Electronic Journal of Differential Equations, Vol. 2003(2003), No. 53, pp. 1–5. ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp ejde.math.swt.edu (login: ftp)

BLOW UP OF SOLUTIONS TO SEMILINEAR WAVE EQUATIONS

MOHAMMED GUEDDA

ABSTRACT. This work shows the absence of global solutions to the equation

$$u_{tt} = \Delta u + p^{-\kappa} |u|^m,$$

in the Minkowski space $\mathbb{M}_0 = \mathbb{R} \times \mathbb{R}^N$, where m > 1, (N-1)m < N+1, and p is a conformal factor approaching 0 at infinity. Using a modification of the method of conformal compactification, we prove that any solution develops a singularity at a finite time.

1. INTRODUCTION

This note presents nonexistence results of the problem

$$u_{tt} = \Delta u + p^{-k} |u|^m, \qquad (1.1)$$

posed in the Minkowski space $\mathbb{M}_0 = \mathbb{R} \times \mathbb{R}^N$, $N \ge 1$, with the initial condition

$$u(0,x) = u_0(x), \quad u_t(0,x) = u_1(x), \quad x \in \mathbb{R}^N.$$
 (1.2)

Here p is a conformal factor approaching 0 at infinity, the parameter m > 1 satisfies (N-1)m < N+1. The constant k = sm - (N+3)/2, where s = (N-1)/2. The initial data u_0, u_1 belong to $X := \{f : f \in C_0^{\infty}(\mathbb{R}^N); 0 \neq f \geq 0\}$. Note that the factor p^{-k} approaches 0 as |x| tends to infinity for (N-1)m < N+1.

This work is motivated by a recent paper by Belchev, Kepka and Zhou [3] in which Problem (1.1),(1.2) with 1 < m < 1 + (2/N) is considered. The authors proved the following theorem using a modification of the technique of conformal compactification due to Penrose [6] and developed by Christodolou [4] and Baez *et al.* [5].

Theorem 1.1. Let 1 < m < 1 + (2/N) and u be a solution to (1.1),(1.2) with $u_0, u_1 \in X$. Then u blows up in finite time.

Attention will be given to show that (1.1),(1.2) does not possess global solutions for m > 1 and (N-1)m < N+1, complementing in this way the results in [3]. Theorem 1.1 is also announced in [1] and the proof is similar to the one given in [3]. Our main result is the following:

²⁰⁰⁰ Mathematics Subject Classification. 35L70, 35B40, 35L15.

Key words and phrases. Blow up, conformal compactification.

^{©2003} Southwest Texas State University.

Submitted November 15, 2002. Published May 3, 2003.

Theorem 1.2. Let m > 1, (N-1)m < N+1 and u be a solution to (1.1), (1.2) with $u_0, u_1 \in X$. Then u blows up in finite time.

The proof of this theorem is given in Section 2 which contains also a result of the nonexistence of global solutions in the case $u_1 \leq 0$.

2. Proof of the main result

Notation and preliminary results. To clarify the proof, we consider as in [3] the conformal map c from the Minskowski space \mathbb{M}_0 to the Einstein universe $\mathbb{E} := \mathbb{R} \times S^N$. Here S^N is the unit sphere in \mathbb{R}^{N+1} and

$$c(t,x) := c(t,x_1,x_2,\ldots,x_N) = (T,Y_1,Y_2,\ldots,Y_{N+1}),$$

where

$$\sin T = pt, \ \cos T = p\left(1 - \frac{t^2 - x^2}{4}\right), \quad T \in (-\pi, \pi),$$
$$Y_j = px_j, \ j = 1, \dots, N, \quad Y_{N+1} = p\left(1 + \frac{t^2 - x^2}{4}\right),$$
$$p = \left(t^2 + \left(1 - \frac{t^2 - x^2}{4}\right)^2\right)^{-1/2}.$$

The space \mathbb{M}_0 is equipped with the Minkowski metric:

$$g = dt^2 - dx^2,$$

and the space \mathbbm{E} with the metric

$$\tilde{g} = dT^2 - dS^2,$$

where dS^2 is the canonical metric on S^N . Therefore, c is a conformal map between the Lorentz manifolds (\mathbb{M}_0, g) and (\mathbb{E}, \tilde{g}) , with the conformal factor p; that is, $c^*\tilde{g} = p^2g$.

Next, we consider as in [3], the function v defined in \mathbb{E} by

$$u = R^{-2/(m-1)} p^s v, \quad R > 0, \ s = \frac{N-1}{2},$$

where u is a solution to (1.1), (1.2). Then v satisfies

$$(\mathcal{L}_{c} + s^{2})v = |v|^{m}, \quad \text{on } \mathbb{E},$$

$$v(0, .) = R^{2/(m-1)}p_{0}^{-s}u_{0} \circ c^{-1},$$

$$v_{T}(0, .) = R^{(m+1)/(m-1)}p_{0}^{-(s+1)}u_{1} \circ c^{-1},$$
(2.1)

where $p_0 = \cos^2 \frac{\rho}{2}$, $\rho \in [0, \pi)$ is the distance on S^N from the north pole $T = Y_j = 0$, $j = 1, \ldots, N$, $Y_{N+1} = 1$ and \mathcal{L}_c denotes the d'Alembertien in \mathbb{E} relative to the metric \tilde{g} . Then the function $H(T) = \int_{S^N} v(T, .) dS$ satisfies (see [3])

$$H'' \ge (C_0|H|^{m-1} - s^2)|H|, \tag{2.2}$$

for some positive constant C_0 independent of the parameter R. At the origin we have

$$H(0) = R^{2/(m-1)-N} \int_{\mathbb{R}^N} \left(1 + \frac{r^2}{4R^2}\right)^{-(N+1)/2} u_0 dx,$$

$$\geq R^{2/(m-1)-N} \int_{\mathbb{R}^N} \left(1 + \frac{r^2}{4}\right)^{-(N+1)/2} u_0 dx,$$
(2.3)

EJDE-2003/53

$$H'(0) = R^{(m+1)/(m-1)-N} \int_{\mathbb{R}^N} \left(1 + \frac{r^2}{4R^2}\right)^{-(N-1)/2} u_1 dx,$$

$$\geq R^{(m+1)/(m-1)-N} \int_{\mathbb{R}^N} \left(1 + \frac{r^2}{4}\right)^{-(N-1)/2} u_1 dx, \quad r = |x|, R \ge 1.$$
(2.4)

Proposition 2.1. Let H be a solution to (2.2) where $H'(0) \ge 0$ and $H(0) > (\frac{s^2}{C_0})^{1/(m-1)}$. Then H cannot be a global solution.

Proof. By contradiction and assume that H is global. By (2.2) we have H''(0) > 0. It follows that H' > 0 and then $H > (\frac{s^2}{C_0})^{1/(m-1)}$ on $(0, \varepsilon), \varepsilon$ small. Arguing in the same way, we deduce that H' > 0 and $H > (\frac{s^2}{C_0})^{1/(m-1)}$ on $(\varepsilon, \varepsilon + \varepsilon^*)$. This shows, in particular that

$$H'(T)>0, \quad H(T)> \big(\frac{s^2}{C_0}\big)^{1/(m-1)} \quad \text{and} \quad H''(T)>0,$$

for all T > 0. Next we claim that H(T) goes to infinity with T. First note that H(T) has a limit as T tends to infinity. Assume that this limit is finite. Since H'' is positive, H'(T) goes to 0 as T tends to infinity. Integrating inequality (2.2) over (0,T) and passing to the limit yield

$$-H'(0) \ge \int_0^\infty (C_0 H^{m-1} - s^2) H dT.$$

The left side of the last inequality is non-positive while the right hand side is positive. This is impossible. Now using (2.2) and the fact that $H(\infty) = \infty$,

$$H'' \ge C_1 H^m, \quad \forall \ T > T_0,$$

holds for some T_0 large and for some positive constant C_1 . Therefore, H develops a singularity since m > 1.

Remark 2.2. Note that, as inequality (2.2) is autonomous, if there exists T_0 such that $H(T_0) > (\frac{s^2}{C_0})^{1/(m-1)}$ and $H'(T_0) \ge 0$ the conclusion of the preceding proposition remains valid.

Remark 2.3. The condition $H(0) > (\frac{s^2}{C_0})^{1/(m-1)}$ can be replaced by $H(0) \ge (\frac{s^2}{C_0})^{1/(m-1)}$ if H'(0) > 0.

Remark 2.4. In the case $1 < m < 1 + \frac{2}{N}$ we have

$$\lim_{R \to \infty} R^{2/(m-1)-N} \int_{\mathbb{R}^N} \left(1 + \frac{r^2}{4}\right)^{-(N+1)/2} u_0 \, dx = \infty.$$

Hence we can choose $R > R_0$ such that $H(0) > (\frac{s^2}{C_0})^{1/(m-1)}$; therefore using Proposition 2.1 we deduce Theorem 1.1 for $1 < m < 1 + \frac{2}{N}$.

Proof of Theorem 1.2. Let u be a local solution to (1.1), (1.2) where (N-1)m < N+1, m > 1. Using the fact that

$$\lim_{R \to \infty} R^{(m+1)/(m-1)-N} \int_{\mathbb{R}^N} \left(1 + \frac{r^2}{4}\right)^{-(N-1)/2} u_1 dx = \infty,$$
(2.5)

MOHAMMED GUEDDA

we deduce from (2.4), that H'(0) > Q, for $R > R_0$ large, where

$$Q^{2} := \frac{m-1}{m+1} C_{0}^{-2/(m-1)} s^{2(m+1)/(m-1)}.$$
(2.6)

Hence Theorem 1.2 is a direct consequence of the following result which is valid for any m > 1. \square

Proposition 2.5. Let m > 1 and H be a solution to (2.2) where $H(0) \ge 0$ and H'(0) > Q. Then there exists $T_1 > 0$ such that $H(T_1) \ge (\frac{s^2}{C_0})^{1/(m-1)}$, $H'(T_1) > 0$ and hence H is not a global solution.

Proof. Let H be a solution to (2.2) such that $H(0) \ge 0$ and H'(0) > Q. Let us suppose that $H(0) < (\frac{s^2}{C_0})^{1/(m-1)}$, otherwise the proof follows from Proposition 2.1. Therefore, there exists $T_0 \leq \infty$ such that $0 < H(T) < (\frac{s^2}{C_0})^{1/(m-1)}$ and H'(T) > 0for all T in $(0, T_0)$. Assume first that T_0 is finite and $H'(T_0) = 0$. Since the function

$$F(T) = \frac{1}{2}(H'(T))^2 - \frac{C_0}{m+1}H^{m+1}(T) + \frac{s^2}{2}H^2(T)$$

is strictly increasing on $(0, T_0)$, thanks to (2.2), we get $F(T) \leq F(T_0) \leq \frac{1}{2}Q^2$, for all $0 \leq T < T_0$, in particular $F(0) \leq \frac{1}{2}Q^2$ which yields to $H'(0) \leq Q$. A contradiction.

Next we suppose that $T_0 = \infty$. Since H is monotone and bounded, there exists $0 < L \leq (\frac{s^2}{C_0})^{1/(m-1)}$ such that $\lim_{T\to\infty} H(T) = L$ and then there exists T_n converging to infinity with n such that $H'(T_n) \to 0$, as $n \to \infty$. Using again the function F we deduce that $F(0) \leq \lim_{n \to \infty} F(T_n)$. Hence $H'(0) \leq Q$, a contradiction. Then there exists $T_1 > 0$ such that $H(T_1) > (\frac{s^2}{C_0})^{1/(m-1)}, H'(T_1) > 0$ and hence H is not global thanks to Proposition 2.1 and Remark 2.2.

Corollary 2.6. Let m > 1 and let u_0, u_1 be in X such that, for some positive R, one of the following two conditions is satisfied

- (1) $R^{2/(m-1)-N} \int_{\mathbb{R}^N} \left(1 + \frac{r^2}{4R^2}\right)^{-(N+1)/2} u_0 dx > \left(\frac{s^2}{C_0}\right)^{1/(m-1)},$ (2) $R^{(m+1)/(m-1)-N} \int_{\mathbb{R}^N} \left(1 + \frac{r^2}{4R^2}\right)^{-(N-1)/2} u_1 dx > Q.$

Then Problem (1.1),(1.2) has no global solution.

Case $u_1 \leq 0$. In what follows we shall see that solutions to (1.1) may blow up in the case where $u_1 \in C_0^{\infty}(\mathbb{R}^N)$ is non-positive.

Theorem 2.7. Let m > 1 and $u_0, -u_1$ in X be such that

$$(H'(0))^2 - \frac{2C_0}{m+1}H^{m+1}(0) + s^2H^2(0) \le Q, \quad H(0) > \left(\frac{s^2}{C_0}\right)^{1/(m-1)}, \tag{2.7}$$

where Q is given by (2.6),

$$H(0) = R^{\frac{m+1}{m-1}} \int_{\mathbb{R}^N} \left(R^2 + \frac{r^2}{4} \right)^{-\frac{N+1}{2}} u_0 dx$$

and

$$H'(0) = R^{2/(m-1)} \int_{\mathbb{R}^N} \left(R^2 + \frac{r^2}{4} \right)^{-\frac{N-1}{2}} u_1 dx_2$$

for some fixed R > 0. Then Problem (1.1),(1.2) has no global solution.

EJDE-2003/53

5

Proof. Assume that u_0 and u_1 satisfy (2.7) and are such that (1.1) has a global solution. Using Proposition 2.1 we easily deduce that the function H is strictly decreasing and $H > (\frac{s^2}{C_0})^{1/(m-1)}$ on $(0, T_0)$, for some $0 < T_0 \leq \infty$. Now, a simple analysis shows that $H(T_0) = (\frac{s^2}{C_0})^{1/(m-1)}$. Next, since H' < 0 the function

$$F(T) = \frac{1}{2}(H'(T))^2 - \frac{C_0}{m+1}H^{m+1}(T) + \frac{s^2}{2}H^2(T)$$

is decreasing on $(0, T_0)$, thanks to (2.2). Therefore $F(0) > F(T_0) \ge \frac{1}{2}Q$, which contradicts (2.7).

References

- M. Aassila, Non existence de solutions globales de certaines équations d'ondes non linéaires, C. R. Acad. Sci. Paris, Ser. I 334 (2002) 961–966.
- [2] C. Antonini, F. Merle, Optimal bounds on positive blow up solutions for a semilinear wave equations, Intern. Math. Res. Notices 21 (2001) 1143–1167.
- [3] E. Belchev, M. Kepka, Z. Zhou, Finite-Time Blow-up of Solutions to Semilinear Wave Equations, J. Funct. Anal. 190 (2002) 233-254.
- [4] D. Christodolou, Global solutions of nonlinear hyperbolic equations for small initial data, Comm. Pure Appl. Math. 39 (1986) 267–282.
- [5] J. C. Baez, I. Segal, Z. Zhou, The global Goursat problem and Scattering for nonlinear wave equations, J. Funct. Anal. 93 (1990) 239–269.
- [6] R. Penrose, Conformal treatment of infinity, in relativity, groups and topology, B. De Witt C. De Witt (Eds.), Gordon and Breach, 1963.
- J. Shatah, Weak solutions and the development of singularities in the SU(2) σ-model, Comm. Pure Appl. Math. 41 (1988) 459–469.
- [8] W. Strauss, *Wave Equations*, American Mathematical Society, Providence, 1989.

Mohammed Guedda

LAMFA, CNRS UMR 6140, UNIVERSITÉ DE PICARDIE JULES VERNE, FACULTÉ DE MATHÉMATIQUES ET D'INFORMATIQUE, 33, RUE SAINT-LEU 80039 AMIENS, FRANCE

 $E\text{-}mail\ address:\ \texttt{guedda@u-picardie.fr}$