x) = C is
a constant here and after.

Theorem 2.1. Assume that {|Aε
0| −

√
C}ε is a uniformly bounded sequence in

Hs(RN ) with compact support, S0 ∈ Hs+1(RN ) with ∇S0 compact supported,
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s > (N + 4)/2, and f ∈ C∞(R+,R) with f ′′(ρ) > 0 for ρ > 0. Then solu-
tions (ψε, V ε) of the Schrödinger-Poisson system (1.1)− (1.3) exist on a small time
interval [0, T ], T independent of ε. Moreover, ψε(x, t) = Aε(x, t)eiSε(x,t)/ε with
Aε ∈ L∞([0, T ];Hs(RN )) and Sε ∈ L∞([0, T ];Hs+1(RN )) uniformly in ε and V ε

given by (2.13).

To investigate the behavior of (ψε, V ε) of the Schrödinger-Poisson system (1.1)–
(1.2) as ε → 0, we construct a solution of IVP (1.1)–(1.3) with initial data near a
classical solution of the Euler-Poisson system (1.13)–(1.15). In fact we have

Theorem 2.2. Assume that (ρ,u, V ) is a solution of the Euler-Poisson system
(1.13)–(1.15) and satisfies (ρ−C,u, V ) ∈ C([0, T ],Hs+2(RN )), s ≥ (N +4)/2, with
initial condition

ρ0(x) = ρ(x, 0) = |A0(x)|2,
u0(x) = u(x, 0) = ∇S0(x).

Then there exists a critical value of ε, εc dependent of T , such that under the
hypothesis

(1) Aε
0(x) converges strongly to A0 in Hs(RN ) as ε tends to 0

(2) (
√
ρ0 −

√
C,u0) ∈ Hs(RN ) with compact support,

(3) 0 < ε < εc,

the IVP for Schrödinger-Poisson system (1.1)–(1.3) has a unique classical solution
(ψε, V ε) on [0, T ], the wave function is of the form

ψε(x, t) = Aε(x, t) exp
( i
ε
Sε(x, t)

)
with Aε and ∇Sε are bounded in L∞([0, T ];Hs(RN )) uniformly in ε and V ε is given
by (2.13). Moreover, as ε → 0 (ρε, ρε∇Sε, V ε) with

√
ρε = Aε, converges strongly

in C([0, T ],Hs−2(RN )).

Remark 2.3. 1). The existence of (local or global) classical solution of Euler-
Poisson system (1.13)–(1.15) was proved in [26, 8] for C = 0, in [29] for C > 0, and
in [14] without frictional damping.

2). If C is a positive function of x, one can get the same results as Theorem 2.1–
2.2 for spatial periodic case.

2.2. Proof of the main Results. To study the asymptotic behavior of solutions
of the Schrödinger-Poisson system (1.1)–(1.3) as ε tends to zero we have to show
the existence of a smooth solutions (ψε, V ε) of (1.1)–(1.3) on a finite time [0, T ]
independent of ε, for initial data Aε

0(x), S
ε
0(x) and V0(x) with Sobolev regularity

first. For classical solutions, it is convenient to write the Schrödinger-Poisson sys-
tem (1.1)–(1.3) as a dispersive perturbation of a quasilinear symmetric hyperbolic
system instead of quantum hydrodynamics model (1.8)–(1.10). As suggested by
Grenier [13] (see also [5, 6, 9, 20]), the modified Madelung’s transform can be uti-
lized in the study of the semiclassical limit. More precisely, we will look for wave
function ψε of the form ψε(x, t) = Aε(x, t) exp( i

εS
ε(x, t)) , where the complex-valued

function Aε = aε + ibε represents the amplitude and the real-valued function Sε

represents the phase. Considering the change of variable

wε = ∇Sε (2.1)
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and using the fact that Aε = aε + ibε we have the equivalent form of (1.1)–(1.2) or
(1.8)–(1.10);

∂t(aε − a1) + (wε · ∇)(aε − a1) +
1
2
aε∇ · wε = − ε

2
∆bε , (2.2)

∂t(bε − b1) + (wε · ∇)(bε − b1) +
1
2
bε∇ · wε =

ε

2
∆aε , (2.3)

∂tw
ε + (wε · ∇)wε + f ′′∇

(
(aε)2 + (bε)2

)
+∇V ε + wε = 0, (2.4)

−∆V ε = (aε)2 + (bε)2 − C. (2.5)

with initial data

(aε, bε)(x, 0) = (aε
0, b

ε
0)(x), (aε

0, b
ε
0)(x) → (a1, b1), as |x| → ∞, (2.6)

wε(x, 0) = wε
0(x) , (2.7)

satisfying(
aε
0(x)

)2 +
(
bε0(x)

)2 = |Aε
0(x)|2 , a2

1 + b21 = C, wε
0(x) = ∇Sε

0(x) . (2.8)

Here f ′′ is the abbreviation of f ′′(ρε), ρε = (aε)2+(bε)2. Notice that Eqs. (2.2)–(2.5)
are not the same as Eqs. (1.8)–(1.10) where we split into the real and imaginary
parts. Here it is split into the order O(1/ε) and O(1) terms. Let us introduce
U ε = t(aε−a1, b

ε−b1, wε) with wε = (wε
1, . . . , w

ε
N ) then this system can be written

in the vector form

U ε
t +

N∑
j=1

Aj(U ε)U ε
xj

+ U ε = Bε +
ε

2
L(U ε), (2.9)

U ε(x, 0) = U ε
0(x) = t(aε

0(x)− a1, b
ε
0(x)− a1, w

ε
0(x)) (2.10)

where Bε = t(aε − a1, b
ε − b1,−∇V ε) and the matrices Aj and L are given respec-

tively by

Aj(U ε) ≡

 wε
j 0 1

2a
εej

0 wε
j

1
2b

εej

2aεf ′′ tej 2bεf ′′ tej wε
jI

 , (2.11)

L(U ε) =

 0 −∆ O
∆ 0 O
tO tO O

 aε − a1

bε − b1
twε

 =

−∆(bε − b1)
∆(aε − a1)

tO

 , (2.12)

According to the Poisson equation, the potential is given explicitly in terms of the
Newtonian potential

V ε(x, t) = −
∫

RN

ρε(y, t)− C
N(2−N)ωN |x− y|N−2

dy (2.13)

where ρε(x, t) = |Aε(x, t)|2 = (aε(x, t))2 + (bε(x, t))2 and ωN denotes the surface
area of the unit sphere in RN . Thus we can rewrite Bε as

Bε := B(ρε) = t(aε − a1, b
ε − b1, g

ε
1, . . . , g

ε
N ) (2.14)

where gε
i (x, t), i = 1, . . . , N, are given by

gε
i (x, t) =

∂V ε

∂xi
= −

∫
RN

xi − yi

NωN |x− y|N
[
ρε(y, t)− C

]
dy. (2.15)
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Notice that I is a N × N identity matrix, ej = (δ1j , δ2j , . . . , δNj) and L is an
antisymmetric matrix. The matrices Aj(U ε), j = 1, . . . , N, can be symmetrized by

A0(U ε) =

 1 0 O
0 1 O

tO tO 1
4f ′′ I

 (2.16)

which is symmetric and positive if f ′′ > 0, for all U ε = t(aε − a1, b
ε − b1, w

ε).
This means that f must be a strictly convex function of ρ and corresponds to the
defocusing Schrödinger-Poisson system. Thus, we write (1.1)–(1.3) as a dispersive
perturbation of a quasilinear symmetric hyperbolic system:

A0(U ε)U ε
t +

N∑
j=1

Aj(U ε)U ε
xj

+A0(U ε)U ε = B(ρε) +
ε

2
L(U ε) , (2.17)

U ε(x, 0) = U ε
0(x) (2.18)

where Aj = A0Aj (j = 1, . . . , N) is symmetric and B = A0B. The importance
of symmetry is that it leads to simple L2 and more general Hs estimates which
are often related to physical quantities like energy or entropy. The antisymmet-
ric operator ε

2L = ε
2A0L reflects the dispersive nature of the Schrödinger-Poisson

system. Moreover, due to the antisymmetry, the energy estimate shows that this
term L contributes nothing to the estimate. The existence of the classical solutions
proceeds along the lines of the existence proof for the initial value problem for the
quasilinear symmetric hyperbolic system (see [17, 20]) with modifications. As usual,
start from the initial data U0(x, t) = U ε

0(x) and define Up+1(x, t; ε) inductively as
solution of the linear equation; (p = 1, 2, 3, . . . )

A0(Up)Up+1
t +

N∑
j=1

Aj(Up)Up+1
xj

+A0(Up)Up+1 = B(ρp) +
ε

2
L(Up+1) , (2.19)

Up+1(x, 0) = U ε
0(x). (2.20)

For further reference, we ignore the superscripts p and consider U ∈ C∞, Ũ ∈ C∞
satisfying

A0(U)Ũt +
N∑

j=1

Aj(U)Ũxj
+A0(U)Ũ = G(t) +

ε

2
L(Ũ) , (2.21)

Ũ(x, 0) = U ε
0(x), (2.22)

where we rewrite B(ρp) as G(t). Defining the canonical energy by

‖Ũ(t; ε)‖2E :=
∫
〈A0Ũ , Ũ〉dx (2.23)

we have the basic energy equality of Friedrich

d

dt
‖Ũ(t; ε)‖2E + ‖Ũ(t; ε)‖2E =

∫
〈ΓŨ , Ũ〉dx+ 2

∫
〈G(t), Ũ〉dx+ ε

∫
〈L(Ũ), Ũ〉dx

(2.24)
where Γ = div ~A = (∂t,∇) · (A0,A1, . . . ,AN ). The term

∫
〈L(Ũ), Ũ〉dx = 0

by antisymmetry of L. Assume that the matrices A0 and Aj , j = 1, . . . , N to-
gether with their derivatives of any desired order are continuous and bounded
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uniformly in [0, T ] × RN . Moreover, the matrix A0 is uniformly positive defi-
nite in the sense that there exists a µ > 0 such that 〈A0U,U〉 ≥ µ‖U‖2, for
all U and (x, t). Since Γ is bounded there will exists a constant M such that
|〈ΓŨ , Ũ〉| ≤ M〈A0Ũ , Ũ〉 for all (x, t). From Lemma 2.6 below it foloows that
G ∈ L∞([0, T ];Hs(RN )) ∩ C([0, T ];Hs−2(RN )). Applying Cauchy-Schwarz then
Gronwall inequalities, we obtain the energy inequality

max
0≤t≤T

‖Ũ(t; ε)‖L2(RN ) ≤
(
‖U ε

0‖L2(RN ) +
MT

µ2

)
e(M+3)T . (2.25)

Higher derivative estimates for Ũ are obtained by differentiating (2.21), taking the
inner product of the resulting equation with the corresponding derivative of Ũ , and
applying the above procedure. We define Ũα by Ũα := DαŨ for |α| ≤ s then

A0(U)
∂Ũα

∂t
+

N∑
j=1

Aj(U)
∂Ũα

∂xj
+A0(U)Ũα = Gα(t) +

ε

2
L(Ũα) , (2.26)

Ũα(x, 0) = DαU ε
0(x). (2.27)

with Gα defined by the commutator terms as

Gα = A0(U)
(
DαB −

N∑
j=1

[
Dα, Aj(U)

] ∂Ũ
∂xj

)
(2.28)

Since ∂ eUα

∂xj
,

∂Aj(U)
∂xi

∈ Hs(RN ), we can apply the Moser-type calculus inequality to
estimate the commutator terms;∥∥Dµ ∂Ũ

∂xj
Dν ∂Aj(U)

∂xj

∥∥
L2(RN )

≤ C
∥∥ ∂Ũ
∂xj

∥∥
Hs(RN )

∥∥∂Aj(U)
∂xj

∥∥
Hs(RN )

≤ CM2
0 (2.29)

provided ‖Ũ‖Hs(RN ) ≤ 2M0. (Note that ‖Aj(U)‖Hs(RN ) ≤ C‖U‖Hs(RN ).) Thus we
have

‖Gα‖L2(RN ) ≤ ‖DαG‖L2(RN ) + C2M
2
0 (2.30)

as long as ‖U‖Hs(RN ) ≤ 2M0. This implies

‖Ũ(t)‖Hs(RN ) ≤ (M0 + (C3M
2
0 +M)T )eC3M0T ≤ 2M0 (2.31)

for t ∈ [0, T ] provided that T is so small that the last inequality holds. The result
is a solution U ε on a time interval [0, T ] with T independent of ε satisfying

‖Up(t; ε)‖Hs(RN ) ≤ C , t ∈ [0, T ] (2.32)

as soon as U ε
0 ∈ Hs(RN ). It follows from (2.19) and (2.32) that

‖∂tU
p(t; ε)‖Hs−2(RN ) ≤ C , t ∈ [0, T ]. (2.33)

Therefore, for any fixed ε, we have constructed a sequence {Up}∞p=0 belonging to

C([0, T ];Hs(RN )) ∩ C1([0, T ];Hs−2(RN )) (2.34)

satisfying (2.19) and (2.20) as well as the uniform estimates

max
0≤t≤T

(
‖∂tU

p(t; ε)‖Hs−2(RN ) + ‖Up(t; ε)‖Hs(RN )

)
≤ C. (2.35)

It follows from the Arzela-Ascoli theorem that there exists

U ∈ L∞([0, T ];Hs(RN )) ∩ Lip([0, T ];Hs−2(RN )) (2.36)
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such that
max

0≤t≤T
‖Up − U‖Hs−2(RN ) → 0 , as p→∞. (2.37)

Furthermore, for 0 < θ < 2 we have the convergence

Up → U in C([0, T ];Hs−θ(RN )) (2.38)

by the standard interpolation inequality. Choosing s such that s − θ − 2 > [N/2],
then the space Hs(RN ) becomes an algebra. Indeed, we can show that

U ∈ C([0, T ];Hs(RN )) ∩ C1([0, T ];Hs−2(RN )) ↪→ C1([0, T ]× RN )) (2.39)

by Sobolev embedding theorem. Thus the solutions we construct are classical. The
uniqueness of the classical solutions to the IVP for (2.19) and (2.20) follows from
a straightforward energy estimate for the difference of two solutions. To show that
ρε(x, t) = (aε(x, t))2 + (bε(x, t))2 > 0 for all 0 ≤ t < ∞, we will employ the polar
coordinates:

Aε = aε + ibε =
√
ρεeiθε

. (2.40)
Applying the chain rule to obtain

aε∆bε − bε∆aε = div(ρε∇θε) (2.41)

then from (2.2)–(2.3) we derive the continuity equation for ρε

∂tρ
ε + div(ρεwε + ερε∇θε) = 0 (2.42)

which has an extra term of order O(ε) comparing with the usual continuity equation.
We can interpret this as a classical transport equation disturbed by the quantum
fluctuation. Let (ξ, τ) be an arbitrary fixed space-time point in RN × [0, T ]. Since
wε + ε∇θε ∈ C1([0, T ];Hs(RN )), the well-known theorem for ordinary differential
equations guarantees that the problem

dx

dt
= wε(x, t) + ε∇θε(x, t), x|t=τ = ξ (2.43)

has a unique solution x = Ψ(t) ∈ C1([0, T ]; RN ). Equation (2.42) implies
d

dt
ρε(Ψ(t), t) = −div(wε + ε∇θε)ρε (2.44)

Integrating over [0, τ ] we have

ρε(ξ, τ) = ρε(Ψ(0), 0) exp
[
−

∫ τ

0

div
(
wε(Ψ(t), t) + ε∇θε(Ψ(t), t)

)
dt

]
. (2.45)

Thus ρε(ξ, τ) ≥ 0 if ρε(Ψ(0), 0) = ρε
0(Ψ(0)) ≥ 0. DenoteR{u} = sup{|x| : u(x) 6= 0}

for u ∈ C(RN ). If ρε(ξ, τ) 6= 0 then ρε
0(Ψ(0)) 6= 0 so that |Ψ(0)| ≤ R{ρε

0}, and

|ξ| = |Ψ(τ)| =
∣∣∣Ψ(0) +

∫ τ

0

wε(Ψ(t), t) + ε∇θε(Ψ(t), t)dt
∣∣∣

≤ |Ψ(0)|+
∫ τ

0

|wε|∞ + ε|∇θε|∞dt

≤ R{ρε
0}+ (1 + ε)CT.

(2.46)

The same proof can be applied to

∂t(ρε − C) + (wε + ερε∇θε)∇(ρε − C) + div(wε + ερε∇θε)(ρε − C) = 0 (2.47)

which yields
|ξ| = |Ψ(τ)| ≤ R{ρε

0 − C}+ (1 + ε)CT. (2.48)
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Therefore, we have proven the existence and uniqueness of the classical solution of
the dispersive perturbation of the quasilinear symmetric hyperbolic system (2.19)–
(2.20).

Theorem 2.4. Let f ∈ C∞(R+,R) with f ′′(ρ) > 0 for ρ > 0, and s > [N/2] + 3.
Assume that the initial data

U ε
0 = t(aε

0 − a1, b
ε
0 − b1, w

ε
0) ∈ Hs(RN )×Hs(RN )× (Hs(RN ))N (2.49)

are compact supported and satisfies the uniform bound

‖U ε
0‖Hs(RN ) = ‖aε

0 − a1‖Hs(RN ) + ‖bε0 − b1‖Hs(RN ) + ‖wε
0‖Hs(RN ) < C0, (2.50)

and Bε ∈ C([0, T ];Hs(RN )) ∩ C1([0, T ];Hs−2(RN )) with ‖Bε‖Hs(RN ) ≤ C1. Then
there exists a time interval [0, T ] with T > 0 , so that the IVP for the (2.19)–(2.20)
has a unique classical solution U ε = t(aε − a1, b

ε − b1, w
ε);

(aε − a1, b
ε − b1) ∈ C1([0, T ]× RN ) ∩ C1([0, T ];C2(RN )) (2.51)

wε ∈ C1([0, T ]× RN ) (2.52)

Furthermore,

U ε ∈ C([0, T ];Hs(RN )) ∩ C1([0, T ];Hs−2(RN )) (2.53)

and T depends on the bound C in (2.50) and in particular, not on ε. The solution
U ε = t(aε − a1, b

ε − b1, w
ε) satisfies the estimate

‖U ε‖Hs(RN ) = ‖aε − a1‖Hs(RN ) + ‖bε − b1‖Hs(RN ) + ‖wε‖Hs(RN ) < C (2.54)

for all t ∈ [0, T ]. The constant C is also independent of ε. In addition, if ρε
0(x) =

(aε
0)

2 + (bε0)
2 > 0 then ρε(x, t) > 0 for all t ≥ 0; if ρε

0 has a compact support, then
ρε(·, t) does too for any t ∈ [0, T ] and

R{ρε(·, t)} ≤ R{ρε
0}+ (1 + ε)MT.

Proof of Theorem 2.1. Since Aε = aε + ibε and wε = ∇Sε, it follows from (2.51)–
(2.52) that

Aε ∈ C([0, T ];Hs(RN )) ∩ C1([0, T ];Hs−2(RN )) (2.55)

Sε ∈ C([0, T ];Hs+1(RN )) ∩ C1([0, T ];Hs(RN )) (2.56)

and thus

Aε ∈ C1([0, T ]× RN ) ∩ C1([0, T ];C2(RN )), Sε ∈ C1([0, T ];C2(RN )) (2.57)

by Sobolev embedding theorem. The wave function ψε = AεeiSε/ε has the same
regularity as Aε, thus

Aε ∈ C([0, T ];Hs(RN )) ∩ C1([0, T ];Hs−2(RN ))

↪→ C1([0, T ]× RN ) ∩ C1([0, T ];C2(RN )). (2.58)

For classical solutions, the Schrödinger-Poisson system (1.1) (1.2) is equivalent to
the dispersive quasilinear hyperbolic system (2.9) (2.10). Applying this equivalent
relation, Theorem 2.1 follows immediately. �
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The limiting system of (2.9)–(2.10) is the quasilinear symmetric hyperbolic sys-
tem (formally letting ε→ 0)

Ut +
N∑

j=1

Aj(U)Uxj
+ U = B(t), U(x, t) = t(a, b, w) , (2.59)

U(x, 0) = U0(x) = t(a0(x)− a1, b0(x)− b1, w0(x)) , (2.60)

which is equivalent to (1.13)–(1.15) as long as the solutions are smooth. As a
corollary we also prove the existence and uniqueness of the local smooth solutions
of the Euler-Poisson system (1.13)–(1.15).

Corollary 2.5. Assume the hypothesis of Theorem 2.4. Given U ε
0 , U0 ∈ Hs(RN )

and U ε
0(x) converges to U0(x) in Hs(RN ) as ε tends to 0. Let [0, T ] be the fixed inter-

val determined in Theorem 2.4. Then as ε→ 0 there exists U ∈ L∞
(
[0, T ];Hs(RN )

)
such that

U ε → U in C([0, T ];Hs−σ(RN )) for all σ > 0 (2.61)

The function U(x, t) belongs to C([0, T ];Hs(RN ) ∩ C1([0, T ];Hs−1(RN )) and is a
classical solution of (2.59)–(2.60) with initial data U(x, 0) = U0(x).

Proof. By a classical compactness argument, Arzela-Ascoli theorem (applied in time
variable), the Rellich lemma (applied in the space variables), we deduce from (2.53)
the existence of a subsequence of {U ε} such that

U ε converges strongly in C([0, T ];Hs−σ(RN )) to a function U (2.62)

for σ > 0. Furthermore, from the equation itself we also have

U ε → U strongly in C1([0, T ];Hs−2−σ(RN )). (2.63)

Since U ε
0(x) converges strongly to U0(x) inHs(RN ), this limiting solution has initial

data U0(x). Also L(U ε) is uniformly bounded inHs(RN ) therefore the perturbation
term ε

2L(U ε) tends to zero as ε → 0. This system admits a unique solution. It
follows that the convergence to U takes place without passing to subsequence. This
complete the proof of the corollary. �

Proof of Theorem 2.2. As usual we consider the difference of (2.9) and (2.59). Set-
ting Ũ ε = U ε − U then we have

Ũ ε
t +

N∑
j=1

Aj(U)Ũ ε
xj

+ Ũ ε = B̃ε + F ε +
ε

2
(
L(Ũ ε) + L(U)

)
(2.64)

Ũ ε(x, 0) = U ε
0(x)− U0(x) (2.65)

where

F ε = −
N∑

j=1

(
Aj(U ε)−Aj(U)

)
U ε

xj
. (2.66)

Since the symmetrizer A0(U) is positive definite, the previous energy estimates is
applicable to (2.64). The matrix Aj(U), j = 1, 2, . . . , N , is symmetrizable. The
energy associated with (2.64) is

‖Ũ ε(t)‖2E ≡
∫
〈A0(U)Ũ ε, Ũ ε〉dx (2.67)



12 HAILIANG LI & CHI-KUN LIN EJDE–2003/93

and the Friedrich energy equality becomes
d

dt
‖Ũ ε(t)‖2E + ‖Ũ ε(t)‖2E =

∫
〈ΓεŨ ε, Ũ ε〉dx+ 2

∫
〈A0(U)(B̃ε + F ε), Ũ ε〉dx

+
ε

2

∫
〈A0(U)L(Ũ ε) + L(U), Ũ ε〉dx

(2.68)

where B̃ε = Bε −B and

Γε = div ~A(U) = ∂tA0(U) + ∂x1A1(U) + · · ·+ ∂xN
AN (U) (2.69)

The antisymmetry of L yields
ε

2

∫
〈A0(U)L(Ũ ε), Ũ ε〉dx = 0 . (2.70)

The Cauchy-Schwarz inequality implies
ε

2

∫
〈A0(U)L(U), Ũ ε〉dx ≤ εC‖U‖H2(RN )‖Ũ ε‖L2(RN ) . (2.71)

Thus we only need to estimate the nonhomogeneous term F ε + B̃ε. Indeed,

‖F ε + B̃ε‖Hs(RN ) ≤ C‖Ũ ε‖Hs(RN ) (2.72)

By applying Gronwall inequality and the strict positivity of A0(U), we deduce the
inequality

‖Ũ ε‖Hs(RN ) ≤ (C(ε) + ‖Aε
0 −A0‖Hs(RN ))e

cT (2.73)
with C(ε) → 0 as ε→ 0. This completes the proof of Theorem 2.2. �

Let ρε − C ∈ H2(RN ) have compact support. Then the Newtonian potential
V ε defined by (2.13) is well-defined. We can estimate the Sobolev norms of gε =
(gε

1, g
ε
2, . . . , g

ε
N ) = ∇V ε as follows.

Lemma 2.6. Assume s is a nonnegative integer. If ρε
0−C ∈ Hs(RN ) has compact

support, then gε ∈ Hs+1(RN ) and

‖gε‖Hs+1(RN ) ≤ C(s)
(
1 + (R{ρε − C})(2+N)/2

)
‖ρε − C‖Hs(RN ) (2.74)

Here the constant C(s) depends only on s.

Proof. Let (ρε − C) ∈ H2(RN ) satisfy R{ρε − C} ≤ 1 at this moment, we have

|gε(x, t)| ≤ ‖ρε − C‖L∞(RN )

∫
|y|≤1

dy

|x− y|N−1
≤ C1‖ρε − C‖L∞(RN )

1
1 + |x|N−1

Hence gε ∈ L2(RN ) and ‖gε‖L2(RN ) ≤ C2‖ρε − C‖L∞(RN ). If R{ρε − C} = η > 0 is
arbitrary, then, by applying the above estimate to ρε(x/η)− C, we obtain

‖gε‖L2(RN ) ≤ C2‖ρε − C‖L∞(RN )η
(2+N)/2

Since gε is an L2-solution of the Poisson equation (1 −∆)gε = gε +∇(ρε − C) we
know that gε ∈ H2(RN ) and

‖gε‖H2(RN ) = ‖gε +∇(ρε − C)‖L2(RN )

≤ C2‖ρε − C‖L∞(RN )η
(2+N)/2 + ‖ρε − C‖H1(RN )

≤ C(1 + η(2+N)/2)‖ρε − C‖H1(RN )

(2.75)

Using the above equation again, we get the iteration scheme

‖gε‖H3(RN ) = ‖gε +∇(ρε − C)‖H1(RN ) ≤ C(1 + η(2+N)/2)‖ρε − C‖H2(RN ) . (2.76)
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This is the estimate claimed for s = 2. We can prove the general case by induction
on s. This completes the proof of the lemma. �

Remark 2.7. It follows immediately from the above lemma and the explicit form
of gε that if ρε−C ∈ C([0, T ];H2(RN )) then gε ∈ C([0, T ];H3(RN )), and if ρε−C ∈
L∞([0, T ];Hs(RN )) ∩ C([0, T ];Hs−2(RN )), then

gε ∈ L∞([0, T ];Hs+1(RN )) ∩ C([0, T ];Hs−1(RN )).

Remark 2.8. In addition to the transport equation (2.42), we can also obtain the
Hamilton-Jacobi equation for the phase function θε (see (3.7) below)

∂tθ
ε + wε · ∇θε +

ε

2
|∇θε|2 =

ε

2
∆
√
ρε

√
ρε

(2.77)

where the O(ε) term occurs due to the quantum effect and it converges to the pure
transport equation as ε tends to zero. In fact, by (2.2)–(2.4) and (2.41) one obtains
that (ρε, θε, wε) satisfies an IVP for

∂tρ
ε +∇· (ρεwε + ερε∇θε) = 0, (2.78)

∂tθ
ε + wε · ∇θε +

ε

2
|∇θε|2 =

ε

2
∆
√
ρε

√
ρε

, (2.79)

∂tw
ε + (wε · ∇)wε +∇f ′(ρε) +∇V ε + wε = 0, (2.80)

−∆V ε = ρε − C, (2.81)

ρε(x, 0) = ρε
0(x), ρε

0 − C has compact support, (2.82)

θε(x, 0) = 0, wε(x, 0) = wε
0(x). (2.83)

By Theorem 2.4 and (2.41), we conclude that (ρε, θε, wε) satisfying

(ρε − C, wε, V ε) ∈ C([0, T ], Hs(RN )×Hs(RN )×Hs+2(RN )), (2.84)

θε ∈ C([0, T ], Hs(RN )), ∇θε ∈ C([0, T ], Hs−1(RN )). (2.85)

is the classical solution of IVP (2.78)–(2.83) for 0 ≤ t ≤ T and is bounded with
respect to ε. By passing limit in (2.78)–(2.83), one has

∂tρ+∇· (ρw) = 0, (2.86)

∂tθ + w · ∇θ = 0, (2.87)

∂tw + (w · ∇)w +∇f ′(ρ) +∇V + w = 0, (2.88)

−∆V = ρ− C. (2.89)

ρ(x, 0) = ρ0(x), ρ0 − C has compact support, (2.90)

θ(x, 0) = 0, w(x, 0) = w0(x). (2.91)

It follows immediately from (2.87) and (2.91) that θ(x, t) satisfies

θ(x(t), t) = 0, along
dx

dt
= w(x(t), t), x(0) = x0 ∈ RN ; (2.92)

hence the velocity v = ∇θ is zero all the time. Also, we conclude that Eqs. (2.86),
(2.88)–(2.89) are equivalent to the Euler-Poisson system (1.13)–(1.15).
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Remark 2.9. There is a very interesting stochastic analogue of the characteristic
equation (2.43). Replacing the quantum fluctuation by the Brownian motion W ,
the Wiener process, then (2.43) becomes the Itô stochastic differential equation

dx = wε(x, t)dt+ εdW (2.93)

Thus we can also serve the quantum hydrodynamics equations (2.78) − (2.81) as
the stochastic counterpart to the Euler-Poisson system in classical fluid mechanics
(see [30] and the references therein).

3. Existence of a global solution and long time behavior

With the help of madelung transform for irrotational fluid, it is possible to extend
the local solution (given by Theorem 2.4) of Cauchy problem (1.1)–(1.3) globally
in time and analyze its asymptotic behavior in Sobolev space for fixed ε > 0 by
applying energy method to the hydrodynamic equations (1.8)–(1.10) and obtaining
the a-priori estimate on the correspond macroscopic variables (density, velocity and
potential). Let

ψε
0 = |Aε

0(x)| exp
( i
ε
S0(x)

)
.

Theorem 3.1. Let Sc = −f ′(C) and ε > 0 fixed. Assume that (|Aε
0|−

√
C, S0−Sc) ∈

Hs(RN ) with compact support. Then there is a η1 > 0 such that if ‖(|Aε
0|−

√
C, S0−

Sc)‖Hs(RN ) ≤ η1 there exists a global solution

ψε(x, t) = Aε(x, t) exp
( i
ε
Sε(x, t)

)
of IVP (1.1)–(1.3) such that

‖ψε − ψc‖Hs(RN ) + ‖V ε‖Hs(RN ) ≤ C‖(|Aε
0| −

√
C, S0 − Sc)‖Hs(RN )e

−βt. (3.1)

where ψc =
√
C exp

(
i
εSc

)
and β > 0 is a constant.

By Theorem 2.1 and theorem 2.4 with modifications, we obtain the local exis-
tence of IVP (1.1)–(1.3) under the assumption of Theorem 3.1. To extend the local
solution globally in time, the uniformly a-priori estimates are to be established.
Note that

‖ψε − ψc‖Hs(RN ) ≤ C‖(|Aε| −
√
C, Sε − Sc)‖Hs(RN ), (3.2)

and that
ψε(x, t) = %ε(x, t) exp

( i
ε
Sε(x, t)

)
solves Cauchy problem (1.1)–(1.3), it is sufficient to prove

‖(%ε −
√
C,uε)‖Hs(RN )×Hs−1(RN ) + ‖V ε‖Hs(RN ) ≤ Cr0e

−βt (3.3)

with
r0 = ‖(%ε

0 −
√
C,uε

0)‖Hs(RN )×Hs−1(RN ), (3.4)
for (%ε,uε, V ε), which satisfies the following initial value problems:

2%ε · %ε
t + div((%ε)2uε) = 0, (3.5)

uε
t + (uε · ∇)uε +∇P ((ρε)2) + uε = ∇V ε +

ε2

2
∇

(∆%ε

%ε

)
, (3.6)

∆V ε = (%ε)2 − C, (3.7)

%ε(x, 0) = %ε
0 := |Aε

0(x)|, uε(x, 0) = uε
0 := ∇S0(x), (3.8)
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with the velocity defined for irrotational fluids by uε = ∇Sε.
For IVP (3.5)–(3.8) we have the following theorem.

Theorem 3.2. Assume that (%ε
0 −

√
C,uε

0) ∈ Hs(RN ) ×Hs−1(RN ) with compact
support. Then there is a η0 > 0 such that if ‖%ε

0−
√
C‖Hs(RN ) + ‖uε

0‖Hs−1(RN ) ≤ η0
there exists a global classical solution (ρε,uε, V ε) of IVP (3.5)–(3.8) such that

‖(%ε −
√
C)(t)‖2Hs(RN ) + ‖uε(t)‖Hs−1(RN ) + ‖V ε(t)‖Hs(RN ) ≤ Cr0e

−α0t, (3.9)

with α0 > 0 a constant and r0 is given by (3.4).

Since the transformation ψε = %ε exp
(

i
εS

ε(x, t)
)

gives for Sε that

Sε
t +

1
2
|∇Sε|2 + (f ′((%ε)2) + V ε) + Sε =

ε2

2
∆%ε

%ε
, (3.10)

from which we can obtain

‖Sε − Sc‖2L2(RN )

≤ C
(
‖(%ε −

√
C‖2H2(RN ) + ‖(uε, V ε)‖2L2(RN )

)
+ C‖Sε − Sc‖2L2(RN )e

−t.

This and Theorem 3.2 yield theorem 3.1.

Remark 3.3. Theorem 3.2 also implies the global existence and large time behavior
for IVP (1.8)–(1.11) by setting (ρε,uε, V ε) = ((%ε)2,uε, V ε).

Proof of Theorem 3.2. The key point is to obtain the uniform a-priori estimates in
Sobolev space for (w,uε, V ε) with w = %ε −

√
C for the time period T > 0 when

the local solution (%ε,uε, V ε) exists.
A computation shows that the perturbation (w,uε, V ε) satisfies the the Cauchy

problem

wtt + wt +
1
4
ε2∆2w − P ′(C)∆w + Cw = f1 (3.11)

uε
t + (uε · ∇)uε +Q′(

√
C)∇w + uε = f2, (3.12)

∆V ε = (2
√
C + w)w, (3.13)

where

f1(x, t) =− (w +
√
C)−1w2

t −
1
2
(3
√
C + w)w2 −∇w · ∇V ε

+
1

2(w +
√
C)

∆P ((w +
√
C)2)− P ′(C)∆w

+
2

div
(
(
√
C + w)2uε ⊗ uε

)
+

ε2

4(w +
√
C)
|∆w|2,

f2(x, t) =∇V ε − (Q′(
√
C + w)−Q′(

√
C))∇w +

1
2
ε2∇

( ∆w
w +

√
C

)
with Q(ρ) = H(ρ2) and ρH ′(ρ) = P ′(ρ). The corresponding initial values are

w(x, 0) = w0 =: %ε
0 −

√
C, wt(x, 0) = −uε

0 · ∇w0 −
1
2
(
√
C + w0) div uε

0, (3.14)

uε(x, 0) = uε
0. (3.15)

Then w and u are balanced through

2wt + 2uε · ∇w + (
√
C + w)∇·uε = 0, (3.16)
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Applying energy method to Cauchy Problem (3.11)–(3.16), we have, after a
tedious computation (we omit the details here), the following a-priori estimates.

Lemma 3.4. Let T > 0. Assume that the local solutions (w,uε, V ε) of the Cauchy
problem (3.11)–(3.16) belong to Hs(RN )×Hs−1(RN )×Hs−2(RN ) and satisfy

N(T ) =: max
0≤t≤T

‖(w,uε)(t)‖eγt � 1, (3.17)

with γ chosen to be arbitrary small. Then it holds

‖(%ε −
√
C,uε, V ε)(t)‖2Hs(RN )×Hs−1(RN )×Hs(RN ) ≤ Cr0e

−αt. (3.18)

Here α > 0 and C are constants independent of γ, and r0 is given by (3.4).

In terms of Lemma 3.4 we prove that the a-priori bounds (3.17) is true for
the local classical solution provided that ‖(%ε

0 −
√
C,uε

0)‖Hs(RN )×Hs−1(RN ) is small
enough and γ � α. The continuity argument shows that the classical solution
(ρε,uε, V ε) exists global in time. Thus, the proof of Theorem 3.2 is completed. �
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Matemáticos, Rio de Janeiro 1989.
[5] B. Desjardins, C.-K. Lin, T.-C. Tso; Semiclassical limit of the derivative nonlinear

Schrödinger equation. Math. Models Methods Appl. Sci. 2000, 10, 261–285.

[6] B. Desjardins, C.-K. Lin; On the semiclassical limit of the general modified NLS equation. J.
Math. Anal. Appl. 2001, 260, 546–571.

[7] R. Feynman; Statistical Mechanics, A set of lectures, Frontiers in Physics. New York 1972.
[8] P. Gamblin; Solution reguliere a temps petit pour l’equation d’Euler-Poisson, Commun. in

Partial Differential Equations 1993, 18, 731–745.
[9] I. Gasser, C.-K. Lin, P. Markowich; A review of dispersive limit of the (non)linear

Schrödinger-type equation. Taiwanese J. of Mathematics. 2000, 4, 501–529.
[10] I. Gasser, P. Markowich; Quantum hydrodynamics, Wigner transforms and the classical limit.

Asymptotic Anal. 1997, 14, 97–116.
[11] P. Gérard; Remarques sur l’analyse semi-classique de l’équation de Schrödinger non linéaire.
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4. Addendum: Posted August 17, 2006

The authors want to make the following two corrections:
On the sixth line of Theorem 2.1, the expression Aε ∈ L∞([0, T ];Hs(RN )) should

be replaced by |Aε| −
√
C ∈ L∞([0, T ];Hs(RN )).

On the fourteenth line of Theorem 2.2, the expression Aε should be replaced by
|Aε| −

√
C ∈ L∞([0, T ];Hs(RN )).

After these corrections, the two theorem will read:

Theorem 2.1. Assume that {|Aε
0| −

√
C}ε is a uniformly bounded sequence in

Hs(RN ) with compact support, S0 ∈ Hs+1(RN ) with ∇S0 compact supported,
s > (N + 4)/2, and f ∈ C∞(R+,R) with f ′′(ρ) > 0 for ρ > 0. Then solu-
tions (ψε, V ε) of the Schrödinger-Poisson system (1.1)− (1.3) exist on a small time
interval [0, T ], T independent of ε. Moreover, ψε(x, t) = Aε(x, t)eiSε(x,t)/ε with
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|Aε| −
√
C ∈ L∞([0, T ];Hs(RN )) and Sε ∈ L∞([0, T ];Hs+1(RN )) uniformly in ε

and V ε given by (2.13).

Theorem 2.2. Assume that (ρ,u, V ) is a solution of the Euler-Poisson system
(1.13)–(1.15) and satisfies (ρ − C,u, V ) ∈ C([0, T ],Hs+2(RN )), s ≥ (N + 4)/2,
with initial condition

ρ0(x) = ρ(x, 0) = |A0(x)|2,
u0(x) = u(x, 0) = ∇S0(x).

Then there exists a critical value of ε, εc dependent of T , such that under the
hypothesis

(1) Aε
0(x) converges strongly to A0 in Hs(RN ) as ε tends to 0

(2) (
√
ρ0 −

√
C,u0) ∈ Hs(RN ) with compact support,

(3) 0 < ε < εc,
the IVP for Schrödinger-Poisson system (1.1)−(1.3) has a unique classical solution
(ψε, V ε) on [0, T ], the wave function is of the form

ψε(x, t) = Aε(x, t) exp
( i
ε
Sε(x, t)

)
with |Aε| −

√
C and ∇Sε are bounded in L∞([0, T ];Hs(RN )) uniformly in ε and V ε

is given by (2.13). Moreover, as ε → 0 (ρε, ρε∇Sε, V ε) with
√
ρε = Aε, converges

strongly in C([0, T ],Hs−2(RN )).
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