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Some integral inequalities for functions of two

variables ∗

Sever S. Dragomir & Young-Ho Kim

Abstract

In this article, we establish some integral inequalities for function with
two independent variables. Also we show applications of these inequalities
for finding bounds of solutions to partial differential equations.

1 Introduction

Let u : [α, α + h] → R be a continuous function satisfying the inequality

0 ≤ u(t) ≤
∫ t

α

[a + bu(s)] ds, for t ∈ [α, α + h],

where a, b are nonnegative constants. Then u(t) ≤ ahebh for t ∈ [α, α + h].
This result was proved by Gronwall in 1919, and is the prototype for the study
of many integral inequalities of Volterra type, and also for obtaining explicit
bounds of the unknown function. Therefore integral inequalities of this type
are usually associated with the name of Gronwall. Integral inequalities are a
necessary tool in the study of various classes of equations. During the past few
years many authors (please, see refeences below and some of the reference cited
therein) have established several Gronwall type integral inequalities in two or
more independent variables. In [8], Pachpatte considered the finite difference
inequality in two independent variables. Many of these are analogues of integral
inequalities already known to us. Our main objective here, as an integral ver-
sion of Pachpatte’s finite difference inequalities in [8], is to establish some new
integral inequalities involving functions of two independent variables which can
be used in the analysis of certain classes of partial differential equations.

2 Results

Throughout this paper, all the functions which appear in the inequalities are
assumed to be real valued and all the integrals exist on their domains of defi-
nitions. We shall introduce some notation: R denotes the set of real numbers
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2 Some integral inequalities for functions of two variables EJDE–2003/10

and R+ = [0,∞). The first order partial derivatives of a functions z(x, y) de-
fined for x, y ∈ R with respect to x and y are denoted by zx(x, y) and zy(x, y)
respectively. We need the inequalities in the following lemma, which appear in
[6, p. 356].

Lemma 2.1 Let u(t) and k(t) be continuous and a(t) and b(t) Riemann inte-
grable functions on J = [α, β] with b(t) and k(t) nonnegative on J .

1. If u(t) ≤ a(t) + b(t)
∫ t

α
k(s)u(s)ds for t ∈ J , then

u(t) ≤ a(t) + b(t)
∫ t

α

a(s)k(s) exp
( ∫ t

s

b(r)k(r)dr
)

ds, t ∈ J.

2. If u(t) ≤ a(t) + b(t)
∫ β

t
k(s)u(s)ds for t ∈ J , then

u(t) ≤ a(t) + b(t)
∫ β

t

a(s)k(s) exp
( ∫ s

t

b(r)k(r)dr
)

ds, t ∈ J.

Also, we need the inequalities in the following lemma which is given in [1,
p. 110].

Lemma 2.2 Let u(x, y), a(x, y), b(x, y) be nonnegative continuous functions de-
fined for x, y ∈ R+.

1. Assume that a(x, y) is non-decreasing in x and non-increasing in y for
x, y ∈ R+. If u(x, y) ≤ a(x, y)+

∫ x

0

∫∞
y

b(s, t)u(s, t) dtds for all x, y ∈ R+,
then

u(x, y) ≤ a(x, y) exp
( ∫ x

0

∫ ∞

y

b(s, t) dtds
)
.

2. Assume that a(x, y) is non-increasing in each of the variables x, y ∈ R+.
If u(x, y) ≤ a(x, y) +

∫∞
x

∫∞
y

b(s, t)u(s, t) dtds for all x, y ∈ R+, then

u(x, y) ≤ a(x, y) exp
( ∫ ∞

x

∫ ∞

y

b(s, t) dtds
)
.

The proofs of these inequalities can be completed as in [1, p. 109-111]; thus,
we omit the proof.

Theorem 2.3 Let u(x, y), a(x, y), b(x, y), c(x, y), d(x, y), f(x, y) be real-valued
non-negative continuous functions defined for x, y ∈ R+. Let W (u(x, y)) be
real-valued, positive, continuous, strictly non-decreasing, subadditive, and sub-
multiplicative function for u(x, y) ≥ 0 and let H(u(x, y)) be a real-valued, con-
tinuous, positive, and non-decreasing function defined for x, y ∈ R+. Assume
that a(x, y), f(x, y) are nondecreasing in x for x ∈ R+. If

u(x, y) ≤a(x, y) + b(x, y)
∫ x

α

c(s, y)u(s, y) ds

+ f(x, y)H
( ∫ x

0

∫ ∞

y

d(s, t)W
(
u(s, t)

)
dtds

) (2.1)
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for α, x, y ∈ R+ with α ≤ x, then

u(x, y) ≤p(x, y)
{

a(x, y) + f(x, y)H
[
G−1

(
G(A(s, t)

)
+

∫ x

0

∫ ∞

y

d(s, t)W
(
p(s, t)f(s, t)

)
dtds

)]} (2.2)

for α, x, y ∈ R+ with α ≤ x, where

p(x, y) = 1 + b(x, y)
∫ x

α

c(s, y) exp
( ∫ x

s

b(r, y)c(r, y) dr
)

ds, (2.3)

A(s, t) =
∫ ∞

0

∫ ∞

0

d(s, t)W
(
p(s, t)a(s, t)

)
dtds, (2.4)

G(r) =
∫ r

r0

ds

W
(
(H(s)

) , r ≥ r0 > 0. (2.5)

Here G−1 is the inverse function of G and

G
( ∫ ∞

0

∫ ∞

0

d(s, t)W
(
p(s, t)a(s, t)

)
dtds

)
+

∫ x

0

∫ ∞

y

d(s, t)W
(
p(s, t)f(s, t)

)
dtds

is in the domain of G−1 for x, y ∈ R+.

Proof. Define a function z(x, y) by

z(x, y) = a(x, y) + f(x, y)H
( ∫ x

0

∫ ∞

y

d(s, t)W
(
u(s, t)

)
dtds

)
. (2.6)

Then (2.1) can be restated as

u(x, y) ≤ z(x, y) + b(x, y)
∫ x

α

c(s, y)u(s, y) ds. (2.7)

Clearly z(x, y) is a nonnegative and continuous in x, x ∈ R+. Treating y, y ∈ R+

fixed in (2.7) and using 1 of Lemma 2.1 to (2.7), we get

u(x, y) ≤ z(x, y) + b(x, y)
∫ x

α

z(s, y)c(s, y) exp
( ∫ x

s

b(r, y)c(r, y) dr
)

ds.

Moreover, z(x, y) is nondecreasing in x, x ∈ R+, we obtain

u(x, y) ≤ z(x, y)p(x, y), (2.8)

where p(x, y) is defined by (2.3). ¿From (2.6) we have

u(x, y) ≤ p(x, y)
(
a(x, y) + f(x, y)H

(
v(x, y)

))
, (2.9)

where v(s, y) is defined by

v(x, y) =
∫ x

0

∫ ∞

y

d(s, t)W
(
u(s, t)

)
dtds.
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¿From (2.9), we observe that

v(x, y) ≤
∫ x

0

∫ ∞

y

d(s, t)W
(
p(s, t)

[
a(s, t) + f(s, t)H

(
v(s, t)

)])
dtds

≤
∫ x

0

∫ ∞

y

d(s, t)W
(
p(s, t)a(s, t)

)
dtds

+
∫ x

0

∫ ∞

y

d(s, t)W
(
p(s, t)f(s, t)

)
W

(
H

(
v(s, t)

))
dtds

≤
∫ ∞

0

∫ ∞

0

d(s, t)W
(
p(s, t)a(s, t)

)
dtds

+
∫ x

0

∫ ∞

y

d(s, t)W
(
p(s, t)f(s, t)

)
W

(
H

(
v(s, t)

))
dtds,

(2.10)

since W is subadditive and submultiplicative function. Define r(x, y) as the right
side of (2.10), then r(0, y) = r(x,∞) =

∫∞
0

∫∞
0

d(s, t)W
(
p(s, t)a(s, t)

)
dtds,

v(x, y) ≤ r(x, y), r(x, y) is non-increasing in y, y ∈ R+ and

rx(x, y) =
∫ ∞

y

d(x, t)W
(
p(x, t)f(x, t)

)
W

(
H

(
v(x, t)

))
dt

≤
∫ ∞

y

d(x, t)W
(
p(x, t)f(x, t)

)
W

(
H

(
r(x, t)

))
dt

≤ W
(
H

(
r(x, y)

)) ∫ ∞

y

d(x, t)W
(
p(x, t)f(x, t)

)
dt.

(2.11)

Dividing both sides of (2.11) by W
(
H(r(x, y)

))
we get

rx(x, y)
W

(
H(r(x, y))

) ≤ ∫ ∞

y

d(x, t)W
(
p(x, t)f(x, t)

)
dt. (2.12)

¿From (2.5) and (2.12) we have

Gx

(
r(x, y)

)
≤

∫ ∞

y

d(x, t)W
(
p(x, t)f(x, t)

)
dt. (2.13)

Now setting x = s in (2.13) and then integrating with respect to s from 0 to x,
we obtain

G
(
r(x, y)

)
≤ G

(
r(0, y)

)
+

∫ x

0

∫ ∞

y

d(s, t)W
(
p(s, t)f(s, t)

)
dtds. (2.14)

Noting that r(0, y) =
∫∞
0

∫∞
0

d(s, t)W
(
p(s, t)a(s, t)

)
dtds, we have

r(x, y) ≤G−1
[
G

( ∫ ∞

0

∫ ∞

0

d(s, t)W
(
p(s, t)a(s, t)

)
dt ds

)
+

∫ x

0

∫ ∞

y

d(s, t)W
(
p(s, t)f(s, t)

)
dtds

]
.

(2.15)

The required inequality in (2.2) follows from the fact that v(x, y) ≤ r(x, y), (2.7)
and (2.15). �



EJDE–2003/10 Sever S. Dragomir & Young-Ho Kim 5

Theorem 2.4 Let u(x, y), a(x, y), b(x, y), c(x, y), d(x, y), f(x, y), W (u(x, y)),
and H(u(x, y)) be as defined in Theorem 2.3. Assume that a(x, y), f(x, y) are
non-increasing in x for x ∈ R+. If

u(x, y) ≤a(x, y) + b(x, y)
∫ β

x

c(s, y)u(s, y) ds

+ f(x, y)H
( ∫ ∞

x

∫ ∞

y

d(s, t)W
(
u(s, t)

)
dtds

)
for β, x, y ∈ R+ with x ≤ β, then

u(x, y) ≤p(x, y)
{

a(x, y) + f(x, y)H
[
G−1

(
G

(
A(s, t)

)
+

∫ ∞

x

∫ ∞

y

d(s, t)W
(
p(s, t)f(s, t)

)
dtds

)]}
for β, x, y ∈ R+ with x ≤ β, where

p(x, y) = 1 + b(x, y)
∫ β

x

c(s, y) exp
( ∫ s

x

b(r, y)c(r, y) dr
)

ds,

A(s, t) =
∫ ∞

0

∫ ∞

0

d(s, t)W
(
p(s, t)a(s, t)

)
dtds,

G(r) =
∫ r

r0

ds

W
(
(H(s)

) , r ≥ r0 > 0,

G−1 is the inverse function of G and

G
( ∫ ∞

0

∫ ∞

0

d(s, t)W
(
p(s, t)a(s, t)

)
dtds

)
+

∫ ∞

x

∫ ∞

y

d(s, t)W
(
p(s, t)f(s, t)

)
dtds

is in the domain of G−1 for x, y ∈ R+.

The details of the proof of Theorem 2.4 follows by an argument similar to
that in the proofs of Theorem 2.3 with suitable changes. We omit the proof.

Theorem 2.5 Let u(x, y), a(x, y), b(x, y), c(x, y), f(x, y) be real-valued non-
negative continuous functions defined for x, y ∈ R+ and L : R3

+ → R+ be a
continuous function which satisfies the condition

0 ≤ L(x, y, u)− L(x, y, v) ≤ M(x, y, v)φ−1(u− v) (2.16)

for u ≥ v ≥ 0, where M(x, y, v) is a real-valued nonnegative continuous function
defined for x, y, v ∈ R+. Assume that φ : R+ → R+ be a continuous and strictly
increasing function with φ(0) = 0, φ−1 is the inverse function of φ and

φ−1(uv) ≤ φ−1(u)φ−1(v)
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for u, v ∈ R+. Assume that a(x, y), f(x, y) are nondecreasing in x for x ∈ R+.
If

u(x, y) ≤a(x, y) + b(x, y)
∫ x

α

c(s, y)u(s, y) ds

+ f(x, y)φ
( ∫ x

0

∫ ∞

y

L(s, t, u(s, t)) dtds
) (2.17)

for α, x, y ∈ R+ with α ≤ x, then

u(x, y) ≤ p(x, y)
{

a(x, y) + f(x, y)φ
[
e(x, y)

× exp
( ∫ x

0

∫ ∞

y

M
(
s, t, p(s, t)a(s, t)

)
φ−1

(
p(s, t)f(s, t)

)
dtds

)]}
(2.18)

for x, y ∈ R+, where

p(x, y) = 1 + b(x, y)
∫ x

α

c(s, y) exp
( ∫ x

s

b(r, y)c(r, y) dr
)

ds, (2.19)

e(x, y) =
∫ x

0

∫ ∞

y

L
(
s, t, p(s, t)a(s, t)

)
dtds. (2.20)

Proof Define the function

z(x, y) = a(x, y) + f(x, y)φ
( ∫ x

0

∫ ∞

y

L(s, t, u(s, t)) dtds
)
. (2.21)

Then (2.17) can be restated as

u(x, y) ≤ z(x, y) + b(x, y)
∫ x

α

c(s, y)u(s, y) ds. (2.22)

Clearly z(x, y) is a nonnegative and continuous in x, x ∈ R+. Treating y, y ∈ R+

fixed in (2.22) and using (i) of Lemma 2.1 to (2.22), we get

u(x, y) ≤ z(x, y) + b(x, y)
∫ x

α

z(s, y)c(s, y) exp
( ∫ x

s

b(r, y)c(r, y) dr
)

ds.

Moreover, z(x, y) is nondecreasing in x, x ∈ R+, we obtain

u(x, y) ≤ z(x, y)p(x, y), (2.23)

where p(x, y) is defined by (2.19). ¿From (2.21) and (2.23) we have

u(x, y) ≤ p(x, y)
(
a(x, y) + f(x, y)φ

(
v(x, y)

))
, (2.24)

where v(s, y) is defined by

v(x, y) =
∫ x

0

∫ ∞

y

L(s, t, u(s, t)) dtds.
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¿From (2.24) and the hypotheses on L and φ, it is to observe that

v(x, y) ≤
∫ x

0

∫ ∞

y

(
L

(
(s, t, p(s, t)

[
a(s, t) + f(s, t)φ

(
v(s, t)

)])
− L

(
(s, t, p(s, t)a(s, t)

)
+ L

(
(s, t, p(s, t)a(s, t)

))
dtds

≤
∫ x

0

∫ ∞

y

L
(
(s, t, p(s, t)a(s, t)

)
dtds

+
∫ x

0

∫ ∞

y

M
(
(s, t, p(s, t)a(s, t)

)
φ−1

(
p(s, t)f(s, t)φ

(
v(s, t)

))
dtds

≤ e(x, y) +
∫ x

0

∫ ∞

y

M
(
(s, t, p(s, t)a(s, t)

)
φ−1

(
p(s, t)f(s, t)

)
v(s, t) dtds,

(2.25)
where e(x, y) is defined by (2.20). Clearly, e(x, y) is nonnegative, continuous,
nondecreasing in x, x ∈ R+ and non-increasing in y, y ∈ R+. Now, by 1 of
Lemma 2.2, we obtain

v(x, y) ≤ e(x, y) exp
( ∫ x

0

∫ ∞

y

M
(
(s, t, p(s, t)a(s, t)

)
φ−1

(
p(s, t)f(s, t)

)
dtds,

)
.

(2.26)
Using (2.24) in (2.26) we get the required inequality in (2.18). �

Theorem 2.6 Let u(x, y), a(x, y), b(x, y), c(x, y), f(x, y), L, M , φ, and φ−1

be as defined in Theorem 2.5. Assume that a(x, y), f(x, y) are non-increasing
in x for x ∈ R+. If

u(x, y) ≤a(x, y) + b(x, y)
∫ β

x

c(s, y)u(s, y) ds

+ f(x, y)φ
( ∫ ∞

x

∫ ∞

y

L(s, t, u(s, t)) dtds
)

for β, x, y ∈ R+ with x ≤ β, then

u(x, y) ≤ p(x, y)
{

a(x, y) + f(x, y)φ
[
e(x, y)

× exp
( ∫ ∞

x

∫ ∞

y

M
(
s, t, p(s, t)a(s, t)

)
φ−1

(
p(s, t)f(s, t)

)
dtds

)]}
for x, y ∈ R+, where

p(s, t) = 1 + b(x, y)
∫ β

x

c(s, y) exp
( ∫ s

x

b(r, y)c(r, y) dr
)

ds,

e(x, y) =
∫ ∞

x

∫ ∞

y

L
(
s, t, p(s, t)a(s, t)

)
dtds.

(2.27)

The proof of Theorem 2.5 follows by an argument similar to that in the
proofs of Theorem 2.4 with suitable changes. We omit the details.
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3 Further Inequalities

To establish some of our results in this section, we require the class of functions
S as defined in [2]. A function g : [0,∞) → [0,∞) is said to belong to the class
S if
(i) g(u) is positive, nondecreasing and continuous for u ≥ 0, and
(ii) (1/v)g(u) ≤ g(u/v), u > 0, v ≥ 1.

Theorem 3.1 Let u(x, y), a(x, y), c(x, y), d(x, y), f(x, y) be real-valued non-
negative continuous functions defined for x, y ∈ R+ and let g ∈ S. Also let
W (u(x, y)) be real-valued, positive, continuous, strictly nondecreasing, subaddi-
tive, and submultiplicative function for u(x, y) ≥ 0 and let H(u(x, y)) be a real-
valued, continuous, positive, and nondecreasing function defined for x, y ∈ R+.
Assume that a function m(x, y) is nondecreasing in x and m(x, y) ≥ 1, which
is defined by

m(x, y) = a(x, y) + f(x, y)H
( ∫ x

0

∫ ∞

y

d(s, t)u(s, t) dtds
)

for x, y ∈ R+. If

u(x, y) ≤ m(x, y) +
∫ x

α

c(s, y)g
(
u(s, y)

)
ds (3.1)

for α, x, y ∈ R+ and α ≤ x, then

u(x, y) ≤F (x, y)
{

a(x, y) + f(x, y)H
[
G−1

(
G

(
B(s, t)

)
+

∫ x

0

∫ ∞

y

d(s, t)W
(
F (s, t)f(s, t)

)
dtds

)]} (3.2)

for x, y ∈ R+, where

F (x, y) = Ω−1
(
Ω(1) +

∫ x

α

b(s, y) ds
)
, (3.3)

B(s, t) =
∫ ∞

0

∫ ∞

y

d(s, t)W
(
F (s, t)a(s, t)

)
dtds, (3.4)

Ω(u) =
∫ u

u0

ds

g(s)
, u ≥ u0 > 0, (3.5)

where Ω−1 is the inverse function of Ω; G, G−1 are defined in Theorem 2.3,
Ω(1) +

∫ x

α
b(s, y) ds is in the domain of Ω−1, and

G
( ∫ ∞

0

∫ ∞

0

d(s, t)W
(
F (s, t)a(s, t)

)
dtds

)
+

∫ x

0

∫ ∞

y

d(s, t)W
(
F (s, t)f(s, t)

)
dtds

is in the domain of G−1 for x, y ∈ R+.
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Proof Let m(x, y) be a positive, continuous, nondecreasing in x and let g ∈ S.
Then (3.1) can be restated as

u(x, y)
m(x, y)

≤ 1 +
∫ x

α

b(s, y)g
( u(s, y)

m(s, y)

)
ds. (3.6)

The inequality (3.6) may be treated as a one-dimensional Bihari inequality [1]
for any fixed y, y ∈ R+, which implies that

u(x, y) ≤ F (x, y)m(x, y),

where F (x, y) is defined by (3.3). Now, by following the last argument as in the
proof of Theorem 2.3, we obtain desired inequality in (3.2). �

Theorem 3.2 Let u(x, y), a(x, y), c(x, y), d(x, y), f(x, y), W (u(x, y)), and
H(u(x, y)) be as defined in Theorem 3.1 and g ∈ S. Assume that a function
m(x, y) is non-increasing in x and m(x, y) ≥ 1, which is defined by

m(x, y) = a(x, y) + f(x, y)H
( ∫ ∞

x

∫ ∞

y

d(s, t)u(s, t) dtds
)

for x, y ∈ R+. If

u(x, y) ≤ m(x, y) +
∫ β

x

c(s, y)g
(
u(s, y)

)
ds (3.7)

for β, x, y ∈ R+ and x ≤ β, then

u(x, y) ≤F (x, y)
{

a(x, y) + f(x, y)H
[
G−1

(
G

(
B(s, t)

)
+

∫ ∞

x

∫ ∞

y

d(s, t)W
(
F (s, t)f(s, t)

)
dtds

)]} (3.8)

for x, y ∈ R+, where

F (x, y) = Ω−1
(
Ω(1) +

∫ β

x

b(s, y) ds
)
,

B(s, t) =
∫ ∞

0

∫ ∞

0

d(s, t)W
(
F (s, t)a(s, t)

)
dtds,

(3.9)

Ω is defined in (3.5), Ω−1 is the inverse function of Ω; G, G−1 are defined in
Theorem 2.3, Ω(1) +

∫ β

x
b(s, y) ds is in the domain of Ω−1, and

G
( ∫ ∞

0

∫ ∞

0

d(s, t)W
(
F (s, t)a(s, t)

)
dtds

)
+

∫ ∞

x

∫ ∞

y

d(s, t)W
(
F (s, t)f(s, t)

)
dtds

is in the domain of G−1, for x, y ∈ R+.
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Proof Let m(x, y) be a positive, continuous, nondecreasing in x and let g ∈ S.
Then (3.7) can be restated as

u(x, y)
m(x, y)

≤ 1 +
∫ x

α

b(s, y)g
( u(s, y)

m(s, y)

)
ds. (3.10)

The inequality (3.10) may be treated as a one-dimensional Bihari inequality [1]
for any fixed y, y ∈ R+, which implies that

u(x, y) ≤ F (x, y)m(x, y),

where F (x, y) is defined by (3.9). Now, by following the last argument as in the
proof of Theorem 2.4, we obtain desired inequality in (3.8). �

Theorem 3.3 Let u(x, y), a(x, y), b(x, y), c(x, y), f(x, y), L, M , φ, and φ−1

be as defined in Theorem 2.5, and let g ∈ S. Assume that a function n(x, y) is
nondecreasing in x and n(x, y) ≥ 1, which is defined by

n(x, y) = a(x, y) + f(x, y)φ
( ∫ x

0

∫ ∞

y

F (s, t, u(s, t)) dtds
)

for x, y ∈ R+. If

u(x, y) ≤ n(x, y) +
∫ x

α

b(s, y)b
(
u(s, y)

)
ds (3.11)

for α, x, y ∈ R+ and α ≤ x, then

u(x, y) ≤ F (x, y)
{

a(x, y) + f(x, y)φ
[
e(x, y)

× exp
( ∫ x

0

∫ ∞

y

M
(
s, t, F (s, t)a(s, t)

)
φ−1

(
F (s, t)f(s, t)

)
dtds

)]}
(3.12)

for x, y ∈ R+, where F is defined in (3.3), e(x, y) is defined in (2.20), Ω is
defined in (3.5), Ω−1 is the inverse function of Ω and Ω(1) +

∫ x

α
b(s, y) ds is in

the domain of Ω−1 for x, y ∈ R+.

Proof The proof of this theorem follows by an argument similar to that of
Theorem 3.1. Let n(x, y) is a positive, continuous, nondecreasing in x and let
g ∈ S. Then (3.11) can be restated as

u(x, y)
n(x, y)

≤ 1 +
∫ x

α

b(s, y)g
(u(s, y)

n(s, y)

)
ds. (3.13)

The inequality (3.13) may be treated as a one-dimensional Bihari inequality [1]
for any fixed y, y ∈ R+, which implies that

u(x, y) ≤ F (x, y)n(x, y),

where F (x, y) is defined by (3.3). Now, by following the last argument as in the
proof of Theorem 2.5, we obtain desired inequality in (3.12). �
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Theorem 3.4 Let u(x, y), a(x, y), b(x, y), c(x, y), f(x, y), L, M , φ, and φ−1

be as defined in Theorem 2.5, and let g ∈ S. Assume that a function n(x, y) is
non-increasing in x and n(x, y) ≥ 1, which is defined by

n(x, y) = a(x, y) + f(x, y)φ
( ∫ ∞

x

∫ ∞

y

F (s, t, u(s, t)) dtds
)

for x, y ∈ R+. If u(x, y) ≤ n(x, y) +
∫ β

x
b(s, y)b

(
u(s, y)

)
ds for β, x, y ∈ R+ and

x ≤ β, then

u(x, y) ≤F (x, y)
{

a(x, y) + f(x, y)φ
[
e(x, y)

× exp
( ∫ ∞

x

∫ ∞

y

M
(
s, t, F (s, t)a(s, t)

)
φ−1

(
F (s, t)f(s, t)

)
dtds

)]}
for x, y ∈ R+, where F is defined in (3.9), e(x, y) is defined in (2.27), Ω is
defined in (3.5), Ω−1 is the inverse function of Ω and Ω(1) +

∫ β

x
b(s, y) ds is in

the domain of Ω−1 for x, y ∈ R+.

The proof of this theorem follows by an argument similar to that in Theorem
3.3 with suitable changes. We omit the details.

4 Some Applications

In this section we present some immediate applications of Theorem 2.3 to study
certain properties of solutions of the following terminal-value problem for the
hyperbolic partial differential equation

uxy(x, y) = h(x, y, u(x, y)) + r(x, y), (4.1)
u(x,∞) = σ∞(x), u(0, y) = τ(y), u(0,∞) = k, (4.2)

where h : R2
+ × R → R, r : R2

+ → R, σ∞, τ(y) : R+ → R are continuous
functions and k is a real constant.

The following example deals with the estimate on the solution of the partial
differential equation (4.1) with the conditions (4.2).

Example Assume that functions are defined and continuous on their respec-
tive domains of definitions and such that

|h(x, y, u)| ≤ d(x, y)W
(
| u |

)
(4.3)

and∣∣∣σ∞(x) + τ(y)− k −
∫ x

0

∫ ∞

y

r(s, t) dtds
∣∣∣

≤ a(x, y) + b(x, y)
∫ x

α

c(s, y)g
(
|u(s, y)|

)
ds, (4.4)
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where a(x, y), b(x, y), c(x, y) and W (u) are as defined in Theorem 2.3. If u(x, y)
is a solution of (4.1) with the conditions (4.2), then it can be written as [1, p.
80]

u(x, y) = σ∞(x) + τ(y)− k −
∫ x

0

∫ ∞

y

(
h(s, t, u(s, t)) + r(s, t)

)
dtds (4.5)

for x, y ∈ R+. From (4.3), (4.4), (4.5) we get

|u(x, y)| ≤a(x, y) + b(x, y)
∫ x

α

c(s, y)g
(
|u(s, y)|

)
ds

+
∫ x

0

∫ ∞

y

d(s, t)W
(
|u(s, t)|

)
dtds.

(4.6)

Now, a suitable application of Theorem 2.3 with f(x, y) = 1 and H(u) = u to
(4.6) yields the required estimate, Therefore,

|u(x, y)| ≤ p(x, y)
{

a(x, y) + G−1
[
G

( ∫ ∞

0

∫ ∞

0

d(s, t)W
(
p(s, t)a(s, t)

)
dtds

)
+

∫ x

0

∫ ∞

y

d(s, t)W
(
p(s, t)

)
dtds

]}
for x, y ∈ R+, where p(x, y), G, and G−1 are define in Theorem 2.3.
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