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BLOW UP OF SOLUTIONS TO SEMILINEAR WAVE
EQUATIONS

MOHAMMED GUEDDA

Abstract. This work shows the absence of global solutions to the equation

utt = ∆u + p−k|u|m,

in the Minkowski space M0 = R× RN , where m > 1, (N − 1)m < N + 1, and
p is a conformal factor approaching 0 at infinity. Using a modification of the

method of conformal compactification, we prove that any solution develops a
singularity at a finite time.

1. Introduction

This note presents nonexistence results of the problem

utt = ∆u + p−k|u|m, (1.1)

posed in the Minkowski space M0 = R× RN , N ≥ 1, with the initial condition

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ RN . (1.2)

Here p is a conformal factor approaching 0 at infinity, the parameter m > 1 satisfies
(N − 1)m < N + 1. The constant k = sm− (N + 3)/2, where s = (N − 1)/2. The
initial data u0, u1 belong to X := {f : f ∈ C∞0 (RN ); 0 6≡ f ≥ 0}. Note that the
factor p−k approaches 0 as |x| tends to infinity for (N − 1)m < N + 1.

This work is motivated by a recent paper by Belchev, Kepka and Zhou [3] in
which Problem (1.1),(1.2) with 1 < m < 1 + (2/N) is considered. The authors
proved the following theorem using a modification of the technique of conformal
compactification due to Penrose [6] and developed by Christodolou [4] and Baez et
al. [5].

Theorem 1.1. Let 1 < m < 1 + (2/N) and u be a solution to (1.1),(1.2) with
u0, u1 ∈ X. Then u blows up in finite time.

Attention will be given to show that (1.1),(1.2) does not possess global solutions
for m > 1 and (N − 1)m < N + 1, complementing in this way the results in [3].
Theorem 1.1 is also announced in [1] and the proof is similar to the one given in
[3]. Our main result is the following:
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Theorem 1.2. Let m > 1, (N − 1)m < N + 1 and u be a solution to (1.1),(1.2)
with u0, u1 ∈ X. Then u blows up in finite time.

The proof of this theorem is given in Section 2 which contains also a result of
the nonexistence of global solutions in the case u1 ≤ 0.

2. Proof of the main result

Notation and preliminary results. To clarify the proof, we consider as in [3]
the conformal map c from the Minskowski space M0 to the Einstein universe E :=
R× SN . Here SN is the unit sphere in RN+1 and

c(t, x) := c(t, x1, x2, . . . , xN ) = (T, Y1, Y2, . . . , YN+1),

where

sinT = pt, cos T = p
(
1− t2 − x2

4
)
, T ∈ (−π, π),

Yj = pxj , j = 1, . . . , N, YN+1 = p
(
1 +

t2 − x2

4
)
,

p =
(
t2 +

(
1− t2 − x2

4
)2

)−1/2

.

The space M0 is equipped with the Minkowski metric:

g = dt2 − dx2,

and the space E with the metric

g̃ = dT 2 − dS2,

where dS2 is the canonical metric on SN . Therefore, c is a conformal map between
the Lorentz manifolds (M0, g) and (E, g̃), with the conformal factor p; that is,
c?g̃ = p2g.

Next, we consider as in [3], the function v defined in E by

u = R−2/(m−1)psv, R > 0, s =
N − 1

2
,

where u is a solution to (1.1), (1.2). Then v satisfies

(Lc + s2)v = |v|m, on E,

v(0, .) = R2/(m−1)p−s
0 u0 ◦ c−1,

vT (0, .) = R(m+1)/(m−1)p
−(s+1)
0 u1 ◦ c−1,

(2.1)

where p0 = cos2 ρ
2 , ρ ∈ [0, π) is the distance on SN from the north pole T = Yj =

0, j = 1, . . . , N, YN+1 = 1 and Lc denotes the d’Alembertien in E relative to the
metric g̃. Then the function H(T ) =

∫
SN v(T, .)dS satisfies (see [3])

H ′′ ≥ (C0|H|m−1 − s2)|H|, (2.2)

for some positive constant C0 independent of the parameter R. At the origin we
have

H(0) = R2/(m−1)−N

∫
RN

(
1 +

r2

4R2

)−(N+1)/2
u0dx,

≥ R2/(m−1)−N

∫
RN

(
1 +

r2

4
)−(N+1)/2

u0dx,

(2.3)
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and

H ′(0) = R(m+1)/(m−1)−N

∫
RN

(
1 +

r2

4R2

)−(N−1)/2
u1dx,

≥ R(m+1)/(m−1)−N

∫
RN

(
1 +

r2

4
)−(N−1)/2

u1dx, r = |x|, R ≥ 1.

(2.4)

Proposition 2.1. Let H be a solution to (2.2) where H ′(0) ≥ 0 and H(0) >

( s2

C0
)1/(m−1). Then H cannot be a global solution.

Proof. By contradiction and assume that H is global. By (2.2) we have H ′′(0) > 0.
It follows that H ′ > 0 and then H > ( s2

C0
)1/(m−1) on (0, ε), ε small. Arguing in the

same way, we deduce that H ′ > 0 and H > ( s2

C0
)1/(m−1) on (ε, ε + ε?). This shows,

in particular that

H ′(T ) > 0, H(T ) >
( s2

C0

)1/(m−1) and H ′′(T ) > 0,

for all T > 0. Next we claim that H(T ) goes to infinity with T. First note that
H(T ) has a limit as T tends to infinity. Assume that this limit is finite. Since H ′′

is positive, H ′(T ) goes to 0 as T tends to infinity. Integrating inequality (2.2) over
(0, T ) and passing to the limit yield

−H ′(0) ≥
∫ ∞

0

(C0H
m−1 − s2)HdT.

The left side of the last inequality is non-positive while the right hand side is
positive. This is impossible. Now using (2.2) and the fact that H(∞) = ∞,

H ′′ ≥ C1H
m, ∀ T > T0,

holds for some T0 large and for some positive constant C1. Therefore, H develops
a singularity since m > 1. �

Remark 2.2. Note that, as inequality (2.2) is autonomous, if there exists T0 such
that H(T0) > ( s2

C0
)1/(m−1) and H ′(T0) ≥ 0 the conclusion of the preceding propo-

sition remains valid.

Remark 2.3. The condition H(0) > ( s2

C0
)1/(m−1) can be replaced by H(0) ≥

( s2

C0
)1/(m−1) if H ′(0) > 0.

Remark 2.4. In the case 1 < m < 1 + 2
N we have

limR→∞R2/(m−1)−N

∫
RN

(
1 +

r2

4
)−(N+1)/2

u0 dx = ∞.

Hence we can choose R > R0 such that H(0) > ( s2

C0
)1/(m−1); therefore using

Proposition 2.1 we deduce Theorem 1.1 for 1 < m < 1 + 2
N .

Proof of Theorem 1.2. Let u be a local solution to (1.1), (1.2) where (N − 1)m <
N + 1, m > 1. Using the fact that

lim
R→∞

R(m+1)/(m−1)−N

∫
RN

(
1 +

r2

4
)−(N−1)/2

u1dx = ∞, (2.5)
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we deduce from (2.4), that H ′(0) > Q, for R > R0 large, where

Q2 :=
m− 1
m + 1

C
−2/(m−1)
0 s2(m+1)/(m−1). (2.6)

Hence Theorem 1.2 is a direct consequence of the following result which is valid for
any m > 1. �

Proposition 2.5. Let m > 1 and H be a solution to (2.2) where H(0) ≥ 0 and
H ′(0) > Q. Then there exists T1 > 0 such that H(T1) ≥ ( s2

C0
)1/(m−1), H ′(T1) > 0

and hence H is not a global solution.

Proof. Let H be a solution to (2.2) such that H(0) ≥ 0 and H ′(0) > Q. Let us
suppose that H(0) < ( s2

C0
)1/(m−1), otherwise the proof follows from Proposition 2.1.

Therefore, there exists T0 ≤ ∞ such that 0 < H(T ) < ( s2

C0
)1/(m−1) and H ′(T ) > 0

for all T in (0, T0). Assume first that T0 is finite and H ′(T0) = 0. Since the function

F (T ) =
1
2
(H ′(T ))2 − C0

m + 1
Hm+1(T ) +

s2

2
H2(T )

is strictly increasing on (0, T0), thanks to (2.2), we get F (T ) ≤ F (T0) ≤ 1
2Q2, for all

0 ≤ T < T0, in particular F (0) ≤ 1
2Q2 which yields to H ′(0) ≤ Q. A contradiction.

Next we suppose that T0 = ∞. Since H is monotone and bounded, there ex-
ists 0 < L ≤ ( s2

C0
)1/(m−1) such that limT→∞H(T ) = L and then there exists Tn

converging to infinity with n such that H ′(Tn) → 0, as n → ∞. Using again the
function F we deduce that F (0) ≤ limn→∞ F (Tn). Hence H ′(0) ≤ Q, a contradic-
tion. Then there exists T1 > 0 such that H(T1) > ( s2

C0
)1/(m−1), H ′(T1) > 0 and

hence H is not global thanks to Proposition 2.1 and Remark 2.2. �

Corollary 2.6. Let m > 1 and let u0, u1 be in X such that, for some positive R,
one of the following two conditions is satisfied

(1) R2/(m−1)−N
∫

RN

(
1 + r2

4R2

)−(N+1)/2
u0dx >

(
s2

C0

)1/(m−1)
,

(2) R(m+1)/(m−1)−N
∫

RN

(
1 + r2

4R2

)−(N−1)/2
u1dx > Q.

Then Problem (1.1),(1.2) has no global solution.

Case u1 ≤ 0. In what follows we shall see that solutions to (1.1) may blow up in
the case where u1 ∈ C∞0 (RN ) is non-positive.

Theorem 2.7. Let m > 1 and u0,−u1 in X be such that

(H ′(0))2 − 2C0

m + 1
Hm+1(0) + s2H2(0) ≤ Q, H(0) >

( s2

C0

)1/(m−1)
, (2.7)

where Q is given by (2.6),

H(0) = R
m+1
m−1

∫
RN

(
R2 +

r2

4
)−N+1

2 u0dx

and

H ′(0) = R2/(m−1)

∫
RN

(
R2 +

r2

4
)−N−1

2 u1dx,

for some fixed R > 0. Then Problem (1.1),(1.2) has no global solution.
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Proof. Assume that u0 and u1 satisfy (2.7) and are such that (1.1) has a global
solution. Using Proposition 2.1 we easily deduce that the function H is strictly
decreasing and H > ( s2

C0
)1/(m−1) on (0, T0), for some 0 < T0 ≤ ∞. Now, a simple

analysis shows that H(T0) = ( s2

C0
)1/(m−1). Next, since H ′ < 0 the function

F (T ) =
1
2
(H ′(T ))2 − C0

m + 1
Hm+1(T ) +

s2

2
H2(T )

is decreasing on (0, T0), thanks to (2.2). Therefore F (0) > F (T0) ≥ 1
2Q, which

contradicts (2.7). �
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