Jorge Ferreira, Ducival C. Pereira, & Mauro L. Santos
Abstract:
We consider a coupled system of two nonlinear wave equations of
Kirchhoff type with nonlocal boundary condition and we study the
asymptotic behavior of the corresponding solutions. We prove that
the energy decay at the same rate of decay of the relaxation
functions, that is, the energy decays exponentially when the
relaxation functions decay exponentially and polynomially when the
relaxation functions decay polynomially.
Submitted April 2, 2003. Published August 14, 2003.
Math Subject Classifications: 34A34, 34M30, 35B05.
Key Words: Coupled system, wave equation, Galerkin method,
asymptotic behavior, boundary value problem
Show me the PDF file (232K), TEX file, and other files for this article.
Jorge Ferreira Departamento de Matematica-DMA Universidade Estadual de Maringa-UEM Av. Colombo, 5790-Zona 7 CEP 87020-900, Maringa-Pr., Brazil email: jferreira@bs2.com.br | |
Ducival C. Pereira Instituto de Estudos Superiores da Amazonia (IESAM) Av. Gov. Jose Malcher 1148 CEP 66.055-260, Belem-Pa., Brazil Faculdade Ideal(FACI), Rua dos Mundurucus 1427, CEP 66025-660, Belem-Pa., Brazil email: ducival@aol.com | |
Mauro L. Santos Departamento de Matematica, Universidade Federal do Para Campus Universitario do Guama Rua Augusto Correa 01, Cep 66075-110, Para, Brazil email: ls@ufpa.br |
Return to the EJDE web page