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APPROXIMATIONS OF SOLUTIONS TO NONLINEAR
SOBOLEV TYPE EVOLUTION EQUATIONS

DHIRENDRA BAHUGUNA & REETA SHUKLA

Abstract. In the present work we study the approximations of solutions to a
class of nonlinear Sobolev type evolution equations in a Hilbert space. These

equations arise in the analysis of the partial neutral functional differential
equations with unbounded delay. We consider an associated integral equation
and a sequence of approximate integral equations. We establish the existence

and uniqueness of the solutions to every approximate integral equation using

the fixed point arguments. We then prove the convergence of the solutions of
the approximate integral equations to the solution of the associated integral

equation. Next we consider the Faedo-Galerkin approximations of the solutions
and prove some convergence results. Finally we demonstrate some of the
applications of the results established.

1. Introduction

In the present work we are concerned with the approximation of solutions to the
nonlinear Sobolev type evolution equation

d

dt
(u(t) + g(t, u(t))) + Au(t) = f(t, u(t)), t > 0,

u(0) = φ,
(1.1)

in a separable Hilbert space (H, ‖.‖, (., .)), where the linear operator A satisfies
the assumption (H1) stated later in this section so that −A generates an analytic
semigroup. The functions f and g are the appropriate continuous functions of their
arguments in H.

The case of (1.1) in which g ≡ 0 has been extensively studied in literature, see
for instance, the books of Krein [11], Pazy [14], Goldstein [7] and the references
cited in these books.

The study of (1.1) with linear g was initiated by Showalter [15, 16, 17, 18, 19] with
the applications to the degenerate parabolic equations. Brill [3] has reformulated
a class of pseudoparabolic partial differential equations as (1.1) with linear g and
has considered the applications to a variety of physical problems, for example, in
the thermodynamics [6], in the flow of fluid through fissured rocks [2], in the shear
in second-order fluids [21] and in the soil mechanics [20].
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The nonlinear Sobolev type equations of the form (1.1) arise in the study of
partial neutral functional differential equations with an unbounded delay which
can be modelled in the form (cf. [9, 10])

d

dt
(u(t) + G(t, ut)) = Au(t) + F (t, ut), t > 0, (1.2)

in a Banach space X where A is the infinitesimal generator of an analytic semigroup
in X, F and G are appropriate nonlinear functions from [0, T ]×W into X and for
any function u ∈ C((−∞,∞), X) the history function ut ∈ C((−∞, 0], X) of u is
given by ut(θ) = u(t + θ).

In the present work we are interested in the Faedo-Galerkin approximations of
solutions to (1.1). The Faedo-Galerkin approximations of solutions to the particular
case of (1.1) where g ≡ 0 and f(t, u) = M(u) has been considered by Miletta [13].
The more general case has been dealt with by Bahuguna, Srivastava and Singh [1].
The existence and uniqueness of solutions to (1.1) has been studied by Hernández
[8] under the assumptions that −A is the infinitesimal generator of an analytic
semigroup of bounded linear operators defined on a Banach space X and f and
g are appropriate continuous functions on [0, T ] ×W into X where W is an open
subset of X.

Now, we consider some assumptions on A, f and g. We assume that the operator
A satisfies the following.

(H1) A is a closed, positive definite, self-adjoint, linear operator from the domain
D(A) ⊂ H of A into H such that D(A) is dense in H, A has the pure point
spectrum

0 < λ0 ≤ λ1 ≤ λ2 ≤ · · ·
and a corresponding complete orthonormal system of eigenfunctions {ui},
i.e., Aui = λiui and (ui, uj) = δij , where δij = 1 if i = j and zero otherwise.

These assumptions on A guarantee that −A generates an analytic semigroup, de-
noted by e−tA, t ≥ 0.

We mention some notions and preliminaries essential for our purpose. It is well
known that there exist constants M̃ ≥ 1 and ω ≥ 0 such that

‖e−tA‖ ≤ M̃eωt, t ≥ 0.

Since −A generates the analytic semigroup e−tA, t ≥ 0, we may add cI to −A for
some constant c, if necessary, and in what follows we may assume without loss of
generality that ‖e−tA‖ is uniformly bounded by M , i.e., ‖e−tA‖ ≤ M and 0 ∈ ρ(A).
In this case it is possible to define the fractional power Aη for 0 ≤ η ≤ 1 as closed
linear operator with domain D(Aη) ⊆ H (cf. Pazy [14], pp. 69-75 and p. 195).
Furthermore, D(Aη) is dense in H and the expression

‖x‖η = ‖Aηx‖,

defines a norm on D(Aη). Henceforth we represent by Xη the space D(Aη) endowed
with the norm ‖.‖η. In the view of the facts mentioned above we have the following
result for an analytic semigroup e−tA, t ≥ 0 (cf. Pazy [14] pp. 195-196).

Lemma 1.1. Suppose that −A is the infinitesimal generator of an analytic semi-
group e−tA, t ≥ 0 with ‖e−tA‖ ≤ M for t ≥ 0 and 0 ∈ ρ(−A). Then we have the
following properties.

(i) Xη is a Banach space for 0 ≤ η ≤ 1.
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(ii) For 0 < δ ≤ η < 1, the embedding Xη ↪→ Xδ is continuous.
(iii) Aη commutes with e−tA and there exists a constant Cη > 0 depending on

0 ≤ η ≤ 1 such that

‖Aηe−tA‖ ≤ Cηt−η, t > 0.

We assume the following assumptions on the nonlinear maps f and g.
(H2) There exist positive constants 0 < α < β < 1 and R such that the func-

tions f and Aβg are continuous for (t, u) ∈ [0,∞) × BR(Xα, φ), where
BR(Z, z0) = {z ∈ Z | ‖z − z0‖Z ≤ R} for any Banach space Z with its
norm ‖.‖Z and there exist constants L, 0 < γ ≤ 1 and a nondecreasing
function FR from [0,∞) into [0,∞) depending on R > 0 such that for
every (t, u), (t, u1) and (t, u2) in [0,∞)×BR(Xα, φ),

‖Aβg(t, u1)−Aβg(s, u2)‖ ≤ L{|t− s|γ + ‖u1 − u2‖α},
‖f(t, u)‖ ≤ FR(t),

‖f(t, u1)− f(t, u2)‖ ≤ FR(t)‖u1 − u2‖α,

L‖Aα−β‖ < 1.

The plan of this paper is as follows. In the second section, we consider an
integral equation associated with (1.1). We then consider a sequence of approximate
integral equations and establish the existence and uniqueness of solutions to each of
the approximate integral equations. In the third section we prove the convergence
of the solutions of the approximate integral equations and show that the limiting
function satisfies the associated integral equation. In the fourth section we consider
the Faedo-Galerkin approximations of solutions and prove some convergence results
for such approximations. Finally in the last section we demonstrate some of the
applications of the results established in earlier sections.

2. Approximate Integral Equations

We continue to use the notions and notations of the earlier section. The existence
of solutions to (1.1) is closely associated with the existence of solutions to the
integral equation

u(t) =e−tA(φ + g(0, φ))− g(t, u(t)) +
∫ t

0

Ae−(t−s)Ag(s, u(s))ds

+
∫ t

0

e−(t−s)Af(s, u(s))ds, t ≥ 0.

In this section we will consider an approximate integral equation associated with
(2.1) and establish the existence and uniqueness of the solutions to the approximate
integral equations. By a solution u to (2.1) on [0, T ], 0 < T < ∞, we mean a
function u ∈ Xα(T ) satisfying (2.1) on [0, T ] where Xα(T ) is the Banach space
C([0, T ], Xα) of all continuous functions from [0, T ] into Xα endowed with the
supremum norm

‖u‖Xα(T ) = sup
0≤t≤T

‖u(t)‖α.

By a solution u to (2.1) on [0, T̃ ), 0 < T̃ ≤ ∞, we mean a function u such that
u ∈ Xα(T ) satisfying (2.1) on [0, T ] for every 0 < T < T̃ .
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Let Hn denote the finite dimensional subspace of the Hilbert space H spanned
by {u0, u1, . . . , un} and let Pn : H → Hn for n = 1, 2, · · · , be the corresponding
projection operators.

Let 0 < T0 < ∞ be arbitrarily fixed and let

B = max
0≤t≤T0

‖Aβg(t, φ)‖.

We choose 0 < T ≤ T0 such that

‖(e−tA − I)Aα(φ + g(0, Pnφ))‖ ≤ (1− µ)
R

3
,

‖Aα−β‖LT γ + C1+α−β(LR̃ + B)
T β−α

β − α
+ CαFR̃(T0)

T 1−α

1− α
< (1− µ)

R

6
,

C1+α−βL
T β−α

β − α
+ CαFR̃(T0)

T 1−α

1− α
< 1− µ,

where µ = ‖Aα−β‖L, R̃ =
√

R2 + ‖φ‖2α and Cα and C1+α−β are the constants in
Lemma 1.1.

For each n, we define

fn : [0, T ]×Xα(T ) → H by fn(t, u) = f(t, Pnu(t)),

gn : [0, T ]×Xα(T ) → Xβ(T ) by gn(t, u) = g(t, Pnu(t)).

We set φ̃(t) = φ for t ∈ [0, T ] and define a map Sn on BR(Xα(T ), φ̃) by

(Snu)(t) =e−tA(φ + gn(0, φ̃))− gn(t, u) +
∫ t

0

Ae−(t−s)Agn(s, u)ds

+
∫ t

0

e−(t−s)Afn(s, u)ds.

(2.1)

Proposition 2.1. Let (H1) and (H2) hold. Then there exists a unique function
un ∈ BR(Xα(T ), φ̃) such that Snun = un for each n = 0, 1, 2, . . . ; i.e., un satisfies
the approximate integral equation

un(t) =e−tA(φ + gn(0, φ̃))− gn(t, un) +
∫ t

0

Ae−(t−s)Agn(s, un)ds

+
∫ t

0

e−(t−s)Afn(s, un)ds.

(2.2)

Proof. First we show that the map t 7→ (Snu)(t) is continuous from [0, T ] into Xα

with respect to norm ‖.‖α. For t ∈ [0, T ] and sufficiently small h > 0, we have

‖(Snu)(t + h)− (Snu)(t)‖α

≤ ‖(e−hA − I)Aαe−tA‖(‖φ‖+ ‖g(0, Pnφ)‖)

+ ‖Aα−β‖ ‖Aβgn(t + h, u)−Aβgn(t, u)‖

+
∫ t

0

‖(e−hA − I)A1+α−βe−(t−s)A‖ ‖Aβgn(s, u)‖ds

+
∫ t+h

t

‖e−(t+h−s)AA1+α−β‖ ‖Aβgn(s, u)‖ds (2.3)

+
∫ t

0

‖(e−hA − I)Aαe−(t−s)A‖ ‖fn(s, u)‖ds
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+
∫ t+h

t

‖e−(t+h−s)AAα‖ ‖fn(s, u)‖ds.

Using (H2) we obtain

‖Aβgn(t + h, u)−Aβgn(t, u)‖ ≤ L(hγ + ‖Pnu(t + h)− Pnu(t)‖α)

≤ L(hγ + ‖u(t + h)− u(t)‖α)
(2.4)

and ∫ t+h

t

‖e−(t+h−s)AA1+α−β‖ ‖Aβgn(s, u)‖ds ≤ (LR̃ + B)C1+α−βhβ−α

β − α
, (2.5)

since
‖Aβgn(s, u)‖ ≤ ‖Aβgn(s, u)−Aβg(s, φ)‖+ ‖Aβg(s, φ)‖

≤ L‖Pnu(s)− φ‖α + B ≤ LR̃ + B
(2.6)

and ∫ t+h

t

‖e−(t+h−s)AAα‖ ‖fn(s, u)‖ds ≤
CαFR̃(T0)h1−α

1− α
. (2.7)

Part (d) of Theorem 2.6.13 in Pazy [14] implies that for 0 < ϑ ≤ 1 and x ∈ D(Aϑ),

‖(e−tA − I)x‖ ≤ C ′
ϑtϑ‖x‖ϑ. (2.8)

Let ϑ be a real number with 0 < ϑ < min{1 − α, β − α}, then Aαy ∈ D(Aϑ) for
any y ∈ D(Aα+ϑ). For all t, s ∈ [0, T ], t ≥ s and 0 < h < 1, we get the following
inequalities:

‖(e−hA − I)Aαe−tA‖ ≤ C ′
ϑhϑ‖Aα+ϑe−tA‖ ≤ C̃hϑ

tα+ϑ
, (2.9)

‖(e−hA − I)Aαe−(t−s)A‖ ≤ C̃hϑ

(t− s)α+ϑ
, (2.10)

‖(e−hA − I)A1+α−βe−(t−s)A‖ ≤ C̃hϑ

t1+α+ϑ−β
, (2.11)

where C̃ = C ′
ϑ max {Cα+ϑ, C1+α+ϑ−β}. Using the estimates (2.6), (2.10) and (2.11),

we get∫ t

0

‖(e−hA − I)A1+α−βe−(t−s)A‖ ‖Aβgn(s, u)‖ds ≤ C̃hϑ(LR̃ + B)
T

β−(α+ϑ)
0

β − (α + ϑ)
(2.12)

and ∫ t

0

‖(e−hA − I)Aαe−(t−s)A‖ ‖fn(s, u)‖ds ≤ C̃hϑFR̃(T0)
T

1−(α+ϑ)
0

1− (α + ϑ)
. (2.13)

From the inequalities (2.3), (2.4), (2.5), (2.7), (2.9), (2.12) and (2.13), it follows
that (Snu)(t) is continuous from [0, T ] into Xα with respect to the norm ‖.‖α. Now,
we show Snu ∈ BR(Xα(T ), φ̃). Consider

‖(Snu)(t)− φ‖α

≤ ‖(e−tA − I)Aα(φ + gn(0, φ̃))‖+ ‖Aα−β‖ ‖Aβgn(0, φ̃)−Aβgn(t, u)‖

+
∫ t

0

‖A1+α−βe−(t−s)A‖ ‖Aβgn(s, u)‖ds +
∫ t

0

‖e−(t−s)AAα‖ ‖fn(s, u)‖ds
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≤ (1− µ)
R

3
+ ‖Aα−β‖L{T γ + ‖u(t)− φ‖α}

+ C1+α−β(LR̃ + B)
T β−α

β − α
+ CαFR̃(T0)

T 1−α

1− α

≤ (1− µ)
R

3
+ (1− µ)

R

6
+ µR ≤ R.

Taking the supremum over [0, T ], we obtain

‖Snu− φ̃‖Xα(T ) ≤ R.

Hence Sn maps BR(Xα(T ), φ̃) into BR(Xα(T ), φ̃). Now we show that Sn is a strict
contraction on BR(Xα(T ), φ̃). For u, v ∈ BR(Xα(T ), φ̃), we have

‖(Snu)(t)− (Snv)(t)‖α

≤ ‖Aα−β‖ ‖Aβgn(t, u)−Aβgn(t, v)‖α

+
∫ t

0

‖A1+α−βe−(t−s)A‖ ‖Aβgn(s, u)−Aβgn(s, v)‖ds

+
∫ t

0

‖e−(t−s)AAα‖ ‖fn(s, u)− fn(s, v)‖ds.

(2.14)

Now,

‖Aβgn(t, u)−Aβgn(t, v)‖ ≤ L‖u(t)− v(t)‖α ≤ L‖u− v‖Xα(T ). (2.15)

Also, we have

‖fn(s, u)− fn(s, v)‖ ≤ FR̃(T0)‖u(s)− v(s)‖α ≤ FR̃(T0)‖u− v‖Xα(T ). (2.16)

Using (2.15) and (2.16) in (2.14) and taking supremum over [0, T ], we get

‖Snu−Snv‖Xα(T ) ≤
(
‖Aα−β‖L+C1+α−βL

T β−α

β − α
+CαFR̃(T0)

T 1−α

1− α

)
‖u−v‖Xα(T ).

The above estimate and the definition of T imply that Sn is a strict contraction on
BR(Xα(T ), φ̃). Hence there exists a unique un ∈ BR(Xα(T ), φ̃) such that Snun =
un. Clearly un satisfies (2.2). This completes the proof of the proposition. �

Proposition 2.2. Let (H1) and (H2) hold. If φ ∈ D(Aα) then un(t) ∈ D(Aϑ) for
all t ∈ (0, T ] where 0 ≤ ϑ ≤ β < 1. Furthermore, if φ ∈ D(A) then un(t) ∈ D(Aϑ)
for all t ∈ [0, T ] where 0 ≤ ϑ ≤ β < 1.

Proof. From Proposition 2.1, we have the existence of a unique un ∈ BR(Xα(T ), φ̃)
satisfying (2.2). Part (a) of Theorem 2.6.13 in Pazy [14] implies that for t > 0
and 0 ≤ ϑ < 1, e−tA : H → D(Aϑ) and for 0 ≤ ϑ ≤ β < 1, D(Aβ) ⊆ D(Aϑ).
(H2) implies that the map t 7→ Aβg(t, un(t)) is Hölder continuous on [0, T ] with the
exponent ρ = min{γ, ϑ} since the Hölder continuity of un can be easily established
using the similar arguments from (2.3) to (2.13). It follows that (cf. Theorem 4.3.2
in [14]) ∫ t

0

e−(t−s)AAβgn(s, un)ds ∈ D(A).

Also from Theorem 1.2.4 in Pazy [14], we have e−tAx ∈ D(A) if x ∈ D(A). The
required result follows from these facts and the fact that D(A) ⊆ D(Aϑ) for 0 ≤
ϑ ≤ 1. �
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Proposition 2.3. Let (H1) and (H2) hold. If φ ∈ D(Aα) and t0 ∈ (0, T ] then

‖un(t)‖ϑ ≤ Ut0 , α < ϑ < β, t ∈ [t0, T ], n = 1, 2, · · · ,

for some constant Ut0 , dependent of t0 and

‖un(t)‖ϑ ≤ U0, 0 < ϑ ≤ α, t ∈ [0, T ], n = 1, 2, · · · ,

for some constant U0. Moreover, if φ ∈ D(Aβ), then there exists a constant U0,
such that

‖un(t)‖ϑ ≤ U0, 0 < ϑ < β, t ∈ [0, T ], n = 1, 2, · · · .

Proof. First, we assume that φ ∈ D(Aα). Applying Aϑ on both the sides of (2.2)
and using (iii) of Lemma 1.1, for t ∈ [t0, T ] and α < ϑ < β, we have

‖un(t)‖ϑ ≤‖Aϑe−tA(φ + gn(0, φ̃))‖+ ‖Aϑ−β‖ ‖Aβgn(t, un)‖

+
∫ t

0

‖A1+ϑ−βe−(t−s)A‖ ‖Aβgn(s, un)‖ds

+
∫ t

0

‖e−(t−s)AAϑ‖ ‖fn(s, un)‖ds

≤Cϑt−ϑ
0 (‖φ‖+ ‖gn(0, φ̃)‖) + ‖Aϑ−β‖(LR̃ + B)

+ C1+ϑ−β(LR̃ + B)
T β−ϑ

β − ϑ
+ CϑFR̃(T0)

T 1−ϑ

1− ϑ
≤ Ut0 .

Again, for t ∈ [0, T ] and 0 < ϑ ≤ α, φ ∈ D(Aϑ) and

‖un(t)‖ϑ ≤M(‖Aϑφ‖+ ‖gn(0, φ̃‖ϑ) + ‖Aϑ−β‖(LR̃ + B)

+ C1+ϑ−β(LR̃ + B)
T β−ϑ

β − ϑ
+ CϑFR̃(T0)

T 1−ϑ

1− ϑ
≤ U0.

Furthermore, If φ ∈ D(Aβ) then φ ∈ D(Aϑ) for 0 < ϑ ≤ β and we can easily get
the required estimate. This completes the proof of the proposition. �

3. Convergence of Solutions

In this section we establish the convergence of the solution un ∈ Xα(T ) of the
approximate integral equation (2.2). to a unique solution u of (2.1).

Proposition 3.1. Let (H1) and (H2) hold. If φ ∈ D(Aα), then for any t0 ∈ (0, T ],

lim
m→∞

sup
{n≥m, t0≤t≤T}

‖un(t)− um(t)‖α = 0.

Proof. Let 0 < α < ϑ < β. For n ≥ m, we have

‖fn(t, un)− fm(t, um)‖ ≤ ‖fn(t, un)− fn(t, um)‖+ ‖fn(t, um)− fm(t, um)‖
≤ FR̃(T0)[‖un(t)− um(t)‖α + ‖(Pn − Pm)um(t)‖α].

Also,

‖(Pn − Pm)um(t)‖α ≤ ‖Aα−ϑ(Pn − Pm)Aϑum(t)‖ ≤ 1
λϑ−α

m

‖Aϑum(t)‖.

Thus, we have

‖fn(t, un)− fm(t, um)‖ ≤ FR̃(T0)[‖un(t)− um(t)‖α +
1

λϑ−α
m

‖Aϑum(t)‖].
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Similarly

‖Aβgn(t, un)−Aβgm(t, um)‖

≤ ‖Aβgn(t, un)−Aβgn(t, um)‖+ ‖Aβgn(t, um)−Aβgm(t, um)‖

≤ L[‖un(t)− um(t)‖α +
1

λϑ−α
m

‖Aϑum(t)‖].

Now, for 0 < t′0 < t0, we may write

‖un(t)− um(t)‖α

≤ ‖e−tAAα(gn(0, φ̃)− gm(0, φ̃))‖+ ‖Aα−β‖ ‖Aβgn(t, un)−Aβgm(t, um)‖

+
( ∫ t′0

0

+
∫ t

t′0

)
‖A1+α−βe−(t−s)A‖ ‖Aβgn(s, un)−Aβgm(s, um)‖ds

+
( ∫ t′0

0

+
∫ t

t′0

)
‖Aαe−(t−s)A‖ ‖fn(s, un)− fm(s, um)‖ds.

We estimate the first term as

‖e−tAAα(gn(0, φ̃)− gm(0, φ̃))‖ ≤ M‖Aα−β‖ ‖Aβg(0, Pnφ)−Aβg(0, Pmφ)‖

≤ M‖Aα−β‖L‖(Pn − Pm)Aαφ‖.

The first and the third integrals are estimated as∫ t′0

0

‖A1+α−βe−(t−s)A‖ ‖Aβgn(s, un)−Aβgm(s, um)‖ds

≤ 2C1+α−β(LR̃ + B)(t0 − t′0)
−(1+α−β)t′0,∫ t′0

0

‖Aαe−(t−s)A‖ ‖fn(s, un)− fm(s, um)‖ds ≤ 2CαFR̃(T0)(t0 − t′0)
−αt′0.

For the second and the fourth integrals, we have∫ t

t′0

‖A1+α−βe−(t−s)A‖ ‖Aβgn(s, un)−Aβgm(s, um)‖ds

≤ C1+α−βL

∫ t

t′0

(t− s)−(1+α−β)[‖un(s)− um(s)‖α +
1

λϑ−α
m

‖Aϑum(s)‖]ds

≤ C1+α−βL
( Ut′0

T β−α

λϑ−α
m (β − α)

+
∫ t

t′0

(t− s)−(1+α−β)‖un(s)− um(s)‖αds
)
,

∫ t

t′0

‖Aαe−(t−s)A‖ ‖fn(s, un)− fm(s, um)‖ds

≤ CαFR̃(T0)
∫ t

t′0

(t− s)−α[‖un(s)− um(s)‖α +
1

λϑ−α
m

‖Aϑum(s)‖]ds

≤ CαFR̃(T0)
( Ut′0

T 1−α

λϑ−α
m (1− α)

+
∫ t

t′0

(t− s)−α‖un(s)− um(s)‖αds
)
.

Therefore,

‖un(t)− um(t)‖α ≤M‖Aα−β‖L‖(Pn − Pm)Aαφ‖
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+ ‖Aα−β‖L
(
‖un(t)− um(t)‖α +

Ut′0

λϑ−α
m

)
+ 2

(C1+α−β(LR̃ + B)
(t0 − t′0)1+α−β

+
CαFR̃(T0)
(t0 − t′0)α

)
t′0 + Cα,β

Ut′0

λϑ−α
m

+
∫ t

t′0

(CαFR̃(T0)
(t− s)α

+
C1+α−βL

(t− s)1+α−β

)
‖un(s)− um(s)‖αds,

where

Cα,β = CαFR̃(T0)
T 1−α

1− α
+ C1+α−βL

T β−α

β − α
.

Since ‖Aα−β‖L < 1, we have

‖un(t)− um(t)‖α ≤
1

(1− ‖Aα−β‖L)

{
M‖(Pn − Pm)Aαφ‖+ ‖Aα−β‖L

Ut′0

λϑ−α
m

+ 2
(C1+α−β(LR̃ + B)

(t0 − t′0)1+α−β
+

CαFR̃(T0)
(t0 − t′0)α

)
t′0 + Cα,β

Ut′0

λϑ−α
m

+
∫ t

t′0

(CαFR̃(T0)
(t− s)α

+
C1+α−βL

(t− s)1+α−β

)
‖un(s)− um(s)‖αds

}
.

Lemma 5.6.7 in [14] implies that there exists a constant C such that

‖un(t)− um(t)‖α

≤ 1
(1− ‖Aα−β‖L)

{
M‖(Pn − Pm)Aαφ‖+ (‖Aα−β‖L + Cα,β)

Ut′0

λϑ−α
m

+ 2
(C1+α−β(LR̃ + B)

(t0 − t′0)1+α−β
+

CαFR̃(T0)
(t0 − t′0)α

)
t′0

}
C.

Taking supremum over [t0, T ] and letting m →∞, we obtain

lim
m→∞

sup
{n≥m,t∈[t0,T ]}

‖un(t)− um(t)‖α

≤ 2
(1− ‖Aα−β‖L)

(C1+α−β(LR̃ + B)
(t0 − t′0)1+α−β

+
CαFR̃(T0)
(t0 − t′0)α

)
C.

As t′0 is arbitrary, the right hand side may be made as small as desired by taking
t′0 sufficiently small. This completes the proof of the proposition. �

Corollary 3.2. If φ ∈ D(Aβ) then

lim
m→∞

sup
{n≥m, 0≤t≤T}

‖un(t)− um(t)‖α = 0.

Proof. Propositions 2.2 and 2.3 imply that in the proof of Proposition 3.1 we may
take t0 = 0. �

For the convergence of the solution un(t) of the approximate integral equation
(2.2) we have the following result.

Theorem 3.3. Let (H1) and (H2) hold and let φ ∈ D(Aα). Then there exists a
unique function u ∈ Xα(T ) such that un → u as n → ∞ in Xα(T ) and u satisfies
(2.1) on [0, T ]. Furthermore u can be extended to the maximal interval of existence
[0, tmax), 0 < tmax ≤ ∞ satisfying (2.1) on [0, tmax) and u is a unique solution to
(2.1) on [0, tmax).
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Proof. Let us assume that φ ∈ D(Aα). Since, for 0 < t ≤ T , Aαun(t) converges to
Aαu(t) as n →∞ and un(0) = u(0) = φ for all n, we have, for 0 ≤ t ≤ T , Aαun(t)
converges to Aαu(t) in H as n → ∞. Since un ∈ BR(Xα(T ), φ̃), it follows that
u ∈ BR(Xα(T ), φ̃) and for any 0 < t0 ≤ T ,

lim
n→∞

sup
{t0≤t≤T}

‖un(t)− u(t)‖α = 0.

Also,

sup
t0≤t≤T

‖fn(t, un)− f(t, u(t))‖ ≤ FR̃(T0)(‖un − u‖Xα(T ) + ‖(Pn − I)u‖Xα(T )) → 0

as n →∞ and

sup
t0≤t≤T

‖Aβgn(t, un)−Aβg(t, u(t))‖ ≤ L(‖un − u‖Xα(T ) + ‖(Pn − I)u‖Xα(T )) → 0

as n →∞. Now, for 0 < t0 < t, we may rewrite (2.2) as

un(t) = e−tA(φ + gn(0, φ̃))− gn(t, un) +
(∫ t0

0

+
∫ t

t0

)
Ae−(t−s)Agn(s, un)ds

+
( ∫ t0

0

+
∫ t

t0

)
e−(t−s)Afn(s, un)ds

The first and third integrals are estimated as

‖
∫ t0

0

Ae−(t−s)Agn(s, u)ds‖ ≤
∫ t0

0

‖A1−βe−(t−s)A‖ ‖Aβgn(s, un)‖ds

≤ C1−β(LR̃ + B)T 1−βt0,

‖
∫ t0

0

e−(t−s)Afn(s, un)ds‖ ≤ MFR̃(T0)t0.

Thus, we have∥∥∥un(t)− e−tA(φ + gn(0, φ̃)) + gn(t, un)

−
∫ t

t0

Ae−(t−s)Agn(s, un)ds−
∫ t

t0

e−(t−s)Afn(s, un)ds
∥∥∥

≤ (C1−β(LR̃ + B)T 1−β + MFR̃(T0))t0.

Letting n →∞ in the above inequality, we get∥∥∥u(t)− e−tA(φ + g(0, φ)) + g(t, u(t))

−
∫ t

t0

Ae−(t−s)Ag(s, u(s))ds−
∫ t

t0

e−(t−s)Af(s, u(s))ds
∥∥∥

≤ (C1−β(LR̃ + B)T 1−β + MFR̃(T0))t0.

Since 0 < t0 ≤ T is arbitrary, we obtain that u satisfies the integral equation (2.1).
If u satisfies (2.1) on [0, T1] for some 0 < T1 ≤ T0, then we show that, u can be

extended further. Since 0 < T0 < ∞, was arbitrary, we assume that 0 < T1 < T0.
We consider the equation

d

dt
(w(t) + G(t, w(t))) + Aw(t) = F (t, w(t)), 0 ≤ t ≤ T0 < ∞,

w(0) = u(T1),
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where, F,G : [0, T0 − T1]×D(Aα) → H are defined by

F (t, x) = f(t + T1, x), G(t, x) = g(t + T1, x),

for (t, x) ∈ [0, T0 − T1] ×D(Aα). We note that F and G satisfy (H2), where T0 is
replaced by T0 − T1. Hence, there exists a unique w ∈ C([0, T2], D(Aα)) for some
0 < T2 < T0 − T1 satisfying the integral equation

w(t) = e−tA(u(T1) + G(0, u(T1))−G(t, w(t))

+
∫ t

0

Ae−(t−s)AG(s, w(s))ds +
∫ t

0

e−(t−s)AF (s, w(s))ds, 0 ≤ t ≤ T2.

We define

ũ(t) =

{
u(t), 0 ≤ t ≤ T1,

w(t− T1), T1 ≤ t ≤ T1 + T2.

Then ũ satisfies the integral equation

ũ(t) = e−tA(φ + g(0, φ))− g(t, ũ(t)) +
∫ t

0

Ae−(t−s)Ag(s, ũ(s))ds

+
∫ t

0

e−(t−s)Af(s, ũ(s))ds, 0 ≤ t ≤ T1 + T2.

(3.1)

To see this, we need to verify (3.1) only on [T1, T1 + T2]. For t ∈ [T1, T1 + T2],

ũ(t) = w(t− T1)

= e−(t−T1)A(u(T1) + G(0, u(T1)))−G(t− T1, w(t− T1))

+
∫ t−T1

0

Ae−(t−T1−s)AG(s, w(s))ds +
∫ t−T1

0

e−(t−T1−s)AF (s, w(s))ds.

Putting T1 + s = η, we get

ũ(t) = e−(t−T1)A({e−T1A(φ + g(0, φ))− g(T1, u(T1))

+
∫ T1

0

Ae−(T1−s)Ag(s, u(s))ds +
∫ T1

0

e−(T1−s)Af(s, u(s))ds}

+ G(0, u(T1)))−G(t− T1, w(t− T1))

+
∫ t

T1

Ae−(t−η)AG(η − T1, w(η − T1))dη

+
∫ t

T1

e−(t−η)AF (η − T1, w(η − T1))ds

= e−tA(φ + g(0, φ))− g(t, w(t− T1)) +
∫ T1

0

Ae−(t−s)Ag(s, u(s))ds

+
∫ t

T1

Ae−(t−s)Ag(s, w(s− T1))ds +
∫ T1

0

e−(t−s)Af(s, u(s))ds

+
∫ t

T1

e−(t−s)Af(s, w(s− T1))ds,
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as G(0, u(T1)) = g(T1, u(T1)), G(t − T1, w(t − T1)) = g(t, w(t − T1)) and F (t −
T1, w(t− T1)) = f(t, w(t− T1)). Hence, we have

ũ(t) = e−tA(φ + g(0, φ))− g(t, ũ(t)) +
∫ t

0

Ae−(t−s)Ag(s, ũ(s))ds

+
∫ t

0

e−(t−s)Af(s, ũ(s))ds,

for t ∈ [0, T1 + T2]. Thus, we see ũ(t) satisfy (3.1) on [0, T1 + T2]. hence, we
may extend u(t) to maximal interval [0, tmax) satisfying (3.1) on [0, tmax) with
0 < tmax ≤ ∞.

Now, we show the uniqueness of solutions to (2.1). Let u1 and u2 be two solutions
to (2.1) on some interval [0, T3], where T3 be any number such that 0 < T3 < tmax.
Then, for 0 ≤ t ≤ T3, we have

‖u1(t)− u2(t)‖α ≤ ‖Aα−β‖ ‖Aβg(t, u1(t))−Aβg(t, u2(t))‖

+
∫ t

0

‖A1+α−βe−(t−s)A‖ ‖Aβg(s, u1(s))−Aβg(s, u2(s))‖ds

+
∫ t

0

‖e−(t−s)AAα‖ ‖f(s, u1(s))− f(s, u2(s))‖ds

≤ ‖Aα−β‖L‖u1(t)− u2(t)‖α

+ C1+α−βL

∫ t

0

(t− s)−(1+α−β)‖u1(s)− u2(s)‖αds

+ CαFR̃(T3)
∫ t

0

(t− s)−α‖u1(s)− u2(s)‖αds.

Since, ‖Aα−β‖L < 1, we have

‖u1(t)− u2(t)‖α

≤ 1
(1− ‖Aα−β‖L)

∫ t

0

( C1+α−βL

(t− s)1+α−β
+

CαFR̃(T3)
(t− s)α

)
‖u1(s)− u2(s)‖αds.

Using Lemma 5.6.7 in Pazy [14], we get

‖u1(t)− u2(t)‖α = 0

for all 0 ≤ t ≤ T3. From the fact that

‖u1(t)− u2(t)‖ ≤
1
λα

0

‖u1(t)− u2(t)‖α,

it follows that u1 = u2 on [0, T3]. Since 0 < T3 < tmax was arbitrary, we have
u1 = u2 on [0, tmax). This completes the proof of the theorem. �

4. Faedo-Galerkin Approximations

For any 0 < T < tmax, we have a unique u ∈ Xα(T ) satisfying the integral
equation

u(t) = e−tA(φ + g(0, φ))− g(t, u(t)) +
∫ t

0

Ae−(t−s)Ag(s, u(s))ds

+
∫ t

0

e−(t−s)Af(s, u(s))ds.
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Also, we have a unique solution un ∈ Xα(T ) of the approximate integral equation

un(t) = e−tA(φ + gn(0, φ̃))− gn(t, un) +
∫ t

0

Ae−(t−s)Agn(s, un)ds

+
∫ t

0

e−(t−s)Afn(s, un)ds.

If we project (4.1) onto Hn, we get the Faedo-Galerkin approximation ûn(t) =
Pnun(t) satisfying

ûn(t) = e−tA(Pnφ + Png(0, Pnφ))− Png(t, ûn(t))

+
∫ t

0

Ae−(t−s)APng(s, ûn(s))ds +
∫ t

0

e−(t−s)APnf(s, ûn(s))ds
(4.1)

The solution u of (4.1) and ûn of (4.1), have the representation

u(t) =
∞∑

i=0

αi(t)ui, αi(t) = (u(t), ui), i = 0, 1, . . . ; (4.2)

ûn(t) =
n∑

i=0

αn
i (t)ui, αn

i (t) = (ûn(t), ui), i = 0, 1, . . . ; (4.3)

Using (4.3) in (4.1), we get the following system of first order ordinary differential
equations

d

dt
(αn

i (t) + Gn
i (t, αn

0 (t), . . . , αn
n(t))) + λiα

n
i (t) = Fn

i (t, αn
0 (t), . . . , αn

n(t)),

αn
i (0) = φi,

(4.4)

where

Gn
i (t, αn

0 (t), . . . , αn
n(t)) =

(
g(t,

n∑
i=0

αn
i (t)ui), ui

)
,

Fn
i (t, αn

0 (t), . . . , αn
n(t)) =

(
f(t,

n∑
i=0

αn
i (t)ui), ui

)
,

and φi = (φ, ui) for i = 1, 2, . . . n.
The system (4.4) determines the αn

i (t)’s. Now, we shall show the convergence of
αn

i (t) → αi(t). It can easily be checked that

Aα[u(t)− û(t)] = Aα
[ ∞∑

i=0

(αi(t)− αn
i (t))ui

]
=

∞∑
i=0

λα
i (αi(t)− αn

i (t))ui.

Thus, we have

‖Aα[u(t)− û(t)]‖2 ≥
n∑

i=0

λ2α
i (αi(t)− αn

i (t))2.

We have the following convergence theorem.

Theorem 4.1. Let (H1) and (H2) hold. Then we have the following.
(a) If φ ∈ D(Aα), then for any 0 < t0 ≤ T ,

lim
n→∞

sup
t0≤t≤T

[ n∑
i=0

λ2α
i (αi(t)− αn

i (t))2
]

= 0.
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(b) If φ ∈ D(Aβ), then

lim
n→∞

sup
0≤t≤T

[ n∑
i=0

λ2α
i (αi(t)− αn

i (t))2
]

= 0.

The assertion of this theorem follows from the facts mentioned above and the
following result.

Proposition 4.2. Let (H1) and (H2) hold and let T be any number such that
0 < T < tmax, then we have the following.

(a) If φ ∈ D(Aα), then for any 0 < t0 ≤ T ,

lim
n→∞

sup
{n≥m,t0≤t≤T}

‖Aα[ûn(t)− ûm(t)]‖ = 0.

(b) If φ ∈ D(Aβ), then

lim
n→∞

sup
{n≥m,0≤t≤T}

‖Aα[ûn(t)− ûm(t)]‖ = 0.

Proof. For n ≥ m, we have

‖Aα[ûn(t)− ûm(t)]‖ = ‖Aα[Pnun(t)− Pmum(t)]‖
≤ ‖Pn[un(t)− um(t)]‖α + ‖(Pn − Pm)um‖α

≤ ‖un(t)− um(t)‖α +
1

λϑ−α
m

‖Aϑum‖.

If φ ∈ D(Aα) then the result in (a) follows from Proposition 3.1. If φ ∈ D(Aβ), (b)
follows from Corollary 3.2. �

5. Applications

In this section we give some applications of the results established in the earlier
sections. Consider the initial boundary value problem

∂

∂t
(w(x, t)−∆w(x, t)) + ∆2w(x, t) = h(x, t, w(x, t)),

w(x, 0) = w0(x), x ∈ Ω,
(5.1)

with the homogeneous boundary conditions where Ω is a bounded domain in the
RN with the sufficiently smooth boundary ∂Ω and ∆ is N -dimensional Laplacian.
The nonlinear function h is sufficiently smooth in all its arguments.

Let X = L2(Ω) and define the operator A by

D(A) = H1
0 (Ω) ∩H2(Ω), Au = −∆u, u ∈ D(A),

then we can reformulate (5.1) in the abstract form

d

dt
(u(t) + Au(t)) + A2u(t) = h(t, u(t)),

u(0) = w0.
(5.2)

The operator A is not invertible but for c > 0 large enough (A + cI) is invertible
and ‖(A + cI)−1‖ ≤ C. Therefore, we can write (5.2) as a Sobolev type evolution
equation of the form (1.1) where

g(t, u) = (1− c)(A + cI)−1u
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and
f(t, u) = cA(A + cI)−1u + h(t, (A + cI)−1u).

We see that the operator A satisfies (H1). Also we can easily check that g and f
satisfy (H2). Thus, we may apply the results of the earlier sections to guarantee
the existence of Faedo-Galerkin approximations and their convergence to the unique
solution of (5.1).

A particular example of (5.1) is the meta-parabolic (cf. Carroll and Showalter
[5], Showalter [19] and Brown [4]) problem

∂

∂t
(u(x, t)− ∂2u(x, t)

∂x2
) +

∂4u(x, t)
∂x4

= f(x, t, u(x, t)), 0 < x < 1,

u(0, t) = u(1, t) =
∂u

∂x
(0, t) =

∂u

∂x
(1, t) = 0, t > 0,

u(x, 0) = u0(x), 0 < x < 1.

(5.3)
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[10] Hernández, M.E., and Henŕiquez, H.R., Existence of periodic solutions of partial neutral

functional differential equations with unbounded delay, J. Math. Anal. Appl. 221 (1998),
499-522.

[11] Krein, S.G., Linear differential equations in Banach space, Translated from Russian by J.M.

Danskin, Translations of Mathematical Monographs, Vol. 29, American Mathematical Soci-
ety, Providence, R.I., 1971.

[12] Lightbourne, J.H.,III, Rankin, S.M., III, A partial functional differential equation of Sobolev

type, J. Math. Anal. Appl. 93 (1983), 328-337.
[13] Miletta, P. D., Approximation of solutions to evolution equations, Math. Meth. in the Appl.

Sci., 17, (1994), 753-763.



16 DHIRENDRA BAHUGUNA & REETA SHUKLA EJDE–2003/31

[14] Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations,

Springer-Verlag, New York, 1983.

[15] Showalter, R.E., Existence and representation theorems for a semilinear Sobolev equation in
a Banach space, SIAM J. Math. Anal. 3 (1972), 527-543.

[16] Showalter, R.E., A nonlinear parabolic-Sobolev equation, J. Math. Anal. Appl. 50 (1975),

183-190.
[17] Showalter, R.E., Nonlinear degenerate evolution equations and partial differential equations

of mixed type, SIAM J. Math. Anal. 6 (1975), 25-42.
[18] Showalter, R.E., Degenerate parabolic initial-boundary value problems, J. Differential Equa-

tions 31 (1979), 296-312.

[19] Showalter, R. E. Monotone oprators in Banach Space and nonlinear partial differential equa-
tions, Mathematical Surveys and Monographs, 49, American Mathematical Society, Provi-
dence, RI, 1997.

[20] Taylor, D., Research on Consolidation of Clays, Massachusetts Institute of Technology Press,
Cambridge, 1952.

[21] Ting, T.W., Certain non-steady flows of second order fluids, Arch. Rational Mech. Anal. 14

(1963), 1-26.

Dhirendra Bahuguna
Department of Mathematics, Indian Institute of Technology Kanpur, Kanpur - 208 016,

India
E-mail address: dhiren@iitk.ac.in

Reeta Shukla

Department of Mathematics, Indian Institute of Technology Kanpur, Kanpur - 208 016,
India

E-mail address: reetas@lycos.com


