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POSITIVE SOLUTIONS OF A THREE-POINT
BOUNDARY-VALUE PROBLEM ON A TIME SCALE

ERIC R. KAUFMANN

Abstract. Let T be a time scale such that 0, T ∈ T. We consider the second
order dynamic equation on a time scale

u∆∇(t) + a(t)f(u(t)) = 0, t ∈ (0, T ) ∩ T,

u(0) = 0, αu(η) = u(T ),

where η ∈ (0, ρ(T )) ∩ T, and 0 < α < T/η. We apply a cone theoretic fixed

point theorem to show the existence of positive solutions.

1. Introduction

The theory of time scales and measure chains was initiated by Stefan Hilger
[6] as a means of unifying and extending theories from differential and difference
equations. We begin by presenting some basic definitions which can be found in
Atici and Guseinov [3] and Bohner and Peterson [4]. Another excellent source on
dynamical systems on measure chains is the book [9].

A time scale T is a closed nonempty subset of R. For t < sup T and r >
inf T, we define the forward jump operator, σ, and the backward jump operator, ρ,
respectively, by

σ(t) = inf{τ ∈ T | τ > t} ∈ T,

ρ(r) = sup{τ ∈ T | τ < r} ∈ T,

for all t ∈ T. If σ(t) > t, t is said to be right scattered, and if σ(t) = t, t is said
to be right dense (rd). If ρ(t) < t, t is said to be left scattered, and if ρ(t) = t, t
is said to be left dense (ld). A function f is left-dense continuous, ld-continuous, f
is continuous at each left dense point in T and its right-sided limits exist at each
right dense points in T.

For x : T → R and t ∈ T, (assume t is not left scattered if t = sup T), we
define the delta derivative of x(t), x∆(t), to be the number (when it exists), with
the property that, for each ε > 0, there is a neighborhood, U , of t such that∣∣x(σ(t))− x(s)− x∆(t)(σ(t)− s)

∣∣ ≤ ε|σ(t)− s|,

for all s ∈ U .
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For x : T → R and t ∈ T, (assume t is not right scattered if t = inf T), we define
the nabla derivative of x(t), x∇(t), to be the number (when it exists), with the
property that, for each ε > 0, there is a neighborhood, U , of t such that∣∣x(ρ(t))− x(s)− x∇(t)(ρ(t)− s)

∣∣ ≤ ε|ρ(t)− s|,
for all s ∈ U .

If T = R then f∆(t) = f∇(t) = f ′(t). If T = Z then f∆(t) = f(t + 1) − f(t)
is the forward difference operator while f∇(t) = f(t) − f(t − 1) is the backward
difference operator.

In 1998, Ma [15] showed the existence of a positive solution to the second order
three-point boundary-value problem

u′′ + a(t)f(u) = 0, t ∈ (0, 1),

u(0) = 0, αu(η) = u(1),

where 0 < η < 1, 0 < α < 1/η and f was either superlinear or sublinear. Later
Cao and Ma [5] extended these results to the m-point eigenvalue problem u′′ +
λa(t)f(u, u′) = 0, u(0) = 0,

∑m−2
i=1 aiu(ξi) = u(1). Ma and Raffoul [18] showed

the existence of positive solutions for a three-point boundary-value problems for
difference equation. Recently, Anderson [2] showed the existence of at least one
positive solution (using the Krasnosel’skĭı fixed point theorem) and the existence of
at least three positive solutions (using the Leggett-Williams fixed point theorem)
for the three-point boundary-value problem on a time scale. For other references on
multi-point boundary-value problems we refer the reader to the papers [16, 17, 19]
and references therein.

Many authors have studied the existence of multiple positive solutions for bound-
ary value problems for differential and difference equations, see [7, 8, 10, 11, 13]
and references therein. The book [1] is an excellent source for information on the
theory of positive solutions for differential, difference and integral equations. One
of the first papers to consider countably many positive solutions for boundary-value
problems on a time scale is [12].

In this paper, we show the existence of multiple positive solutions for a second
order three-point boundary-value problem on a time scale. Let T be a time scale
such that 0, T ∈ T and denote the set of all left-dense continuous functions from T
to E ⊆ R by Cld(T, E). Consider the second order dynamic equation

u∆∇(t) + a(t)f(u(t)) = 0, t ∈ (0, T ) ∩ T, (1.1)

u(0) = 0, αu(η) = u(T ), (1.2)

where η ∈ (0, ρ(T )) ∩ T, and 0 < α < T/η. We will assume throughout that
f : T → [0,+∞) is continuous. We will also assume that a ∈ Cld(T, [0,+∞)) and
there exists at least one t0 ∈ [η, T ) ∩ T such that a(t0) > 0.

Define

f0 = lim
u→0+

f(u)
u

and f∞ = lim
u→∞

f(u)
u

.

Note that f0 = 0 and f∞ = ∞ correspond to f being superlinear and that f0 = ∞
and f∞ = 0 correspond to f being sublinear. We show the existence of two positive
solutions for the boundary-value problem (1.1), (1.2) when f0 = 0 and f∞ = 0 and
when f0 = ∞ and f∞ = ∞.

In section 2 we state some lemmas that will be needed in order to prove our main
theorems. We also define an operator whose fixed points are solutions to (1.1), (1.2)
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and state a fixed point theorem due to Krasnosel’skĭı, see [14]. In section 3 we state
and prove two theorems for the existence of two positive solutions of (1.1), (1.2).
We begin section 4 with a modification of Lemma 2.5 in section 2. This new lemma
will allow us to define a sequence of cones in which we will find fixed points of our
operator.

2. Preliminaries

We will need the following lemmas, whose proofs can be found in Anderson [2],
in order to prove our main theorems. Consider the linear boundary-value problem

u∆∇(t) + y(t) = 0, t ∈ (0, T ) ∩ T, (2.1)

u(0) = 0, αu(η) = u(T ). (2.2)

Lemma 2.1. If αη 6= T then for y ∈ Cld(T, R) the boundary-value problem (2.1),
(2.2) has the unique solution

u(t) = −
∫ t

0

(t− s)y(s)∇s− αt

T − αη

∫ η

0

(η− s)y(s)∇s +
t

T − αη

∫ T

0

(T − s)y(s)∇s.

Lemma 2.2. If u(0) = 0 and u∆∇ ≤ 0, then u(s)
s ≤ u(t)

t for all s, t ∈ (0, T ] ∩ T
with t ≤ s.

Lemma 2.3. Let 0 < α < T/η. If y ∈ Cld(T, R) and y ≥ 0 then the solution u of
boundary-value problem (2.1), (2.2) satisfies u(t) ≥ 0 for all t ∈ [0, T ] ∩ T.

Lemma 2.4. Let αη > T . If y ∈ Cld(T, R) and y ≥ 0 then the boundary-value
problem (2.1), (2.2) has no nonnegative solution.

In view of Lemma 2.4, we will assume that αη < T for the rest of the paper.
Our Banach space is B = Cld(T, R) with norm ‖u‖ = supt∈[0,T ]∩T |u(t)|. Define

the operator A : B → B by

Au(t) = −
∫ t

0

(t− s)a(s)f(u(s))∇s− αt

T − αη

∫ η

0

(η − s)a(s)f(u(s))∇s

+
t

T − αη

∫ T

0

(T − s)a(s)f(u(s))∇s.

The function u is a solution of the boundary-value problem (1.1), (1.2) if and only
if u is a fixed point of the operator A.

Lemma 2.5. Let 0 < αη < T . If y ∈ Cld(T, [0,∞)), then the unique solution u of
(2.1), (2.2) satisfies

min
t∈[η,T ]∩T

u(t) ≥ γ‖u‖ (2.3)

where

γ = min
{αη

T
,
α(T − η)
T − αη

,
η

T

}
.

Remark: Since αη < T and since η < T , it follows that 0 < γ < 1.

Definition 2.6. Let B be a Banach space and let P ⊂ B be closed and nonempty.
Then P is said to be a cone if

(1) αu + βv ∈ P for all u, v ∈ P and for all α, β ≥ 0, and
(2) u,−u ∈ P implies u = 0.
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As in [2] we define the cone

P = {u ∈ B : u(t) ≥ 0, t ∈ T and min
t∈[η,T ]∩T

u(t) ≥ γ‖u‖}.

From Lemma 2.5 we have A : P → P. Standard arguments show that the operator
A is completely continuous.

Before we state the fixed point theorem, we establish some inequalities. Since
both a and f are nonnegative then for all u ∈ B

Au(t) ≤ t

T − αη

∫ T

0

(T − s)a(s)f(u(s))∇s. (2.4)

Furthermore,

Au(η) = −
∫ η

0

(η − s)a(s)f(u(s))∇s− αη

T − αη

∫ η

0

(η − s)a(s)f(u(s))∇s

+
η

T − αη

∫ T

0

(T − s)a(s)f(u(s))∇s

= − T

T − αη

∫ η

0

(η − s)a(s)f(u(s))∇s +
η

T − αη

∫ T

0

(T − s)a(s)f(u(s))∇s

=
ηT

T − αη

∫ T

η

a(s)f(u(s))∇s +
T

T − αη

∫ η

0

sa(s)f(u(s))∇s

− η

T − αη

∫ T

0

sa(s)f(u(s))∇s

≥ η

T − αη

∫ T

η

(T − s)a(s)f(u(s))∇s.

That is,

Au(η) ≥ η

T − αη

∫ T

η

(T − s)a(s)f(u(s))∇s. (2.5)

The inequalities (2.4) and (2.5), which are also found in [2] and [19], will play
critical roles in the proofs of our main theorems. We will also need the following
fixed point theorem found in [14]

Theorem 2.7 (Krasnosel’skĭı). Let B be a Banach space and let P ⊂ B be a cone.
Assume Ω1, Ω2 are bounded open balls of B such that 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2. Suppose
that

A : P ∩ (Ω2 \ Ω1) → P
is a completely continuous operator such that, either

(1) ‖Au‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω1 and ‖Au‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω2, or
(2) ‖Au‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω1 and ‖Au‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω2.

Then A has a fixed point in P ∩ (Ω2 \ Ω1).

3. Two Positive Solutions

In this section we use Theorem 2.7 to establish the existence of two positive
solutions of the boundary-value problem (1.1), (1.2). In Theorems 3.1 and 3.2, the
inequalities we derive that are based on f0 and f∞ are similar to those found in [2],
[15], and [19] and are included for completeness.

Theorem 3.1. Assume that f satisfies conditions
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(A1) f0 = +∞, f∞ = +∞; and
(B1) there exists a p > 0 such that if 0 ≤ x ≤ p then f(x) ≤ µp where µ =(

T
T−αη

∫ T

0
(T − s)a(s)∇s

)−1

.

Then the boundary-value problem (1.1), (1.2) has at least two positive solutions
u1, u2 ∈ P such that

0 < ‖u1‖ ≤ p ≤ ‖u2‖.

Proof. Choose m > 0 such that

mηγ

T − αη

∫ T

η

(T − s)a(s)∇s ≥ 1. (3.1)

By condition (A1), (f0 = +∞), there exists an 0 < r < p such that

f(u) ≥ mu (3.2)

for all 0 ≤ u ≤ r.
Let u ∈ P with ‖u‖ = r. From (2.5), (2.3), (3.1) and (3.2) we have

Au(η) ≥ η

T − αη

∫ T

η

(T − s)a(s)f(u(s))∇s

≥ mη

T − αη

∫ T

η

(T − s)a(s)u(s)∇s

≥
( mηγ

T − αη

∫ T

η

(T − s)a(s)∇s
)
‖u‖

≥ ‖u‖.

Define Ω1 = {u ∈ B : ‖u‖ < r}. From the above string of inequalities we have

‖Au‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω1. (3.3)

Now consider u ∈ P with ‖u‖ ≤ p. From (2.4) and condition (B1) we have

Au(t) ≤ t

T − αη

∫ T

0

(T − s)a(s)f(u(s))∇s

≤ T

T − αη

∫ T

0

(T − s)a(s)f(u(s))∇s

≤
( T

T − αη

∫ T

0

(T − s)a(s)∇s
)
µp = p.

Define Ω2 = {u ∈ B : ‖u‖ < p}. Then

‖Au‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω2. (3.4)

Using the inequalities (3.3) and (3.4) there exists, by Theorem 2.7, a fixed point u1

of A in P ∩ (Ω̄2 \ Ω1). This fixed point satisfies r ≤ ‖u1‖ ≤ p.
Using condition (A1) again, (f∞ = ∞), we know there exists an R1 > p such

that
f(u) ≥ Mu (3.5)

for all u ≥ R1 where M is chosen so that

Mηγ

T − αη

∫ T

η

(T − s)a(s)∇s ≥ 1. (3.6)
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Set R = R1/γ and pick u ∈ P so that ‖u‖ = R. Since 0 < γ < 1 then R > R1 > p.
Furthermore, mint∈[η,T ]∩T u(t) ≥ γR ≥ R1. From (2.5), (2.3), (3.5), and (3.6) we
have

Au(η) ≥ η

T − αη

∫ T

η

(T − s)a(s)f(u(s))∇s

≥ Mη

T − αη

∫ T

η

(T − s)a(s)u(s)∇s

≥
( Mηγ

T − αη

∫ T

η

(T − s)a(s)∇s
)
‖u‖

≥ ‖u‖.

Define Ω3 = {u ∈ B : ‖u‖ < R}. Then

‖Au‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω3. (3.7)

Theorem 2.7 together with (3.4) and (3.7) implies that there exists a fixed point u2

of A that satisfies p ≤ ‖u2‖ ≤ R and the proof is complete. �

Theorem 3.2. Assume that f satisfies conditions
(A2) f0 = 0, f∞ = 0; and
(B2) there exists a q > 0 such that if γq ≤ x ≤ q then f(x) ≥ νq where ν =(

η
T−αη

∫ T

η
(T − s)a(s)∇s

)−1

.

Then the boundary-value problem (1.1), (1.2) has at least two positive solutions
u1, u2 ∈ P such that

0 < ‖u1‖ ≤ q ≤ ‖u2‖.

Proof. Choose m > 0 such that

Tm

T − αη

∫ T

0

(T − s)a(s)∇s ≤ 1. (3.8)

By condition (A2), (f0 = 0), there exists an 0 < r < q such that

f(u) ≤ mu (3.9)

for all 0 ≤ u ≤ r. Define Ω1 = {u ∈ B : ‖u‖ < r} and let u ∈ P ∩ ∂Ω1. Then,

Au(t) ≤ t

T − αη

∫ T

0

(T − s)a(s)f(u(s))∇s

≤ Tm

T − αη

∫ T

0

(T − s)a(s)u(s)∇s

≤
( Tm

T − αη

∫ T

0

(T − s)a(s)∇s
)
‖u‖

≤ ‖u‖.

And so,
‖Au‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω1. (3.10)

Now define Ω2 = {u ∈ B : ‖u‖ < q}. Notice that if u ∈ P ∩ ∂Ω2 then

min
t∈[η,T ]∩T

u(t) ≥ γ‖u‖ ≥ γq.
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By condition (B2) we have

Au(t) ≥ η

T − αη

∫ T

η

(T − s)a(s)f(u(s))∇s

≥
( η

T − αη

∫ T

η

(T − s)a(s)∇s
)
νq

= q = ‖u‖.

Hence,
‖Au‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω2. (3.11)

Consider the second condition in (A2), f∞ = 0. There exists an R1 > q such
that f(u) ≤ Mu for all u ≥ R1 where M is chosen so that

TM

T − αη

∫ T

0

(T − s)a(s)∇s ≤ 1.

There are two cases to consider: f is bounded or f is unbounded.
Suppose that f is bounded. Let K be such that f(u) ≤ K for all u and choose

R = max
{

2q,
TK

T − αη

∫ T

0

(T − s)a(s)∇s
}

.

Let u ∈ P be such that ‖u‖ = R. Then

Au(t) ≤ t

T − αη

∫ T

0

(T − s)a(s)f(u(s))∇s

≤ TK

T − αη

∫ T

0

(T − s)a(s)∇s

≤ R.

Hence ‖Au‖ ≤ ‖u‖.
Now suppose that f is unbounded. From condition (A2) there exists an R ≥ R1

γ

such that f(u) ≤ f(R) for all 0 < u ≤ R. Since γ < 1 then q < R1 < R1
γ = R. Let

u ∈ P be such that ‖u‖ ≤ R. Then

Au(t) ≤ t

T − αη

∫ T

0

(T − s)a(s)f(u(s))∇s

≤ T

T − αη

∫ T

0

(T − s)a(s)f(R)∇s

≤ TMR

T − αη

∫ T

0

(T − s)a(s)u∇s

≤ R.

Hence ‖Au‖ ≤ ‖u‖.
In either case, if we define Ω3 = {B : ‖u‖ < R} then Ω2 ( Ω3 and

‖Au‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω3. (3.12)

The conclusion of the theorem follows by applying Theorem 2.7 to the inequalities
(3.10), (3.11), (3.12). �
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4. Countably Many Positive Solutions

In this section we show the existence of countably many positive solutions when
f satisfies an oscillatory like growth about a wedge. We begin with a modification
of Lemma 2.5.

Lemma 4.1. Let 0 < αη < T . Let τk ∈ T ∩ (η, ρ(T )). If y ∈ Cld(T, [0,∞)), then
the unique solution u of (2.1), (2.2) satisfies

min
t∈[τk,T ]∩T

u(t) ≥ γk‖u‖

where

γk = min
{αητk

T 2
,
αη(T − τk)
τk(T − αη)

,
ητk

T 2

}
Proof. Suppose that 0 ≤ α < 1. Let t0 ∈ (0, T ) ∩ T be such that u(t0) = ‖u‖. By
the second boundary condition in (1.2) we have u(η) ≥ u(T ). There are two cases
to consider. Suppose t0 ≤ η < ρ(T ) then mint∈[τk,T ]∩T u(t) = u(T ) and

u(t0) ≤ u(T ) +
u(T )− u(τk)

T − τk
(0− T )

=
−ατku(η) + Tu(τk)

T − τk
.

By Lemma 2.2, we know that u(τk)
τk

≤ u(η)
η . Hence

u(t0) ≤
τk

η Tu(η)− ατku(η)

T − τk

≤ τk(T − αη)
η(T − τk)

u(η)

≤ τk(T − αη)
αη(T − τk)

u(T ).

Consequently, mint∈[τk,T ]∩T u(t) = u(T ) ≥ αη(T−τk)
τk(T−αη)‖u‖.

Now suppose that η ≤ t0 ≤ T . Again we have mint∈[τk,T ]∩T u(t) = u(T ). By
Lemma 2.2 we know u(η)

η ≥ u(t0)
t0

. Hence, u(η) ≥ η u(t0)
t0

and so, u(T ) = αu(η) ≥
αη u(t0)

t0
≥ αη

T u(t0). Since τk < T , then mint∈[τk,T ]∩T u(t) = u(T ) ≥ αη
T 2 ‖u‖.

If 1 ≤ α < T/η. Then u(η) ≤ u(T ). Let t0 be such that u(t0) = ‖u‖. In
this case t0 ∈ [η, T ] ∩ T and mint∈[η,T ]∩T u(t) = u(η). From Lemma 2.2 we have
u(η) ≥ η u(t0)

t0
. Consequently,

min
t∈[η,T ]∩T

u(t) = u(η) ≥ η

t0
‖u‖ ≥ η

T
‖u‖ ≥ ητk

T 2
‖u‖,

Since τk ≥ η, then mint∈[τk,T ]∩T u(t) ≥ ητk

T 2 ‖u‖ and the proof is complete. �

In Theorem 4.2 we show the existence of a countably infinite number of solutions.
We will require that there exists at least one right dense point τ∗ ∈ T ∩ (η, ρ(T )).
In addition, we will need a countable collection of cones. For each k ∈ N define the
cone

Pk = {u ∈ B : u(t) ≥ 0, t ∈ T and min
t∈[τk,T ]∩T

u(t) ≥ γk‖u‖}.
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Theorem 4.2. Let τ∗ ∈ T be r.d. and suppose that τ∗ > η. Let {τk} ⊂ T be such
that η < τ1 < ρ(T ) and τk ↓ τ∗. Let t0 be such that t0 ∈ [τ1, T ) ∩ T and a(t0) > 0.
Let {Ak}∞k=1 and {Bk}∞k=1 be such that

Ak+1 < γkBk < Bk < CBk < Ak, k ∈ N
where

C = max
{( η

T − αη

∫ T

τ1

(T − s)a(s)∇s
)−1

, 1
}

.

Assume
(A3) f(x) ≤ MAk for all x ∈ [0, Ak], k ∈ N where

M <
( T

T − αη

∫ T

0

(T − s)a(s)∇s
)−1

;

and
(B3) f(x) ≥ CBk for all x ∈ [γkBk, Bk].

Then the boundary-value problem (1.1), (1.2) has infinitely many positive solutions
{uk}∞k=1 such that Bk ≤ ‖uk‖ ≤ Ak for all k ∈ N.

Proof. First note that since T
T−αη

∫ T

0
(T − s)a(s)∇s ≥ η

T−αη

∫ T

τ1
(T − s)a(s)∇s, it

follows that M < C (otherwise the theorem is vacuously true).
Fix k ∈ N. Define Ω1k = {u ∈ B : ‖u‖ < Ak}. Let u ∈ Pk ∩ ∂Ω1k. Then

u(t) ≤ Ak = ‖u‖ for all t ∈ [0, T ] ∩ T. So,

Au(t) ≤ t

T − αη

∫ T

0

(T − s)a(s)f(u(s))∇s

≤ TM

T − αη

∫ T

0

(T − s)a(s)∇sAk

≤ Ak.

Thus ‖Au‖ ≤ Ak = ‖u‖ for u ∈ Pk ∩ ∂Ω1k.
Now define Ω2k = {u ∈ B : ‖u‖ < Bk} and let u ∈ Pk ∩ ∂Ω2k. Let t ∈ [τk, T ]∩T.

Then
Bk = ‖u‖ ≥ u(t) ≥ min

t∈[τk,T ]∩T
u(t) =≥ γk‖u‖ = γkBk.

So,

Au(η) ≥ η

T − αη

∫ T

η

(T − s)a(s)f(u(s))∇s

≥
( η

T − αη

∫ T

τ1

(T − s)a(s)∇s
)
CBk

≥ Bk.

Thus ‖Au‖ ≥ Bk = ‖u‖ for all u ∈ Pk ∩ ∂Ω2k.
By Theorem 2.7 there exists a fixed point uk of A such that Bk ≤ ‖uk‖ ≤ Ak.

Since k was arbitrary the result follows and the proof is complete. �

The proofs for our last two theorems require slight modifications of the proofs
for Theorems 3.1, 3.2 and 4.2 and as such will be omitted. Theorem 4.3 shows the
existence of an odd number of solutions and Theorem 4.4 shows the existence of
an even number of solutions. It is not difficult to establish other theorems of these
forms stating the existence of multiple positive solutions.
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Theorem 4.3. Let m ≥ 1 be a fixed integer. Let {τk}m
k=1 ⊂ T be such that

η < τk+1 < τk < ρ(T ). Let t0 be such that t0 ∈ [τ1, T ) ∩ T and a(t0) > 0. Let
{Ak}m

k=1 and {Bk}m
k=1 be such that

Ak+1 < γkBk < Bk < CBk < Ak, k = 1, 2, . . . m− 1

and 0 < Bm < CBm < Am where

C = max
{( η

T − αη

∫ T

τ1

(T − s)a(s)∇s
)−1

, 1
}

.

Assume
(A4) f0 = 0 and f∞ = +∞;
(B4) f(x) ≤ MAk for all x ∈ [0, Ak], k = 1, 2, . . . m where

M <
( T

T − αη

∫ T

0

(T − s)a(s)∇s
)−1

;

and
(C4) f(x) ≥ CBk for all x ∈ [γkBk, Bk], k = 1, 2, . . . m.

Then the boundary-value problem (1.1), (1.2) has at least 2m + 1 positive solutions
{uk}2m+1

k=1 such that 0 < ‖u2m+1‖ ≤ Bm ≤ ‖u2m‖ ≤ Am ≤ · · · ≤ B1 ≤ ‖u2‖ ≤
A1 ≤ ‖u1‖ < ∞.

Theorem 4.4. Let m ≥ 1 be a fixed integer. Let {τk}m
k=1 ⊂ T be such that

η < τk+1 < τk < ρ(T ). Let t0 be such that t0 ∈ [τ1, T ) ∩ T and a(t0) > 0. Let
{Ak}m

k=1 and {Bk}m−1
k=1 be such that

Ak+1 < γkBk < Bk < CBk < Ak, k = 1, 2, . . . m− 1,

and Am > 0, where

C = max
{( η

T − αη

∫ T

τ1

(T − s)a(s)∇s
)−1

, 1
}

.

Assume
(A5) f0 = +∞ and f∞ = +∞;
(B5) f(x) ≤ MAk for all x ∈ [0, Ak], k = 1, 2, . . . m where

M <
( T

T − αη

∫ T

0

(T − s)a(s)∇s
)−1

;

and
(C5) f(x) ≥ CBk for all x ∈ [γkBk, Bk], k = 1, 2, . . . m− 1.

Then the boundary-value problem (1.1), (1.2) has at least 2m positive solutions
{uk}2m

k=1 such that 0 < ‖u2m‖ ≤ Am ≤ ‖u2m‖ ≤ Bm−1 ≤ · · · ≤ B1 ≤ ‖u2‖ ≤ A1 ≤
‖u1‖ < ∞.

References

[1] R. P. Agarwal, D. O’Regan and P. J. Y. Wong, “Positive Solutions of Differential, Difference

and Integral Equations,” Kluwer, Dordrecht, 1999.

[2] D. Anderson, Solutions to second-order three-point problems on time scales, Journal of Dif-
ference Equations and Applications 8 (2002), 673-688.

[3] F. M. Atici and G. Sh. Guseinov, On Green’s functions and positive solutions for boundary-

value problems on time scales, J. Comput. Appl. Math., 141 (2002), 75-99.
[4] M. Bohner and A. Peterson, Dynamic Equations on Time Scales, An introduction with

Applications, Birkhäuser, Boston, 2001.
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