Electron. J. Diff. Eqns., Vol. 2003(2003), No. 115, pp. 1-21.

Oscillation and nonoscillation of solutions to even order self-adjoint differential equations

Ondrej Dosly & Simona Fisnarova

Abstract:
We establish oscillation and nonoscilation criteria for the linear differential equation
$$
 (-1)^n\big(t^\alpha y^{(n)}\big)^{(n)}-
 \frac{\gamma_{n,\alpha}}{t^{2n-\alpha}}y=q(t)y,\quad
 \alpha \not\in \{1, 3, \dots , 2n-1\},
 $$
where
$$
 \gamma_{n,\alpha}=\frac{1}{4^n}\prod_{k=1}^n(2k-1-\alpha)^2
 $$
and $q$ is a real-valued continuous function. It is proved, using these criteria, that the equation
$$
 (-1)^n\big(t^\alpha y^{(n)}\big)^{(n)}
 -\big(\frac{\gamma_{n,\alpha}}{t^{2n-\alpha}}
 + \frac{\gamma}{t^{2n-\alpha}\lg^2 t}\big)y = 0
 $$
is nonoscillatory if and only if
$$
 \gamma \leq \tilde \gamma_{n,\alpha}:=
 \frac{1}{4^n}\prod_{k=1}^n(2k-1-\alpha)^2
 \sum_{k=1}^n\frac{1}{(2k-1-\alpha)^2}.
 $$

Submitted September 30, 2003. Published November 25, 2003.
Math Subject Classifications: 34C10
Key Words: Self-adjoint differential equation, variational method, oscillation and nonoscillation criteria, conditional oscillation.

Show me the PDF file (274K), TEX file, and other files for this article.

Ondrej Dosly
Masaryk University, Janackovo nam. 2a
CZ-662 95 Brno, Czech Republic
email: dosly@math.muni.cz
Simona Fisnarova
Masaryk University, Janackovo nam. 2a
CZ-662 95 Brno, Czech Republic
email: simona@math.muni.cz

Return to the EJDE web page