Electronic Journal of Differential Equations, Vol. 2003(2003), No. 40, pp. 1-7. ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp ejde.math.swt.edu (login: ftp)

EXISTENCE OF SOLUTIONS TO HIGHER-ORDER DISCRETE THREE-POINT PROBLEMS

DOUGLAS R. ANDERSON

Abstract. We are concerned with the higher-order discrete three-point boundaryvalue problem

$$
\begin{gathered}
\left(\Delta^{n} x\right)(t)=f(t, x(t+\theta)), \quad t_{1} \leq t \leq t_{3}-1, \quad-\tau \leq \theta \leq 1 \\
\left(\Delta^{i} x\right)\left(t_{1}\right)=0, \quad 0 \leq i \leq n-4, \quad n \geq 4 \\
\alpha\left(\Delta^{n-3} x\right)(t)-\beta\left(\Delta^{n-2} x\right)(t)=\eta(t), \quad t_{1}-\tau-1 \leq t \leq t_{1} \\
\left(\Delta^{n-2} x\right)\left(t_{2}\right)=\left(\Delta^{n-1} x\right)\left(t_{3}\right)=0 .
\end{gathered}
$$

By placing certain restrictions on the nonlinearity and the distance between boundary points, we prove the existence of at least one solution of the boundary value problem by applying the Krasnoselskii fixed point theorem.

1. Introduction

We are concerned with the existence of solutions to the higher-order discrete three-point problem

$$
\begin{gather*}
\left(\Delta^{n} x\right)(t)=f(t, x(t+\theta)), \quad t_{1} \leq t \leq t_{3}-1, \quad-\tau \leq \theta \leq 1 \tag{1.1}\\
\left(\Delta^{i} x\right)\left(t_{1}\right)=0, \quad 0 \leq i \leq n-4, \quad n \geq 4 \\
\alpha\left(\Delta^{n-3} x\right)(t)-\beta\left(\Delta^{n-2} x\right)(t)=\eta(t), \quad t_{1}-\tau-1 \leq t \leq t_{1} \\
\left(\Delta^{n-2} x\right)\left(t_{2}\right)=\left(\Delta^{n-1} x\right)\left(t_{3}\right)=0 \tag{1.2}
\end{gather*}
$$

Here we assume
(i) any interval $[a, b]$ is the set of integers $\{a, a+1, \cdots, b-1, b\}$;
(ii) $t_{i+1}>t_{i}+n-1$ to avoid overlap in boundary conditions, $i \in\{1,2\}$;
(iii) $f:\left[t_{1}, t_{3}-1\right] \times[0, \infty) \rightarrow[0, \infty)$;
(iv) $\alpha, \beta>0, \quad t_{3}-t_{1} \geq \tau \geq-1$, and $\theta \in[-\tau, 1]$ is constant;
(v) $\eta:\left[t_{1}-\tau-1, t_{1}\right] \rightarrow \mathbb{R}$ with $\eta\left(t_{1}\right)=0$;
(vi) x is defined on $\left[t_{1}-\tau-1, t_{3}+n-1\right]$.

For the rest of this paper we also have the hypotheses

[^0](H1) $G(t, s)$ on $\left[t_{1}, t_{3}+n-1\right] \times\left[t_{1}, t_{3}-1\right]$ is the Green's function for the difference equation
$$
\left(\Delta^{n} u\right)(t)=0, \quad t \in\left[t_{1}, t_{3}-1\right]
$$
subject to the boundary conditions (1.2) with $\tau=-1$.
(H2) $g(t, s)$ on $\left[t_{1}, t_{3}+2\right] \times\left[t_{1}, t_{3}-1\right]$ is the Green's function for the difference equation
$$
\left(\Delta^{3} u\right)(t)=0, \quad t \in\left[t_{1}, t_{3}-1\right]
$$
subject to the boundary conditions
\[

$$
\begin{align*}
\alpha u\left(t_{1}\right)-\beta(\Delta u)\left(t_{1}\right) & =0 \\
(\Delta u)\left(t_{2}\right) & =\left(\Delta^{2} u\right)\left(t_{3}\right) \tag{1.3}
\end{align*}
$$=0
\]

for α, β as in (iv).
(H3) $\|x\|_{\left[t_{1}-\tau-1, t_{3}+2\right]}:=\sup _{t_{1}-\tau-1 \leq t \leq t_{3}+2}\left|\left(\Delta^{n-3} x\right)(t)\right|$.
(H4) For $\Xi:=\left\{t \in\left[t_{1}, t_{3}+n-1\right]: t_{1} \leq t+\theta \leq t_{3}-1\right\}$,

$$
\Xi_{h}:=\left\{t \in \Xi: t_{2}-h \leq t+\theta \leq t_{2}+h\right\}
$$

is nonempty for some $h \in\left(0, t_{3}-t_{2}-2\right)$, which is nonempty by (ii).
The corresponding Green's function for the discrete homogeneous problem $\left(\Delta^{3} u\right)(t)=0$ satisfying the boundary conditions (1.3), a slight generalization of that in $[1,2,3,4]$, is given via

$$
g(t, s)= \begin{cases}s \in\left[t_{1}, t_{2}-1\right] & : \begin{cases}u_{1}(t, s) & : t \leq s+1 \\ v_{1}(t, s) & : t \geq s+1\end{cases} \tag{1.4}\\ s \in\left[t_{2}-1, t_{3}-1\right] & : \begin{cases}u_{2}(t, s) & : t \leq s+1 \\ v_{2}(t, s) & : t \geq s+1\end{cases} \end{cases}
$$

for $t \in\left[t_{1}, t_{3}+2\right]$ and $s \in\left[t_{1}, t_{3}-1\right]$, where

$$
\begin{aligned}
& u_{1}(t, s):=\frac{1}{2}\left(t-t_{1}\right)\left(2 s-t-t_{1}+3\right)+\frac{\beta}{\alpha}\left(s-t_{1}+1\right), \\
& v_{1}(t, s):=\frac{1}{2}\left(s-t_{1}+2\right)\left(s-t_{1}+1\right)+\frac{\beta}{\alpha}\left(s-t_{1}+1\right), \\
& u_{2}(t, s):=\frac{1}{2}\left(t-t_{1}\right)\left(2 t_{2}-t-t_{1}+1\right)+\frac{\beta}{\alpha}\left(t_{2}-t_{1}\right), \\
& v_{2}(t, s):=\frac{1}{2}\left(t-t_{1}\right)\left(2 t_{2}-t-t_{1}+1\right)+\frac{\beta}{\alpha}\left(t_{2}-t_{1}\right)+\frac{1}{2}(t-s-1)(t-s-2) .
\end{aligned}
$$

Remark 1.1. As in [2], it can be shown that if

$$
\frac{\beta}{\alpha}\left(t_{2}-t_{1}\right)+1>\frac{1}{2}\left(t_{3}-t_{1}+2\right)\left(t_{3}+t_{1}-2 t_{2}+1\right),
$$

then

$$
g(t, s)>0
$$

for all $t \in\left[t_{1}, t_{3}+2\right], s \in\left[t_{1}, t_{3}-1\right]$. Note that if the boundary points satisfy

$$
\begin{equation*}
t_{3}-t_{2} \leq t_{2}-t_{1}-1 \tag{1.5}
\end{equation*}
$$

then the above inequality holds for any choice of $\alpha, \beta>0$. Thus throughout this paper we assume that (1.5) holds. Moreover, as in [3], we have the following boundedness result.

Lemma 1.2. For all $t \in\left[t_{1}, t_{3}+2\right]$ and $s \in\left[t_{1}, t_{3}-1\right]$,

$$
\begin{equation*}
\ell(t) g\left(t_{2}, s\right) \leq g(t, s) \leq g\left(t_{2}, s\right) \tag{1.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\ell(t):=\min \left\{\frac{t-t_{1}}{t_{2}-t_{1}}, \frac{t_{3}-t+2}{t_{3}-t_{2}+2}\right\} . \tag{1.7}
\end{equation*}
$$

Remark 1.3. The following discussion is similar to that found in [6] for a continuous two-point problem on the unit interval. If x is a solution of (1.1), (1.2), it can be written as

$$
x(t)= \begin{cases}x(-\tau ; t) & : t_{1}-\tau-1 \leq t \leq t_{1} \\ t_{3}-1 \\ \sum_{s=t_{1}} G(t, s) f(s, x(s+\theta)) & : t_{1} \leq t \leq t_{3}+n-1\end{cases}
$$

where, using standard first-order linear difference equation methods $[7], x(-\tau ; t)$ satisfies

$$
\left(\Delta^{n-3} x\right)(-\tau ; t)=\left(1+\frac{\alpha}{\beta}\right)^{t-t_{1}}\left(\Delta^{n-3} x\right)\left(t_{1}\right)+\frac{1}{\beta} \sum_{s=t}^{t_{1}-1}\left(1+\frac{\alpha}{\beta}\right)^{t-s-1} \eta(s)
$$

for $t \in\left[t_{1}-\tau-1, t_{1}\right]$.
If u_{0} is the solution of (1.1), (1.2) with $f \equiv 0$, then u_{0} satisfies

$$
\left(\Delta^{n-3} u_{0}\right)(t)= \begin{cases}\frac{1}{\beta} \sum_{s=t}^{t_{1}-1}\left(1+\frac{\alpha}{\beta}\right)^{t-s-1} \eta(s) & : t_{1}-\tau-1 \leq t \leq t_{1} \tag{1.8}\\ 0 & : t_{1} \leq t \leq t_{3}+2\end{cases}
$$

note that actually, using the Green's function, $u_{0} \equiv 0$ on $\left[t_{1}, t_{3}+n-1\right]$. If x is any solution of (1.1), (1.2) set $u(t):=x(t)-u_{0}(t)$. Then $u(t) \equiv x(t)$ on $\left[t_{1}, t_{3}+n-1\right]$, and u satisfies

$$
\left(\Delta^{n-3} u\right)(t)= \begin{cases}\left(1+\frac{\alpha}{\beta}\right)^{t-t_{1}}\left(\Delta^{n-3} u\right)\left(t_{1}\right) & : t_{1}-\tau-1 \leq t \leq t_{1} \\ \sum_{s=t_{1}}^{t_{3}-1} g(t, s) f\left(s, u(s+\theta)+u_{0}(s+\theta)\right) & : t_{1} \leq t \leq t_{3}+2\end{cases}
$$

But this implies

$$
u(t)= \begin{cases}\left(\frac{\beta}{\alpha}\right)^{n-3}\left(1+\frac{\alpha}{\beta}\right)^{t-t_{1}}\left(\Delta^{n-3} u\right)\left(t_{1}\right) & : t_{1}-\tau-1 \leq t \leq t_{1} \\ t_{s=t_{1}}-1 \\ t_{s}(t, s) f\left(s, u(s+\theta)+u_{0}(s+\theta)\right) & : t_{1} \leq t \leq t_{3}+n-1\end{cases}
$$

2. Existence of at Least One Solution

We are concerned with proving the existence of solutions of the higher-order discrete nonlinear boundary value problem (1.1), (1.2). In light of the above discussion in Remark 1.3, consider the fixed points of the operator \mathcal{A} defined by

$$
\mathcal{A} u(t)= \begin{cases}\left(\frac{\beta}{\alpha}\right)^{n-3}\left(1+\frac{\alpha}{\beta}\right)^{t-t_{1}}\left(\Delta^{n-3} u\right)\left(t_{1}\right) & : t_{1}-\tau-1 \leq t \leq t_{1} \\ \sum_{s=t_{1}}^{t_{3}-1} G(t, s) f\left(s, u(s+\theta)+u_{0}(s+\theta)\right) & : t_{1} \leq t \leq t_{3}+n-1\end{cases}
$$

with domain $\left\{u:\left[t_{1}-\tau-1, t_{3}+n-1\right] \rightarrow \mathbb{R}\right\}$. If $\mathcal{A} u=u$, then a solution x of (1.1), (1.2) would be given by

$$
x(t)= \begin{cases}\left(\frac{\beta}{\alpha}\right)^{n-3}\left(1+\frac{\alpha}{\beta}\right)^{t-t_{1}}\left(\Delta^{n-3} u\right)\left(t_{1}\right)+u_{0}(t) & : t_{1}-\tau-1 \leq t \leq t_{1} \\ u(t) & : t_{1} \leq t \leq t_{3}+n-1\end{cases}
$$

where u_{0} satisfies (1.8).
Remark 2.1. In the following discussion we will need an $h \in\left(0, t_{3}-t_{2}-2\right)$; note that for all $t \in\left[t_{2}-h, t_{2}+h\right]$, we then have

$$
\begin{equation*}
\ell(t) \geq \ell\left(t_{2}+h+1\right)=1-\frac{h+1}{t_{3}-t_{2}+2} \tag{2.1}
\end{equation*}
$$

for all $h \in\left(0, t_{3}-t_{2}-2\right)$, where ℓ is given in (1.7). Moreover, let $k, m>0$ such that

$$
\begin{align*}
k^{-1}:= & \sum_{s=t_{1}}^{t_{3}-1} g\left(t_{2}, s\right) \tag{2.2}\\
= & \frac{1}{6}\left(t_{2}-t_{1}+1\right)\left(t_{2}-t_{1}\right)\left(3 t_{3}-2 t_{2}-t_{1}+2\right) \\
& +\frac{\beta}{2 \alpha}\left(t_{2}-t_{1}\right)\left(2 t_{3}-t_{2}-t_{1}+1\right)
\end{align*}
$$

and

$$
\begin{align*}
m^{-1}:= & \ell\left(t_{2}+h+1\right) \sum_{s=t_{2}-h}^{t_{2}+h} g\left(t_{2}, s\right) \tag{2.3}\\
= & \frac{1}{6}\left(1-\frac{h+1}{t_{3}-t_{2}+2}\right)\left[\left(t_{2}-t_{1}+1\right)^{\underline{2}}\left(t_{2}-t_{1}+3 h+5\right)\right. \\
& \left.-\left(t_{2}-t_{1}-h+2\right)^{\underline{3}}+\frac{3 \beta}{\alpha}\left(4 h t_{2}+2 t_{2}-4 h t_{1}-2 t_{1}-h^{2}+h\right)\right]
\end{align*}
$$

where we have used the so-called falling factorial power [7]

$$
b^{\underline{r}}:=b(b-1)(b-2) \cdots(b-r+1)
$$

Finally, set

$$
\begin{equation*}
M_{0}:=\left\|u_{0}\right\|_{\left[t_{1}-\tau-1, t_{3}+2\right]} \tag{2.4}
\end{equation*}
$$

for u_{0} as in (1.8).
We will employ the following fixed point theorem due to Krasnoselskii [8].
Theorem 2.2. Let E be a Banach space, $P \subseteq E$ be a cone, and suppose that Ω_{1}, Ω_{2} are bounded open balls of E centered at the origin with $\bar{\Omega}_{1} \subset \Omega_{2}$. Suppose further that $\mathcal{A}: P \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right) \rightarrow P$ is a completely continuous operator such that either
(i) $\|\mathcal{A} u\| \leq\|u\|, u \in P \cap \partial \Omega_{1}$ and $\|\mathcal{A} u\| \geq\|u\|, u \in P \cap \partial \Omega_{2}$, or
(ii) $\|\mathcal{A} u\| \geq\|u\|, u \in P \cap \partial \Omega_{1}$ and $\|\mathcal{A} u\| \leq\|u\|, u \in P \cap \partial \Omega_{2}$
holds. Then \mathcal{A} has a fixed point in $P \cap\left(\bar{\Omega}_{2} \backslash \Omega_{1}\right)$.
Theorem 2.3. Let k, m, M_{0} be as in (2.2), (2.3), (2.4), respectively, and suppose the following conditions are satisfied.
$\left(C_{1}\right)$ There exists $p>0$ such that $f(t, w) \leq k p$ for $t \in\left[t_{1}, t_{3}-1\right]$ and $0 \leq\|w\| \leq$ $p+M_{0}$.
$\left(C_{2}\right)$ There exists $q>0$ such that $f(t, w) \geq m q$ for $t \in \Xi_{h}$ and $q \ell\left(t_{2}+h+1\right) \leq$ $\|w\| \leq q$, for $h \in\left(0, t_{3}-t_{2}-2\right)$ and Ξ_{h} as in (H4).
Then (1.1), (1.2) has a solution $x=u+u_{0}$ such that $\|x\|_{\left[t_{1}-\tau-1, t_{3}+2\right]}$ lies between $\max \left\{0, p-M_{0}\right\}$ and $q+M_{0}$.

Proof. Many of the techniques employed here are as in [5, 6]. Let \mathbb{B} denote the Banach space $\left\{u:\left[t_{1}-\tau-1, t_{3}+n-1\right] \rightarrow \mathbb{R}\right\}$ with the norm

$$
\|u\|_{\left[t_{1}-\tau-1, t_{3}+2\right]}=\sup _{t \in\left[t_{1}-\tau-1, t_{3}+2\right]}\left|\left(\Delta^{n-3} u\right)(t)\right| .
$$

Define the cone $\mathbb{P} \subset \mathbb{B}$ by

$$
\mathbb{P}=\left\{u \in \mathbb{B}: \min _{t \in\left[t_{2}-h, t_{2}+h\right]}\left(\Delta^{n-3} u\right)(t) \geq \ell\left(t_{2}+h+1\right)\|u\|_{\left[t_{1}-\tau-1, t_{3}+2\right]}\right\}
$$

Consider the mapping $\mathcal{A}: \mathbb{P} \rightarrow \mathbb{B}$ via

$$
\mathcal{A} u(t)= \begin{cases}\left(\frac{\beta}{\alpha}\right)^{n-3}\left(1+\frac{\alpha}{\beta}\right)^{t-t_{1}}\left(\Delta^{n-3} u\right)\left(t_{1}\right) & : t_{1}-\tau-1 \leq t \leq t_{1} \\ \sum_{s=t_{1}}^{t_{3}-1} G(t, s) f\left(s, u(s+\theta)+u_{0}(s+\theta)\right) & : t_{1} \leq t \leq t_{3}+n-1\end{cases}
$$

Then

$$
\Delta^{n-3}(\mathcal{A} u)(t)=\left\{\begin{array}{l}
\left(1+\frac{\alpha}{\beta}\right)^{t-t_{1}} \sum_{s=t_{1}}^{t_{3}-1} g\left(t_{1}, s\right) f\left(s, u(s+\theta)+u_{0}(s+\theta)\right) \\
\sum_{s=t_{1}}^{t_{3}-1} g(t, s) f\left(s, u(s+\theta)+u_{0}(s+\theta)\right)
\end{array}\right.
$$

so that $\Delta^{n-3}(\mathcal{A} u)(t) \leq \Delta^{n-3}(\mathcal{A} u)\left(t_{1}\right)$ for $t_{1}-\tau-1 \leq t \leq t_{1}$. In other words, $\|\mathcal{A} u\|_{\left[t_{1}-\tau-1, t_{3}+2\right]}=\|\mathcal{A} u\|_{\left[t_{1}, t_{3}+2\right]}$. It follows for $h \in\left(0, t_{3}-t_{2}-2\right)$ and $t \in\left[t_{2}-\right.$ $\left.h, t_{2}+h\right]$ that

$$
\begin{aligned}
\Delta^{n-3}(\mathcal{A} u)(t) & =\sum_{s=t_{1}}^{t_{3}-1} g(t, s) f\left(s, u(s+\theta)+u_{0}(s+\theta)\right) \\
& \geq \ell(t) \sum_{s=t_{1}}^{t_{3}-1} g\left(t_{2}, s\right) f\left(s, u(s+\theta)+u_{0}(s+\theta)\right) \\
& \geq \ell\left(t_{2}+h+1\right)\|\mathcal{A} u\|_{\left[t_{1}-\tau-1, t_{3}+2\right]}
\end{aligned}
$$

by properties of the Green's function (1.6), so that $\mathcal{A}: \mathbb{P} \rightarrow \mathbb{P}$.
Without loss of generality, we may assume $0<p<q$. Define the bounded open balls

$$
\Omega_{p}=\left\{u \in \mathbb{B}:\|u\|_{\left[t_{1}-\tau-1, t_{3}+2\right]}<p\right\}
$$

and

$$
\Omega_{q}=\left\{u \in \mathbb{B}:\|u\|_{\left[t_{1}-\tau-1, t_{3}+2\right]}<q\right\} ;
$$

then $0 \in \Omega_{p} \subset \Omega_{q}$. If $u \in \mathbb{P} \cap \partial \Omega_{p}$, then $\|u\|=p$ and

$$
\left|\left(\Delta^{n-3} u\right)(t)+\left(\Delta^{n-3} u_{0}\right)(t)\right| \leq p+M_{0}
$$

for all $t \in\left[t_{1}, t_{3}+2\right]$. As a result,

$$
\begin{aligned}
\|\mathcal{A} u\| & =\sum_{s=t_{1}}^{t_{3}-1} g\left(t_{2}, s\right) f\left(s, u(s+\theta)+u_{0}(s+\theta)\right) \\
& \leq k p \sum_{s=t_{1}}^{t_{3}-1} g\left(t_{2}, s\right) \\
& =p \\
& =\|u\|
\end{aligned}
$$

using $\left(C_{1}\right)$ and (2.2). Thus, $\|\mathcal{A} u\| \leq\|u\|$ for $u \in \mathbb{P} \cap \partial \Omega_{p}$.
Similarly, let $u \in \mathbb{P} \cap \partial \Omega_{q}$, so that $\|u\|=q$. Then for $s \in \Xi_{h}$,

$$
\left(\Delta^{n-3} u\right)(s+\theta) \geq \min _{t \in\left[t_{2}-h, t_{2}+h\right]}\left(\Delta^{n-3} u\right)(t) \geq\|u\| \ell\left(t_{2}+h+1\right)
$$

for all $h \in\left(0, t_{3}-t_{2}-2\right)$ and $\ell(\cdot)$ as in (2.1). As a result,

$$
q \ell\left(t_{2}+h+1\right) \leq\left(\Delta^{n-3} u\right)(s+\theta)+\left(\Delta^{n-3} u_{0}\right)(s+\theta) \leq q
$$

for $s \in \Xi_{h}$, since $\Delta^{n-3} u_{0} \equiv 0$ on $\left[t_{1}, t_{3}+2\right]$ by Remark 1.3. It follows that

$$
\begin{aligned}
\|\mathcal{A} u\| & =\sum_{s=t_{1}}^{t_{3}-1} g\left(t_{2}, s\right) f\left(s, u(s+\theta)+u_{0}(s+\theta)\right) \\
& \geq \sum_{s \in \Xi_{h}} g\left(t_{2}, s\right) f\left(s, u(s+\theta)+u_{0}(s+\theta)\right) \\
& \geq m q \ell\left(t_{2}+h+1\right) \sum_{s=t_{2}-h}^{t_{2}+h} g\left(t_{2}, s\right) \\
& =q \\
& =\|u\|
\end{aligned}
$$

by $\left(C_{2}\right)$ and (2.3). Consequently, $\|\mathcal{A} u\| \geq\|u\|$ for $u \in \mathbb{P} \cap \partial \Omega_{q}$. By Theorem 2.2, \mathcal{A} has a fixed point $u \in \mathbb{P} \cap\left(\bar{\Omega}_{q} \backslash \Omega_{p}\right)$; i.e., $p \leq\|u\| \leq q$. Therefore the discrete problem (1.1), (1.2) has a solution $x=u+u_{0}$ such that $p-M_{0} \leq\|x\| \leq q+M_{0}$, if $M_{0}<p$.

References

[1] D. R. Anderson and R. I. Avery, Multiple positive solutions to a third order discrete focal boundary value problem, Computers and Mathematics with Applications, 42 (2001), 333-340.
[2] D. R. Anderson, Positivity of Green's function for an n-point right focal boundary value problem on measure chains, Math. Comput. Modelling 31 (2000), 29-50.
[3] D. R. Anderson, Discrete third-order three-point right focal boundary value problems, Computers and Mathematics with Applications, to appear.
[4] D. R. Anderson, R. I. Avery and A. C. Peterson, Three positive solutions to a discrete focal boundary value problem, Journal of Computational and Applied Mathematics, 88 (1998), 103-118.
[5] J. Henderson, Multiple solutions for $2 m$ th order Sturm-Liouville boundary value problems on a measure chain, J. Diff. Equations Appl. 6 (2000), 417-429.
[6] Chen-Huang Hong, Fu-Hsiang Wong, and Cheh-Chih Yeh. Existence of Positive Solutions for Higher-Order Functional Differential Equations. Journal of Mathematical Analysis and Applications (2002), in press.
[7] Walter G. Kelley and Allan C. Peterson. Difference Equations: An Introduction with Applications, 2e, Harcourt/Academic Press, San Diego, 2001.
[8] M.A. Krasnoselskii, Positive Solutions of Operator Equations, Noordhoff, Groningen, 1964.
Douglas R. Anderson
Department of Mathematics and Computer Science, Concordia College, Moorhead, MN 56562 USA

E-mail address: andersod@cord.edu

[^0]: 2000 Mathematics Subject Classification. 39A10.
 Key words and phrases. Difference equations, boundary-value problem, Green's function, fixed points, cone.
 © 2003 Southwest Texas State University.
 Submitted August 19, 2002. Published April 15, 2003.

