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RATE OF CONVERGENCE FOR SOLUTIONS TO DIRICHLET
PROBLEMS OF QUASILINEAR EQUATIONS

ZHIREN JIN

Abstract. We obtain rates of convergence for solutions to Dirichlet problems
of quasilinear elliptic (possibly degenerate) equations in slab-like domains. The

rates found depend on the convergence of the boundary data and of the coeffi-
cients of the operator. These results are obtained by constructing appropriate

barrier functions based on the structure of the operator and on the convergence
of the boundary data.

1. Introduction and statement of Main Results

Let Ω be a slab-like domain in Rn (n ≥ 2) defined by

Ω = {(x, y) ∈ Rn : |y| < M, |x| > N1}

where x = (x1, . . . , xn−1), N1 and M are fixed positive constants. For a continuous
function φ on ∂Ω, we consider a Dirichlet problem

Qf = 0 in Ω,

f = φ on ∂Ω ,
(1.1)

where Q is a second-order quasilinear operator of the form

Qf =
n∑

i,j=1

aij(x, y, f,Df)Dijf + B(x, y, f,Df) . (1.2)

Here (aij(x, y, t, P )) is a positive semi-definite matrix in which each entry (and B)
is a C1 function on Rn × R× Rn.

We shall investigate the asymptotic behavior of bounded solutions of (1.1). That
is, if there is a function Φ ∈ C(Sn−1 × [−M,M ]) and a decreasing function g1(t),
such that g1(t) → 0 as t →∞, and that

|φ(x,±M)− Φ(x/|x|,±M)| ≤ g1(|x|) for |x| > N1 . (1.3)

We want to see how fast f(x, y) approaches a limiting function. Specifically, we
want to find a function k(x/|x|, y) and a decreasing function d(t) such that

|f(x, y)− k(x/|x|, y)| ≤ d(|x|) for (x, y) ∈ Ω. (1.4)
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Apparently the function d(t) can not approach zero faster than g1(t). In general,
d(t) will approach zero slower than g1(t) as illustrated in the following example.

Example 1.1 ([12, example 3]). Let

Ω = {(x1, x2, x3) ∈ R3 : x2
1 + x2

2 > 1, |x3| < 1},
Qu = (1/3)∆u,

φ(x1, x2,±1) =
2x2(x2

1 + x2
1 + 1)1/2

x2
1 + x2

2

− x2

(x2
1 + x2

2 + 1)3/2
.

Then

f(x1, x2, x3) =
2x2

√
x2

1 + x2
2 + x2

3

x2
1 + x2

2

− x2

(x2
1 + x2

2 + x2
3)3/2

.

is a bounded solution to Qf = 0 in Ω, f = φ on ∂Ω (see [4, pp. 165-1666]). When

Φ(ω) = 2ω2 for ω = (ω1, ω2) ∈ S1,

a short calculation shows that |φ(x,±1)−Φ(x/|x|)| = O(|x|−4) as |x| → ∞. From
the results in [11] or [13], we see that k(x/|x|, y) in (1.4) must be Φ(x/|x|). However
we can calculate that

|f(x, y)− Φ(x/|x|)| = O(|x|−2) as |x| → ∞.

Thus in this case g1(t) behaves like t−4 and d(t) behaves like t−2. That is, d(t)
approaches zero much slower than g1(t).

Although d(t) can not go to zero faster than g1(t) in general, there are a lot
of cases that d(t) will go to zero at the same rate as g1(t) (the best case we can
expect). When g1(t) has one of the special forms like t−α, e−tα

, and when the lower
order term B is zero, in [12], it is proved that d(t) can be chosen as a function of the
same form as g1(t). Thus in this case d(t) and g1(t) go to zero in the same rate. In
[14], when the lower order term B and boundary limit Φ are smooth enough, d(t)
also approaches zero in the same rate as g1(t) if g1(t) approaches zero slower than
t−1/2, or t−1, or t−2 (depending on the structure of the operator and smoothness
of the data).

In this paper, we want to investigate when d(t) will go to zero in the same rate
as g(t) even when g(t) approaches zero faster than t−2 and the lower order term
B is not zero. From above example, we see that it is clear some condition on Φ
is necessary even for the Laplace operator Q. Comparing to the assumptions used
in [14], we mainly add a new assumption that Φ(ω, y) and k(ω, y) are independent
of ω. We will obtain fast rate of convergence for bounded solutions of (1.1) that
improves the results in [14].

The spatial decay estimates for solutions of partial differential equations have
applications in fluid mechanics, extensible films and Saint-Venant’s principle of
elasticity theory. For extensive reviews of the research in this area, we refer the
readers to [5, 6, 7]. Here we just mention some of the closely related results. In [1],
an exponential decay estimate was obtained when Ω is a cylinder, B is a quadratic
function of Df and φ = 0; In [8], an exponential decay estimate for energy function
was considered when n = 2, φ = 0. In [9], an exponential decay estimate for
energy function was obtained for equations modelling the constant mean curvature
equation on a strip (n=2) with φ = 0. In [10], Phragmén-Lindelöf type results
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were obtained for equation modelling constant mean curvature equation on a semi-
infinite strip with φ = 0; and finally in [14], for general boundary data φ, the
rates of convergence for solutions of (1.1) were obtained in terms of the structure
of Q and the rate of convergence (1.3). The result in this paper will do better in
either dealing with general boundary data, or general equation, or obtaining better
estimates on the rate of convergence.

Now we state the assumptions to be used in this paper. We assume that the
coefficients of Q are normalized so that

Trace(aij) =
n∑

i=1

aii = 1 (1.5)

We assume φ(x, y) has a limit in the following sense.

(C1) There exists a function Φ(y) defined on [−M,M ] and a decreasing function
g1(t), g1(t) → 0 as t → +∞, such that

|φ(x,±M)− Φ(±M)| ≤ g1(|x|) for |x| ≥ N1. (1.6)

We assume the term ann satisfies the assumption.

(C2) For any fixed positive numbers a, b, there is a positive number µ(a, b) such
that

ann(x, y, z,v) ≥ µ(a, b) (1.7)

for all (x, y) ∈ Ω, z ∈ R , v ∈ Rn with |z| ≤ a, |v| ≤ b.

We assume that the term B(x, y, z,p, q) satisfies:

(C3) There is a C1 function E(y, z, q) on [−M,M ] × R2 and for each fixed
bounded set D in R2, there are positive constants C, α0 ≥ 1 and a de-
creasing function g2(t), g2(t) → 0 as t → +∞, satisfying∣∣ B(x, y, z,p, q)

ann(x, y, z,p, q)
− E(y, z, q)

∣∣ ≤ g2(|x|) + C|p|α0

for (x, y) ∈ Ω, (z, q) ∈ D and |p| ≤ 1.

We assume, as in [14], that an ODE involving E is solvable.

(C4) There is a function k(y) ∈ C1([−M,M ]) ∩ C2((−M,M)), such that

k′′(y) + E(y, k, k′) = 0 on |y| ≤ M, k(±M) = Φ(±M). (1.8)

(C5) E(y, z, q) is non-increasing on z.

Then we have the following theorem on the rate of convergence.

Theorem 1.2. Assume (C1)–(C5) and that f ∈ C2(Ω) ∩ C0(Ω) is a bounded
solution of (1.1). Then for each integer J , there is a number CJ , such that∣∣f(x, y)− k(y)

∣∣ ≤ CJg1(
1
2J
|x|) + CJg2(

1
2J
|x|) +

CJ

|x|Jβ
on Ω. (1.9)

where β = min{α0, 2}.

As an application of this result, we give the following example.



4 ZHIREN JIN EJDE–2003/122

Example 1.3. Consider the Dirichlet problem for the prescribed mean curvature
equation

n∑
i,j=1

(1 + |Df |2)δij −DifDjf

n + (n− 1)|Df |2
Dijf = nΛ

(x, y)(1 + |Df |2)3/2

n + (n− 1)|Df |2
in Ω

f(x,±M) = φ(x,±M) for |x| > N1.

If there are functions Λ0(y), Φ(y) and k(y) satisfying that for |x| > N1, |y| ≤ M ,

|φ(x,±M)− Φ(±M)| ≤ g1(|x|), |Λ(x, y)− Λ0(y)| ≤ g∗2(|x|),

k′′ − nΛ0(y)(1 + (k′)2)3/2 = 0 on |y| < M, k(±M) = Φ(±M),

then in (C2), we can choose µ(a, b) = 1
n+(n−1)b2 . In (C3) we can choose E(y, z, q) =

nΛ0(1+q2)3/2, g2(t) = c∗g∗2(t) and α0 = 2. Then from (1.9), for a bounded solution
f(x, y), we have that for any integer J , there is a constant CJ such that

|f(x, y)− k(y)| ≤ CJg1(
1
2J
|x|) + CJg2(

1
2J
|x|) +

CJ

|x|2J
on Ω. (1.10)

The main idea in the proof of the theorem is to use the barriers constructed in
[14] repeatedly. The construction in [14] was adapted from [11] which in turn was
inspired on [2] and [15].

2. The barrier functions

From (C2), for fixed positive numbers K0 and K1, there is a constant c1, 0 <
c1 < 1, such that

ann(x, y, t,v) ≥ c1 (2.1)

for (x, y) ∈ Ω, t ∈ R with |t| ≤ 40K0 + 20, v ∈ Rn with |v| ≤ K1 + 2. We define a
new operator on functions u(x, y) ∈ C2(Ω) with parameters t ∈ R and v ∈ Rn by

Q1u =
n∑

i,j=1

aij(x, y, t, Du + v)Diju.

Then we can prove that there are positive decreasing functions χ(t) (depending
on c1 only), ha(t) and a positive increasing function A(t) (depending on c1 and
M only) such that for any number K, 0 < K ≤ 3K0 + 1, there is a number H0

(depending only on K0, M and c1), such that when H > H0

0 < χ(H) < 1;
22MH

c1
≤ A(H)eχ(H) ≤ 66MH

c1
; (2.2)

and the function

z = γ + A(H)eχ(H) − {(h−1
a (y + M))2 − |x− x0|2}1/2 (2.3)
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satisfies the following conditions for |t| ≤ 40K0 + 20, |v| ≤ K1 + 1, 0 ≤ γ < 1:

Q1z ≤
−3c1

22eMH
in Ωx0,H,K ∩ Ω (2.4)

γ ≤ z ≤ γ +
4M

H
+ 4K on Ωx0,H,K (2.5)

z ≥ γ + K on ∂Ωx0,H,K ∩ {|y| < M} (2.6)

z(x0, y) ≤ γ +
2M

H
for |y| ≤ M (2.7)

|Dxz(x, y)| ≤ 2
(c1K

M

)1/2 1√
H

, |Dyz(x, y)| ≤ 1
H

on Ωx0,H,K , (2.8)

where

Ωx0,H,K =
{
(x, y) : |y| < M, |x− x0| <

√
2K

A(H)eχ(H)
h−1

a (y + M)
}
. (2.9)

To make this paper self-contained, we include the following section.

3. Construction of barrier functions [14]

Set Φ1(ρ) = ρ−2 if 0 < ρ < 1 and Φ1(ρ) = 11/c1 if ρ ≥ 1, and define a function

χ(α) =
∫ ∞

α

dρ

ρ3Φ1(ρ)
for α > 0.

It is clear that χ(α) is a decreasing function with range (0,∞). Let η be the inverse
of χ. Then η is a positive, decreasing function with range (0,∞).

Let c2 = 11/c1. For α > 1, we have

χ(α) =
∫ ∞

α

dρ

ρ3Φ1(ρ)
=

∫ ∞

α

dρ

c2ρ3
=

1
2c2

α−2. (3.1)

Thus
η(β) = (2c2β)−1/2 for 0 < β < (2c2)−1. (3.2)

Let H ≥ 2. Since η(χ(H)) = H and η is decreasing, we have η(β) > H for
0 < β < χ(H). We define a function

A(H) = 2M(
∫ eχ(H)

1

η(ln t)dt)−1. (3.3)

For the rest of this article, we set a = A(H) and define

ha(r) =
∫ aeχ(H)

r

η(ln
t

a
) dt for a ≤ r ≤ aeχ(H). (3.4)

Then
ha(aeχ(H)) = 0, ha(a) = hA(H)(A(H)) = 2M. (3.5)

For a < r ≤ aeχ(H),

h′a(r) = −η(ln
r

a
) < 0, |h′a(r)| > H,

h′′a(r) =
1
r
(η(ln

r

a
))3Φ1(η(ln

r

a
)).

(3.6)
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Thus for a < r ≤ aeχ(H),

h′′a(r)
(h′a(r))2

= −h′a(r)
r

Φ1(−h′a(r)). (3.7)

Let h−1
a be the inverse of ha. Then h−1

a is decreasing and

h−1
a (0) = A(H)eχ(H), h−1

a (2M) = A(H). (3.8)

Further for −M ≤ y ≤ M ,

(h−1
a )′(y + M) =

1
h′a(h−1

a (y + M))

(h−1
a )′′(y + M) = (

1
h′a(h−1

a (y + M))
)′

= −h′′a(h−1
a (y + M))(h−1

a )′(y + M)
(h′a(h−1

a (y + M)))2

= − h′′a(h−1
a (y + M))

(h′a(h−1
a (y + M)))3

=
1

h−1
a (y + M)

Φ1(−h′a(h−1
a (y + M))).

Thus
(h−1

a )′′(y + M)h−1
a (y + M) = Φ1(−h′a(h−1

a (y + M))). (3.9)
Now we choose an H0 > 2 such that for H ≥ H0,

H0 >
1√
2c2

+ 3M + 4 +
24nc1K0

M
,

√
4K0

A(H)eχ(H)
≤ 1√

2
. (3.10)

For H > H0, by (3.1), (3.2), we have

A(H)−1 = (2M)−1

∫ eχ(H)

1

η(ln t) dt

= (2M)−1

∫ χ(H)

0

η(m)em dm

= (2M)−1

∫ χ(H)

0

em

√
2c2m

dm .

From

1√
2c2

∫ χ(H)

0

1√
m

dm ≤
∫ χ(H)

0

em

√
2c2m

dm ≤ eχ(H)

√
2c2

∫ χ(H)

0

1√
m

dm,

we have

1
c2H

=
2
√

χ(H)√
2c2

≤
∫ χ(H)

0

em

√
2c2m

dm ≤
2eχ(H)

√
χ(H)√

2c2
=

e
1

2c2H2

c2H
.

Thus
2Mc2H ≥ A(H) ≥ 2Mc2He−χ(H) = 2Mc2He

− 1
2c2H2 . (3.11)

For x0 ∈ Rn−1, a constant γ with 0 ≤ γ < 1 and a fixed constant K with 0 < K ≤
3K0 + 1, we define a domain Ωx0,H,K in (x, y) space by (2.9) and define a function
z = wx0,γ,H(x, y) by (2.3). Since h−1

a (y + M) ≥ 0 for |y| ≤ M , (x0, y) ∈ Ωx0,H,K



EJDE–2003/122 RATE OF CONVERGENCE FOR SOLUTIONS 7

for |y| < M . Further it is clear that the function z = w(x, y) = wx0,γ,H(x, y) is
well defined on Ωx0,H,K .

Now we verify (2.5). Since h−1
a is a decreasing function, h−1

a (y +M) ≤ h−1
a (0) =

A(H)eχ(H) for y ≥ −M . Thus

z ≥ γ + A(H)eχ(H) − h−1
a (y + M) ≥ γ.

From (2.9) and (3.8), we have that on Ωx0,H,K ,

z = γ + A(H)eχ(H) − {(h−1
a (y + M))2 − |x− x0|2}1/2

≤ γ + A(H)eχ(H) − {(h−1
a (y + M))2 − 2K

A(H)eχ(H)
(h−1

a (y + M))2}1/2

= γ + A(H)eχ(H) − h−1
a (y + M)(1− 2K

A(H)eχ(H)
)1/2

≤ γ + A(H)eχ(H) − h−1
a (2M)(1− 2K

A(H)eχ(H)
)1/2

= γ + A(H)eχ(H) −A(H)(1− 2K

A(H)eχ(H)
)1/2

≤ γ + A(H)(1 + eχ(H))−A(H)(1− 2
2K

A(H)eχ(H)
).

Since et ≤ 1 + et for 0 < t < 1, and
√

1− t ≥ 1 − 2t for 0 ≤ t ≤ 1
2 , the above

expression is equal to

γ + eA(H)χ(H) +
4K

eχ(H)
≤ γ + e

2Mc2H

2c2H2
) + 4K ≤ γ +

4M

H
+ 4K .

This because of (3.1), (3.10) and (3.11). This is (2.5).
For (2.6), on ∂Ωx0,H,K ∩ {(x, y) : |y| < M},

|x− x0| =

√
2K

A(H)eχ(H)
h−1(y + M).

Then from (3.8), we have

z = γ + A(H)eχ(H) − {(h−1
a (y + M))2 − |x− x0|2}1/2

= γ + A(H)eχ(H) − h−1
a (y + M)(1− 2K

A(H)eχ(H)
)1/2

≥ γ + A(H)eχ(H) −A(H)eχ(H)(1− 2K

A(H)eχ(H)
)1/2

≥ γ + A(H)eχ(H)(1− (1− 2K

2A(H)eχ(H)
))

= γ + K.

Here we have used (3.10) and the fact that
√

1− t ≤ 1− 1
2 t for 0 < t < 1.
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For (2.7), since h−1
a (r) and η are decreasing functions, we have

−1
h′a(h−1

a (y + M))
=

1
η(ln( 1

ah−1
a (y + M)))

≤ 1
η(ln eχ(H))

=
1

η(χ(H))
=

1
H

, for |y| ≤ −M.

(3.12)

Then by (2.3), we have

∂z

∂y
(x0, y) =

−1
h′a(h−1

a (y + M))
=

1
H

, for |y| ≤ −M.

Then (2.7) follows from this and

z(x0,−M) = γ + A(H)eχ(H) − h−1
a (0) = γ + A(H)eχ(H) −A(H)eχ(H) = γ.

For (2.4) and (2.8), set S = {(h−1
a (y + M))2 − |x − x0|2}1/2, we have that for

1 ≤ i ≤ n− 1,

∂z

∂xi
=

1
S

(xi − x0i),
∂z

∂y
= − 1

S
h−1

a (h−1
a )′.

By (3.10) and (3.11), on Ωx0,H,K , we have

1
2
h−1

a (y + M) ≤ S ≤ h−1
a (y + M),

|x− x0|
S

≤ 2(
2K

A(H)eχ(H)
)1/2 ≤ 2(

2K

2Mc2H
)1/2.

Thus, by (3.12), we have

∣∣ ∂z

∂xi

∣∣ ≤ 2
( c1K

MH

)1/2
,

∣∣∂z

∂y

∣∣ ≤ h−1
a (y + M)

S|h′a(h−1
a (y + M)|

≤ 2
H

. (3.13)

This gives (2.8). Hence from (3.10), for any positive semi-definite matrix (dij) with
trace(dij) = 1 (hence all eigenvalues of (dij) are less than or equal to 1), we have

∣∣ n∑
i,j=1

dij
∂z

∂xi

∂z

∂xj

∣∣ ≤ |Dz|2 ≤ 1 (3.14)
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For t with |t| ≤ 40K0 + 20, |v| ≤ K1, from (3.14), we have |Dz|+ |v| ≤ K1 + 1.
Then from (1.5) and (2.1), for S = {(h−1

a (y + M))2 − |x− x0|2}1/2, we have

Q1z =
n∑

i,j=1

aij(x, y, t, Dz + v)Dijz

=
1
S

n−1∑
i=1

aii +
1
S3

n−1∑
i,j=1

aij(xi − x0
i )(xj − x0

j )−
1
S3

n−1∑
i=1

ain(xi − x0
i )h

−1
a (h−1

a )′

− 1
S

ann((h−1
a )2 + h−1

a (h−1
a )′′) +

1
S3

ann(h−1
a )2((h−1

a )′)2

=
1
S
{1− ann +

n∑
i,j=1

aij
∂z

∂xi

∂z

∂xj
− ann((h−1

a )2 + h−1
a (h−1

a )′′)}

≤ 1
S
{1 +

n∑
i,j=1

aij
∂z

∂xi

∂z

∂xj
− annh−1

a (h−1
a )′′} .

(By (2.1), (3.9)), (3.11) and (3.14) this expression is less than or equal to
−9
S
≤ −9

h−1
a (y + M)

≤ −9
A(H)eχ(H)

≤ −9

2Mc2He
1

2c2H2
≤ −3c1

22eMH

which implies (2.4).

4. Proof of Main Theorem

For the proof of Theorem 1.2, we need the following result on E and k.

Proposition 4.1 ([13, Lemma 4.1]). Under assumptions (C4) and C5), there exist
numbers γ1 > 0 and c3 (depending only on k, E), such that for any constant δ1 with
|δ1| < min{γ1, 1}, there is a (unique) function kλ(y) = kλ(y) in C1([−M,M ]) ∩
C2((−M,M)) satisfying

k′′λ(y) + E(y, kλ(y), k′λ(y)) = − 3
4c3

δ1, kλ(±M) = k(±M),

and on |y| ≤ M ,

|k(y)− kλ(y)| ≤ |δ1|, |k′(y)− k′λ(y)| ≤ |δ1|, |k′′(y)− k′′λ(y)| ≤ |δ1|.

Proof of Theorem 1.2. We assume that there exists a non-increasing function g(t)
such that

|f(x, y)− k(y)| ≤ g(|x|) for (x, y) ∈ Ω. (4.1)
(since f(x, y) and k(y) are bounded, (4.1) holds for g(t) to be some appropriate
constant. g(t) will also take other forms as we shall explain later).

For a small positive number δ1 (to be chosen later), let kλ(y) be the function
defined in the Proposition. We will use the barrier function u(x, y) + kλ(y). Let

K0 = sup{|f(x, y)| : (x, y) ∈ Ω}+ sup{|k(y)| : |y| ≤ M}+ g(0),

K1 = 2 sup{|k′(y)| : |y| ≤ M}+ 10 .

and c1 be a number such that

c1 ≤ ann(x, y, t,v) (4.2)

for (x, y) ∈ Ω, |t| ≤ 40K0 + 20, v ∈ Rn with |v| ≤ K1 + 2.
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Since g1(t) → 0 as t → ∞, there is a number H1 such that g1( 1
2 |x|) ≤

1
2 for

|x| ≥ H1 and H1 > 800MK0/c1. We fixed an x0 with |x0| ≥ H0 + H1 (H0 is given
in (2.3)). Let u(x, y) = z(x, y) defined on Ωx0,H,K be given by (2.3) with the choice
of parameters:

γ = g1(
1
2
|x0|) + δ1, H =

c1|x0|2

800MK
, K = 2g(

1
2
|x0|).

¿From (2.2), (2.8), h−1
a (y + M) ≤ A(H)eχ(H) and the choice of H, there is a

number c6 independent of δ1, such that on Ωx0,H,K ,

|Dxu| ≤ c6

|x0|
g(

1
2
|x0|), |Dyu| ≤ c6

|x0|2
g(

1
2
|x0|),

and

|x− x0| ≤

√
2K

A(H)eχ(H)
h−1

a (y + M) ≤
√

2KA(H)eχ(H) ≤ 1
2
|x0|. (4.3)

Then for |x0| large, on Ωx0,H,K , (where c9 is independent of δ1)

1
2
|x0| ≤ |x| ≤

3
2
|x0|, |Dxu|α0 ≤ c9

(g( 1
2 |x0|))α0

|x|α0
, |Dyu| ≤ c9

g( 1
2 |x0|)
|x|2

. (4.4)

Then from (2.5), for |x0| ≥ H0 + H1 and any positive constant b, b < 10K0 + 1, on
Ωx0,H,K , we have

u(x, y) + kλ(y) + b ≤ 40K0 + 20, |Du(x, y)|+ |k′λ(y)| ≤ K1 + 1.

Set

M3 = sup
{∂E

∂q
(y, z, q) : |y| ≤ M, |z| ≤ 40K0 + 20, |q| ≤ K1 + 1

}
¿From (2.4), for 0 < b < 10K0 + 1, we have (note that kλ depends on y only)

n∑
i,j=1

aij(x, y, u + kλ + b, D(u + kλ))Dij(u + kλ)

+ B(x, y, u + kλ + b, D(u + Dkλ))

< ann(x, y, u + kλ + b, D(u + kλ))k′′λ(y) + B(x, y, u + kλ + b, D(u + kλ)).
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By (C3) and(C5), Proposition 4.1, (4.2), (4.4) and b > 0, u > 0, we have

ann(x, y, u + kλ + b, D(u + kλ))k′′λ(y) + B(x, y, u + kλ + b, D(u + kλ))

= ann(x, y, u + kλ + b, D(u + kλ))
{
k′′λ(y) +

B(x, y, u + kλ + b, D(u + kλ))
ann(x, y, u + kλ + b, D(u + kλ))

}
= ann(x, y, u + kλ + b, D(u + kλ))

{
k′′λ(y) + E(y, kλ, k′λ) + E(y, kλ, Dyu + k′λ)

− E(y, kλ, k′λ) + E(y, kλ + u + b, Dyu + k′λ)− E(y, kλ, Dyu + k′λ)

+
B(x, y, u + kλ + b, D(u + kλ))

ann(x, y, u + kλ + b, D(u + Dkλ))
− E(y, kλ + u + b, Dyu + k′λ)

}
≤ ann(x, y, u + kλ + b, D(u + kλ))

{
− 3

4c3
δ1 + M3|Dyu|+ g2(|x|) + C|Dxu|α0

}
≤ −3c1

4c3
δ1 + M3|Dyu|+ C|Dxu|α0 + g2(|x|)

≤
Cc9(g( 1

2 |x0|))α0

|x|α0
+

c9M3g( 1
2 |x0|)

|x|2
+ g2(|x|)−

3c1

4c3
δ1

Set d = 1
2 |x0|, we have that on Ωx0,H,K , |x| ≥ d (by (4.4)). Now we fixed a d such

that d > H2 ≥ H0 + H1 and choose δ1 by

3c1

4c3
δ1 =

Cc9(g( 1
2 |x0|))α0

dα0
+

c9M3g( 1
2 |x0|)

d2
+ g2(d). (4.5)

Then on Ωx0,H,K , we have (since |x| ≥ d and g2 is non-increasing)
n∑

i,j=1

aij(x, y, u + kλ + b, D(u + kλ))Dij(u + kλ)

+ B(x, y, , u + kλ + b, D(u + kλ))

<
Cc9(g( 1

2 |x0|))α0

|x|α0
+

c9M3g( 1
2 |x0|)

|x|2
+ g2(|x|)−

3c1

4c3
δ1 ≤ 0.

(4.6)

For such an x0, on Ωx0,H,K ∩ Ω, we will compare the function f(x, y) with the
function u(x, y) + kλ(y). On ∂Ωx0,H,K ∩ Ω, (2.6) and Proposition 4.1 imply

u(x, y) + kλ(y) ≥ γ + K + kλ(y)

≥ g1(
1
2
|x0|) + δ1 + 2g(

1
2
|x0|) + kλ(y)

≥ 2g(
1
2
|x0|) + k(y) ≥ f(x, y)

(by (4.1) and |x| ≥ 1
2 |x0| on Ωx0,H,K). On Ωx0,H,K ∩ ∂Ω, y = ±M and Φ(±M) =

k(±M) = kλ(±M). Then from (C1) and (2.5), we have

φ(x,±M) = φ(x,±M)− Φ(±M) + Φ(±M) ≤ g1(|x|) + k(±M)

≤ g1(
1
2
|x0|) + δ1 + kλ(±M) = γ + kλ(±M)

≤ u(x,±M) + kλ(±M).

Let
Ω1 = {(x, y) ∈ Ωx0,H,K ∩ Ω : f(x, y) > u(x, y) + kλ(y)}.
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Since f(x, y) ≤ u(x, y) + kλ on ∂(Ωx0,H,K ∩Ω), Ω1 is in the interior of Ωx0,H,K . If
(x2, y2) ∈ Ω1, we let b = f(x2, y2)− (u(x2, y2) + kλ(y2)), then 0 < b < f(x2, y2) ≤
K0 < 10K0 +1. Using this b in (4.6) and evaluating the formula at (x2, y2), we get

n∑
i,j=1

aij(x2, y2, f(x2, y2), D(u+kλ))Dij(u+kλ)+B(x2, y2, f(x2, y2), D(u+kλ)) < 0.

Since (x2, y2) ∈ Ω1 is arbitrary, on Ω1, we have
n∑

i,j=1

aij(x, y, f(x, y), D(u+kλ))Dij(u+kλ)+B(x, y, f(x, y), D(u+kλ)) < 0. (4.7)

Now we can apply a comparison principle [3, Theorem10.1] to conclude that Ω1 is
empty. Thus

f(x, y) ≤ u(x, y) + kλ(y) on Ωx0,H,K ∩ Ω.

In particular, from (2.7)

f(x0, y) ≤ u(x0, y) + kλ(y) ≤ γ +
2M

H
+ kλ(y).

Then from Proposition 2 and the choices of γ, H and δ1, we have

f(x0, y) ≤ g1(
1
2
|x0|) + δ1 +

c11g( 1
2 |x0|)

|x0|2
+ kλ(y)

≤ g1(
1
2
|x0|) +

c11g( 1
2 |x0|)

|x0|2
+ k(y) + 2δ1

f(x0, y)− k(y) ≤ g1(
1
2
|x0|) +

c11g( 1
2 |x0|)

|x0|2
+ 2δ1

= g1(
1
2
|x0|) +

c11g( 1
2 |x0|)

|x0|2
+

c12(g( 1
2 |x0|))α0

dα0
+

c12g( 1
2 |x0|)

d2
+ g2(d)

However d = 1
2 |x0|, thus

f(x0, y)− k(y) ≤ g1(
1
2
|x0|) +

c13(g( 1
2 |x0|))α0

|x0|α0
+

c13g( 1
2 |x0|)

|x0|2
+ g2(

1
2
|x0|).

Since d is arbitrary as long as it is greater than H2, x0 is arbitrary as long as |x0|
is greater than 2H2. Then we have that when |x| is large,

f(x, y)− k(y) ≤ g1(
1
2
|x|) +

c13(g( 1
2 |x|))

α0

|x|α0
+

c13g( 1
2 |x|)

|x|2
+ g2(

1
2
|x|).

Similarly using −u(x, y) + kλ(y) (now with δ1 < 0 and choosen appropriately), we
can prove that

f(x, y)− k(y) ≥ −
{
g1(

1
2
|x|) +

c13(g( 1
2 |x|))

α0

|x|α0
+

c13g( 1
2 |x|)

|x|2
+ g2(

1
2
|x|)

}
.

Thus on Ω, we have

|f(x, y)− k(y)| ≤ g1(
1
2
|x|) +

c13(g( 1
2 |x|))

α0

|x|α0
+

c13g( 1
2 |x|)

|x|2
+ g2(

1
2
|x|).
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Since α0 ≥ 1 and g(t) is non-increasing, we have g(t)α0 ≤ g(1)α0−1g(t), thus for
some constant c14, we have (β = min{α0, 2})

|f(x, y)− k(y)| ≤ g1(
1
2
|x|) + g2(

1
2
|x|) +

c14

|x|β
g(

1
2
|x|) on Ω. (4.8)

Now we choose g(t) = K0 in (4.1), then (4.8) becomes

|f(x, y)− k(y)| ≤ g1(
1
2
|x|) + g2(

1
2
|x|) +

c14K0

|x|β
on Ω. (4.9)

shen we choose
g(t) = g1(

1
2
t) + g2(

1
2
t) +

c14K0

tβ
,

that (4.9) implies (4.1) is still true. Then for this new g(t), we can apply (4.8) to
obtain

|f(x, y)− k(y)| ≤ c15g1(
1
4
|x|) + c15g2(

1
4
|x|) +

c15

|x|2β
on Ω. (4.10)

for some constant c15 (since g1, g2 are non-increasing). Then once again, in (4.1),
we can reset the function g(t) as

g(t) = c15g1(
1
4
t) + c15g2(

1
4
t) +

c15

t2β
. (4.11)

and apply (4.8) to conclude that there is a constant c16 such that

|f(x, y)− k(y)| ≤ c16g1(
1
8
|x|) + c16g2(

1
8
|x|) +

c16

|x|3β
on Ω. (4.12)

We can repeat this procedure to conclude that for any integer J , there is a number
CJ , such that

|f(x, y)− k(y)| ≤ CJg1(
1
2J
|x|) + CJg2(

1
2J
|x|) +

CJ

|x|Jβ
on Ω. (4.13)

�
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