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Nonexistence of solutions to systems of

higher-order semilinear inequalities

in cone-like domains ∗

Abdallah El Hamidi & Gennady G. Laptev

Abstract

In this paper, we obtain nonexistence results for global solutions to
the system of higher-order semilinear partial differential inequalities

∂kui
∂tk

−∆(ai(x, t)ui(x, t)) ≥ tγi+1 |x|σi+1 |ui+1(x, t)|pi+1 , 1 ≤ i ≤ n,
un+1 = u1,

in cones and cone-like domains in RN , t > 0. Our results apply to nonneg-
ative solutions and to solutions which change sign. Moreover, we provide
a general formula of the critical exponent corresponding to this system.
Our proofs are based on the test function method, developed by Mitidieri
and Pohozaev.

1 Introduction

This paper is devoted to the study of nonexistence results for global solutions
to systems of semilinear higher-order evolution differential inequalities in un-
bounded cone-like domains. Nonexistence results concerning nonnegative solu-
tions of parabolic equations in cones were obtained by Bandle & Levine [1] and
Levine & Meier [18]. Recently, new nonexistence results dealing with solutions
with arbitrary sign were established by Laptev [11, 13, 14] and by El Hamidi
& Laptev [6] when the domains are cones or product of cones. On the other
hand, for cone-like domains, only nonexistence results of nonnegative solutions
to semilinear evolution differential inequalities, were obtained in [1, 6, 11, 13, 14].
Recently, Laptev [15] obtained a nonexistence result for the semilinear parabolic
inequality

ut −∆(|u|m−1u) ≥ |x|σ|u|q

with 1 ≤ m < q and σ > −2, in cone-like domains. Which is the first result,
to our knowledge, dealing with solutions of evolution problems which are not
necessarily nonnegative in cone-like domains.
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2 Nonexistence of solutions to systems EJDE–2002/97

In this paper, we obtain nonexistence results for systems of semilinear higher-
order evolution differential inequalities in unbounded cones and cone-like do-
mains. More precisely, for n ≥ 2, we study the problem

∂kui
∂tk

−∆(aiui) ≥ tγi+1 |x|σi+1 |ui+1|pi+1 , 1 ≤ i ≤ n,

un+1 = u1,

(1.1)

where x belongs to a cone (or a cone-like domain), t ∈]0,+∞[, k ≥ 1, pn+1 = p1,
γn+1 = γ1 and σn+1 = σ1.

For n = 1, we study the problem

∂ku

∂tk
−∆(au) ≥ tγ |x|σ |u|p, (1.2)

where x belongs to a cone (or a cone-like domain) and t ∈]0,+∞[. Such systems
were studied, in the whole space, by Renclawowicz [28], Guedda & Kirane [7],
Igbida & Kirane [8] and Kirane, Nabana & Pohozaev [10].

Our results concern all weak solutions, specially nonnegative weak solutions.
We obtain general formulas of the critical exponents corresponding to the sys-
tems considered. These formulas are also valid in the scalar case of one inequality
(n = 1).

Our approach is based on the test function method developed by Mitidieri &
Pohozaev [19], Pohozaev & Tesei [25], Pohozaev & Véron [27] and Laptev [11,
13, 14].

Let Ω ⊂ SN−1 be a connected submanifold of the unit sphere SN−1 in RN

with smooth boundary ∂Ω ⊂ SN−1 and having positive N − 2 dimensional
measure. By a cone in RN with cross section Ω with vertex at the origin, we
mean a set

K = {(r, ω) ∈ RN ; 0 < r < +∞ and ω ∈ Ω},
where r = |x|, x ∈ RN . The boundary of K is

∂K = {(r, ω); r = 0 or ω ∈ ∂Ω}.

For ε > 0 fixed, the cone-like domain Kε is defined as

Kε = {x ∈ K; |x| > ε}

and its boundary as

∂Kε = {(r, ω); r = ε or ω ∈ ∂Ω}.

The outward normal vector to the boundary ∂Ω (resp. ∂K) will be denoted
by νω (resp. ν). The restriction of the laplacian operator ∆ to the unit sphere
SN−1 will be denoted by ∆ω, which is the Laplace-Beltrami operator. It is well-
known that the laplacian operator in RN can be written, in polar coordinates
(r, ω), as

∆ =
1

rN−1

∂

∂r

(
rN−1 ∂

∂r

)
+

1
r2

∆ω =
∂2

∂r2
+
N − 1
r

∂

∂r
+

1
r2

∆ω.
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for the rest of this paper, λ denotes the first Dirichlet eigenvalue, and Φ the
corresponding eigenfunction, for the Laplace-Beltrami operator; namely,

−∆ωΦ = λΦ in Ω,
Φ = 0 on ∂Ω.

Recall that λ > 0 and Φ(ω) > 0, for any ω ∈ Ω. We shall assume Φ is normalized
so that

0 < Φ(ω) ≤ 1, ∀ω ∈ Ω.

The space of the C2 functions with respect to the first variable and Cj , j ∈
N
∗, with respect to the second variable, on K×]0,+∞[, will be denoted by
C2,j(K×]0,+∞[).

This article is organized as follows. In Section 2, we introduce notation
and establish estimates which we shall use in the sequel. Section 3 is devoted
to nonexistence results to the inequality (1.2), where the parameter γ = 0. In
Section 4, we generalize the results of the Section 3 for n ≥ 2 and the parameters
γi = 0, i ∈ {1, 2, . . . , n}. Section 5 concerns the general system (1.1), with
γi ≤ 0, i ∈ {1, 2, . . . , n}.

2 Preliminary results

Throughout this paper, the letter C denotes a constant which may vary from
line to line but is independent of the terms which will take part in any limit
process. For a real number p > 1, we define p′ such that 1/p+ 1/p′ = 1.

We define now the weak solutions of the problems that we will consider in
the sequel. Let us consider the higher order inequality

∂ku

∂tk
−∆(au) ≥ |x|σ |u|p, x ∈ Kε, t ∈]0,+∞[, (2.1)

where p > 1, σ > −2, with the initial data

u(x, 0) = u0(x), in Kε,

∂iu

∂ti
(x, 0) = ui(x), i ∈ {1, 2, . . . , k − 1}, in Kε.

Definition 2.1 Let a be in L∞
(
Kε×]0,+∞[

)
. A weak solution u of the in-

equality (2.1) on Kε×]0,+∞[ is continuous function on Kε× [0,+∞[ such that
the traces ∂ju

∂tj (x, 0), j ∈ {1, .., k − 1}, are well defined and locally integrable on
Kε and∫ ∞

0

∫
Kε

(
a u∆ϕ− u(−1)k

∂kϕ

∂tk
+ |x|σ|u|pϕ

)
dx dt

−
∫ ∞

0

∫
∂Kε

a u
∂ϕ

∂ν
dx dt+

k−1∑
j=0

(−1)j
∫
Kε

∂k−1−ju

∂tk−1−j (x, 0)
∂jϕ

∂tj
(x, 0) dx ≤ 0,

(2.2)
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holds for any nonnegative test function ϕ ∈ C2,k(Kε×]0,+∞[) with compact
support, such that ϕ|∂Kε×]0,+∞[ = 0.

Similarly, we define the weak solutions of the system

∂kui
∂tk

−∆(aiui) ≥ |x|σi+1 |ui+1|pi+1 , x ∈ Kε, t ∈]0,+∞[, 1 ≤ i ≤ n,

un+1 = u1,

(2.3)

where pi > 1, σi > −2, for 1 ≤ i ≤ n, pn+1 = p1, σn+1 = σ1, and the initial
data

(
u

(0)
i , u

(1)
i , . . . , u

(k−1)
i

)
∈
[
L1

loc(Kε)
]k, 1 ≤ i ≤ n.

Definition 2.2 Let ai ∈ L∞
(
Kε×]0,+∞[

)
, i ∈ {1, 2, . . . , n}. A weak so-

lution (u1, . . . , un) of the system (2.3) on Kε×]0,+∞[ is a vector of contin-
uous functions (u1, . . . , un) on Kε × [0,+∞[ such that the traces ∂jui

∂tj (x, 0),
(i, j) ∈ {1, .., n} × {1, .., k − 1}, are well defined and locally integrable on Kε

and the n estimates∫ ∞
0

∫
Kε

(
ai ui∆ϕ− ui(−1)k

∂kϕ

∂tk
+ |x|σi+1 |ui+1|pi+1ϕ

)
dx dt

−
∫ ∞

0

∫
∂Kε

ai ui
∂ϕ

∂ν
dx dt+

k−1∑
j=0

(−1)j
∫
Kε

∂k−1−jui
∂tk−1−j (x, 0)

∂jϕ

∂tj
(x, 0) dx ≤ 0,

(2.4)

for any i ∈ {1, 2, . . . , n− 1}, and∫ ∞
0

∫
Kε

(
an un∆ϕ− un(−1)k

∂kϕ

∂tk
+ |x|σ1 |u1|p1ϕ

)
dx dt

−
∫ ∞

0

∫
∂Kε

an un
∂ϕ

∂ν
dx dt+

k−1∑
j=0

(−1)j
∫
Kε

∂k−1−jun
∂tk−1−j (x, 0)

∂jϕ

∂tj
(x, 0) dx ≤ 0,

(2.5)

hold, for any nonnegative test function ϕ ∈ C2,k(Kε×]0,+∞[) with compact
support, such that ϕ|∂Kε×]0,+∞[ = 0.

We shall construct the test functions which will be used in our proofs. Let
ζ be the standard cut-off function

ζ(y) =

{
1 if 0 ≤ y ≤ 1,
0 if y ≥ 2.

Let p0 ≥ k + 1 and η(y) = [ζ(y)]p0 .
Explicit computation shows that there is a positive constant C(η) > 0 such

that, for y ≥ 0 and 1 < p ≤ p0,

|η(k)(y)|p ≤ C(η)ηp−1(y). (2.6)
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We introduce the term of the test function which depends on the variable t. Let
the parameter ρ > ε, the exponent θ > 0 and the function t 7→ η(t/ρθ). Remark
that

supp |η(t/ρθ)| = {t ∈ R+, 0 ≤ t ≤ 2ρθ}

and

supp
∣∣∣dkη
dtk

(t/ρθ)
∣∣∣ = {t ∈ R+, ρθ ≤ t ≤ 2ρθ},

where “supp” denotes the support. It follows that∫
supp | dkη

dtk
(t/ρθ)|

|d
kη
dtk

(t/ρθ)|p

ηp−1(t/ρθ)
dt ≤ cηρ

−θ(kp−1). (2.7)

Now, we construct the part of the test function in the space variable x ≡ (r, ω).
Let s 6= 0 a real number, then

∆ (rsΦ(ω)) = rs−2Φ(ω)
(
s2 + (N − 2)s− λ

)
.

Denote by s+ and s− the two roots of the equation

s2 + (N − 2)s− λ = 0.

These roots are given by

s+ = −N − 2
2

+

√(N − 2
2

)2

+ λ and s− = −N − 2
2
−
√(N − 2

2

)2

+ λ.

Consider the function ζ defined on Kε by

ζ(x) ≡ ζ(r, ω) =
((r
ε

)s+ − (r
ε

)s−)Φ(ω).

It is interesting to note that the function ζ is harmonic in Kε and vanishes on
the boundary ∂Kε. Moreover,

∂ζ

∂ν

∣∣∣
∂Kε
≤ 0,

where ν is the outer normal to the full surface ∂Kε. Indeed, thanks to the Hopf
lemma,

∂ζ

∂νω
=
((r
ε

)s+ − (r
ε

)s−) ∂Φ(ω)
∂νω

≤ 0.

Moreover, since s+ > 0 and s− < 0, then

−∂ζ
∂r

∣∣∣
r=ε

=
s− − s+

ε
Φ(ω) ≤ 0.

Let us consider now the function of r, for r ≥ ε,

ξ(r) =
((r
ε

)s+ − (r
ε

)s−)
η
( r
ρ

)
.
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Now, we give estimates of ∂ξ/∂r and ∂2ξ/∂r2. First, we have

∂ξ

∂r
=
(s+

ε

(r
ε

)s+−1 − s−
ε

(r
ε

)s−−1
)
η
( r
ρ

)
+

1
ρ

((r
ε

)s+ − (r
ε

)s−)
η′
( r
ρ

)
.

Whence, there is a positive constant C, independent of ρ and r, such that

∣∣∣∂ξ
∂r

∣∣∣p
≤ C

{[s+

ε

(r
ε

)s+−1 − s−
ε

(r
ε

)s−−1
]p
ηp
( r
ρ

)
+

1
ρp

[(r
ε

)s+ − (r
ε

)s−]p ∣∣∣η′( r
ρ

)∣∣∣p}.
Consequently, ∣∣∣∂ξ

∂r

∣∣∣p ≤ C rp(s+−1)ηp−1
( r
ρ

)(
1 +

rp

ρp
)
. (2.8)

Moreover,

∂2ξ

∂r2
=
(s+(s+ − 1)

ε2

(r
ε

)s+−2 − s−(s− − 1)
ε2

(r
ε

)s−−2
)
η
( r
ρ

)
+

2
ρ

(s+

ε

(r
ε

)s+−1 − s−
ε

(r
ε

)s−−1
)
η′
( r
ρ

)
+

1
ρ2

((r
ε

)s+ − (r
ε

)s−)
η′′
( r
ρ

)
.

Similarly, there is C > 0, independent on ρ and r, such that∣∣∣∂2ξ

∂r2

∣∣∣p ≤ C rp(s+−2)ηp−1
( r
ρ

)(
1 +

rp

ρp
+
r2p

ρ2p

)
. (2.9)

We introduce now the final test function of the space variable

ψρ(x) = ζ(x)η
( |x|
ρ

)
=
((r
ε

)s+ − (r
ε

)s−)
η
( r
ρ

)
Φ(ω).

Then

∆ψρ(x) =
∂2ψρ
∂r2

(x) +
N − 1
r

∂ψρ
∂r

(x) +
1
r2

∆ωψρ(x),

where
∆ωψρ =

((r
ε

)s+ − (r
ε

)s−)
η
( r
ρ

)
(−λΦ) = −λψρ.

Whence

|∆ψρ(x)|p = Φp(ω)
∣∣∣{ ∂2

∂r2
+
N − 1
r

∂

∂r
− λ

r2

}
(ξ(r))

∣∣∣p,
≤ C Φp(ω)ηp−1

( r
ρ

)
rp(s+−2)

(
1 +

rp

ρp
+
r2p

ρ2p

)
, (2.10)

≤ C ψp−1
ρ (x)rs+−2p

( (r/ε)s+

(r/ε)s+ − (r/ε)s−

)p−1(
1 +

rp

ρp
+
r2p

ρ2p

)
,
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where C is a positive constant, independent of ρ and r. Let us denote N =
supp (∆ψρ). Since η(r/ρ) = 1 for r ≤ ρ and η(r/ρ) = 0 for r ≥ 2ρ, then
N ⊂ {x ∈ Kε; ρ ≤ r ≤ 2ρ}. Moreover, since ρ > ε, then the expressions

1 +
rp

ρp
+
r2p

ρ2p
and

(r/ε)s+

(r/ε)s+ − (r/ε)s−

are bounded on {x ∈ Kε; ρ ≤ r ≤ 2ρ}. We conclude that there is a positive
constant C such that

|∆ψρ(x)|p ≤ C ψp−1
ρ (x)

rs+

ρ2p
∀x ∈ N .

Finally, for ρ sufficiently large, we have the estimate∫
N

|∆(ψρ)(x)|p

ψp−1
ρ (x)|x|σ(p−1)

dx

≤ C

ρ2p

∫ 2ρ

ρ

∫
Ω

rs++N−1

rσ(p−1)
dθ dr (2.11)

≤ C


ρs++N−σ(p−1)−2p if s+ +N − σ(p− 1) > 0,
ρ−2p ln(ρ) if s+ +N − σ(p− 1) = 0,
ρ−2p if s+ +N − σ(p− 1) < 0.

Consider the final test function of the variables x and t:

ϕρ(x, t) = η
( t

ρθ

)
ψρ(x). (2.12)

On one hand, the same arguments used in (2.11) give the estimate∫ +∞

0

∫
N

|∆(ϕρ)(x, t)|p

ϕp−1
ρ (x, t)|x|σ(p−1)

dxdt

≤ C

ρ2p

∫ 2ρθ

0

∫ 2ρ

ρ

∫
Ω

rs++N−1

rσ(p−1)
dθ dr dt (2.13)

≤ C


ρs++N−σ(p−1)+θ−2p if s+ +N − σ(p− 1) > 0,
ρθ−2p ln(ρ) if s+ +N − σ(p− 1) = 0,
ρθ−2p if s+ +N − σ(p− 1) < 0.

On the other hand, if we denote C(ε, ρ) := {x ∈ Kε; ε ≤ |x| ≤ 2ρ}, then

∫ ∫
supp

∣∣∣∣ ∂kϕρ∂tk

∣∣∣∣

∣∣∣∂kϕρ∂tk

∣∣∣p
ϕp−1
ρ |x|(p−1)σ

dx dt

≤
∫
C(ε,ρ)

ψρ(x)
|x|(p−1)σ

dx

∫
supp

∣∣∣ dkη
dtk

(t/ρθ)
∣∣∣
∣∣∣dkηdtk (t/ρθ)

∣∣∣p
ηp−1(t/ρθ)

dt. (2.14)
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Furthermore,∫
C(ε,ρ)

ψ̃ρ(x)
|x|(p−1)σ

dx =
∫

Ω

Φ(ω) dθ
∫ 2ρ

ε

((r
ε

)s+ − (r
ε

)s−)
η
( r
ρ

) rN−1

r(p−1)σ
dr

≤ |Ω|
εs+

∫ 2ρ

ε

rs++N−1−(p−1)σ dr

≤C


ρs++N−σ(p−1) if s+ +N − σ(p− 1) > 0,
ln(ρ) if s+ +N − σ(p− 1) = 0,
1 if s+ +N − σ(p− 1) < 0.

(2.15)
Combining the estimates (2.7), (2.14) and (2.15), we obtain

∫ ∫
supp

∣∣∣∣ ∂kϕρ∂tk

∣∣∣∣

∣∣∣∂kϕρ∂tk

∣∣∣p
ϕp−1
ρ |x|(p−1)σ

dx dt

≤ C


ρs++N−σ(p−1)−θ(kp−1) if s+ +N − σ(p− 1) > 0,
ρ−θ(kp−1) ln(ρ) if s+ +N − σ(p− 1) = 0,
ρ−θ(kp−1) if s+ +N − σ(p− 1) < 0.

(2.16)

In the following section, we consider the case n = 1.

3 Higher-Order Evolution Semilinear Inequali-
ties

In this section, we establish nonexistence results for global solutions to the
semilinear problem (2.1). The weak solutions of (2.1) are defined in Definition
2.1.

Theorem 3.1 Assume that for all (x, t) ∈ ∂Kε × [0,+∞[, a(x, t) ≥ 0 and
u(x, t) ≥ 0. Also assume that

∀x ∈ Kε;
∂k−1u

∂tk−1
(x, 0) ≥ 0.

Let
σ + 2
p− 1

≥ s+ +N − 2
(
1− 1

k

)
,

where p > 1 and σ > −2. Then there is no weak nontrivial solution u of the
inequality (2.1).

Proof. Assume that (2.1) admits a nontrivial global weak solution u with

σ + 2
p− 1

≥ s+ +N − 2
(
1− 1

k

)
.
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In definition 2.1, let us choose the test function ϕ(x, t) = ϕρ(x, t) defined in
(2.12). Thanks to the Hopf lemma, we have∫ ∞

0

∫
∂Kε

a u
∂ϕρ
∂ν

dx dt ≤ 0.

Moreover, the test function ϕρ satisfies the equalities

∂jϕρ
∂tj

(x, 0) = 0, for j ∈ {1, 2, . . . , k − 1}.

Finally, we have ∫
Kε

∂k−1u

∂tk−1
(x, 0)ϕρ(x, 0) dx ≥ 0.

Then, inequality (2.2) implies that∫ ∞
0

∫
Kε

|x|σ|u|pϕρ dx dt ≤
∫ ∞

0

∫
Kε

u

(
−a∆ + (−1)k

∂k

∂tk

)
ϕρdxdt. (3.1)

Let us introduce the notation

I(ρ) :=
∫ ∞

0

∫
Kε

|x|σ|u|pϕρ dx dt,

A(ρ) =
∫ ∞

0

∫
Kε

|∆ϕρ|p
′

(|x|σϕρ)p
′−1

dx dt

B(ρ) =
∫ ∞

0

∫
Kε

|∂
kϕρ
∂tk
|p′

(|x|σϕρ)p
′−1

dx dt.

Applying Hölder’s inequality to (3.1), we obtain

I(ρ) ≤ max (||a||∞, 1) I(ρ)
1
p

(
A(ρ)

1
p′ + B(ρ)

1
p′
)
, (3.2)

or equivalently

I(ρ)1− 1
p ≤ max (||a||∞, 1)

(
A(ρ)

1
p′ + B(ρ)

1
p′
)
.

At this stage, we choose the real parameter θ = 2/k and obtain

A(ρ) ≤ C Θ(ρ) and B(ρ) ≤ C Θ(ρ),

where

Θ(ρ) =


ρs++N−σ(p′−1)−2(p′−1/k) if s+ +N − σ(p′ − 1) > 0,
ρ−2(p′−1/k) ln(ρ) if s+ +N − σ(p′ − 1) = 0,
ρ−2(p′−1/k) if s+ +N − σ(p′ − 1) < 0.
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If s+ + N − σ(p′ − 1) > 0, then explicit computation gives , for ρ sufficiently
large,

I1− 1
p ≤ Cρα,

where

α =
p− 1
p

(
s+ +N − 2

(
1− 1

k

)
− σ + 2
p− 1

)
.

Now, we require that α ≤ 0, which is equivalent to

σ + 2
p− 1

≥ s+ +N − 2
(
1− 1

k

)
.

In this case, I(ρ) is bounded uniformly with respect to the variable ρ. Moreover,
the function I(ρ) is increasing in ρ. Consequently, the monotone convergence
theorem implies that the function

(x, t) ≡ (r, ω, t) 7−→ |u(x, t)|p|x|σ
((r
ε

)s+ − (r
ε

)s−)Φ(ω)

is in L1(Kε×]0,+∞[). Furthermore, note that

supp(∆ϕρ) ⊂ {t ∈ R+, 0 ≤ t ≤ 2ρ2/k} × {x ∈ Kε, ρ ≤ |x| ≤ 2ρ}

and

supp
(∂kϕρ
∂tk

)
⊂ {t ∈ R+, ρ2/k ≤ t ≤ 2ρ2/k} × {x ∈ Kε, ε ≤ |x| ≤ 2ρ}.

Whence, instead of (3.2) we have more precisely

I(ρ) ≤ max (||a||∞, 1) Ĩ(ρ)
1
p

(
A(ρ)

1
p′ + B(ρ)

1
p′
)
, (3.3)

where Ĩ(ρ) =
∫
Cρ |x|

σ|u|pϕρ dx dt and Cρ = supp(∆ϕρ) ∪ supp
(∂kϕρ
∂tk

)
. Finally,

using the dominated convergence theorem, we obtain

lim
ρ→+∞

I(ρ) = 0.

This implies u ≡ 0, which contradicts the fact that u is assumed to be nontrivial
weak solution.

Now, if s+ +N − σ(p′ − 1) ≤ 0, then

lim
ρ→+∞

ρ−2(p′−1/k) ln(ρ) = 0 and lim
ρ→+∞

ρ−2(p′−1/k) = 0.

Therefore the integral I(ρ) is bounded uniformly with respect to the variable ρ.
The same arguments used previously complete the proof. �

The previous result is also valid for cones instead of cone-like domains. In-
deed, let us consider the higher order inequality

∂ku

∂tk
−∆(au) ≥ |x|σ |u|p, x ∈ K, t ∈]0,+∞[, (3.4)
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where p > 1, σ > −2, with the initial data

u(x, 0) = u0(x), in K,

∂iu

∂ti
(x, 0) = ui(x), i ∈ {1, 2, . . . , k − 1}, in K.

Then we have the following statement.

Theorem 3.2 Assume that for all (x, t) ∈ ∂K × [0,+∞[, a(x, t) ≥ 0 and
u(x, t) ≥ 0. Also assume that

∀x ∈ K;
∂k−1u

∂tk−1
(x, 0) ≥ 0.

Let
σ + 2
p− 1

≥ s+ +N − 2
(
1− 1

k

)
,

where p > 1 and σ > −2. Then there is no weak nontrivial solution u of the
system (3.4).

Proof. Note that the cone K coincides with Kε for ε = 0. In this case, the
test function ϕρ given by (2.12) is not well defined. We choose the new test
function

ϕ̃ρ(x, t) ≡ ϕ̃ρ(r, ω, t) = rs+ Φ(ω) η
( r
ρθ
)
η
( t
ρ

)
.

The function
K −→ [0,+∞[
(r, ω) 7−→ rs+ Φ(ω),

is also harmonic. Following the different steps of the last proof with ϕ̃ρ (resp.
K) instead of ϕρ (resp. Kε), we obtain the result. �

4 Higher Order Systems of Evolution Semilin-
ear Inequalities

We establish here nonexistence results of global solutions to the system (Snk ).
The weak solutions of (Snk ) are defined in Definition 2.2. In this section, the
initial conditions ∂jui

∂tj (x, 0) will be denoted by u(j)
i (x, 0), for (i, j) ∈ {1, .., n} ×

{0, .., k − 1}, and the vector (X1, X2, . . . , Xn) will denote the solution of the
linear system

−1 p1 0 . . . 0

0 −1 p2
. . .

...
...

. . . . . . . . . 0

0
. . . . . . pn−1

pn 0 . . . 0 −1




X1

X2

...
Xn−1

Xn

 =


σ1 + 2
σ2 + 2

...
σn−1 + 2
σn + 2

 (4.1)

We have the following non existence result.
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Theorem 4.1 Assume that for all (x, t) ∈ ∂Kε× [0,+∞[ and i ∈ {1, 2, . . . , n},
ui(x, t) ≥ 0 and ai(x, t) ≥ 0. Also assume that

∀x ∈ Kε, ∀i ∈ {1, 2, . . . , n};
∂k−1ui
∂tk−1

(x, 0) ≥ 0.

Let
max{X1, X2, . . . , Xn} ≥ s+ +N − 2

(
1− 1

k

)
,

where pi > 1 and σi > −2, for 1 ≤ i ≤ n. Then the problem (2.3) has no
nontrivial global weak solution.

Proof. By contradiction, assume that (2.3) admits a nontrivial global weak
solution (u1, u2, . . . , un) with max{X1, X2, . . . , Xn} ≥ s+ +N − 2(1− 1/k). In
definition 2.2, let us choose the test function ϕ(x, t) = ϕρ(x, t) defined in (2.12).
Thanks to the Hopf lemma, we have∫ ∞

0

∫
∂Kε

ai ui
∂ϕρ
∂ν

dx dt ≤ 0, for i ∈ {1, 2, . . . , n}.

Moreover, the test function ϕρ satisfies

∂jϕρ
∂tj

(x, 0) = 0, for j ∈ {1, 2, . . . , k − 1}.

Finally, we have∫
Kε

∂k−1ui
∂tk−1

(x, 0)ϕρ(x, 0) dx ≥ 0, i ∈ {1, 2, . . . , n}.

Then, inequalities (2.4) and (2.5) imply∫ ∞
0

∫
Kε

|x|σ1 |u1|p1ϕρ ≤
∫ ∞

0

∫
Kε

un

(
−an∆ + (−1)k

∂k

∂tk

)
ϕρ,∫ ∞

0

∫
Kε

|x|σi |ui|piϕρ ≤
∫ ∞

0

∫
Kε

ui−1

(
−ai−1∆ + (−1)k

∂k

∂tk

)
ϕρ, 2 ≤ i ≤ n.

(4.2)
For i ∈ {1, 2, . . . , n}, we use the notation

Ii(ρ) :=
∫ ∞

0

∫
Kε

|x|σi |ui|piϕρ dx dt,

Ai(ρ) =
∫ ∞

0

∫
Kε

|∆ϕρ|p
′
i

(|x|σiϕρ)p
′
i−1

dx dt

Bi(ρ) =
∫ ∞

0

∫
Kε

|∂
kϕρ
∂tk
|p′i

(|x|σiϕρ)p
′
i−1

dx dt.
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Using the Hölder’s inequality for system (4.2), we obtain

I1(ρ) ≤max(||an||∞, 1)In(ρ)
1
pn

(
An(ρ)

1
p′n + Bn(ρ)

1
p′n
)
,

Ii(ρ) ≤max (||ai−1||∞, 1) Ii−1(ρ)
1

pi−1
(
Ai−1(ρ)

1
p′
i−1 + Bi−1(ρ)

1
p′
i−1
)
, 2 ≤ i ≤ n.

(4.3)
Whence, there is a positive constant C, independent on ρ and r such that

I
1− 1

p1p2...pn
i ≤ C

n∏
j=1

(
A1/p′j
j + B1/p′j

j

) 1
µij

, 1 ≤ i ≤ n,

where

µij =

{∏i−1
k=j+1 pk for i > j,∏i−1
k=1 pk

∏n
k=j+1 pk for i ≤ j.

At this stage, we choose the real parameter θ = 2/k to obtain

Ai(ρ) ≤ C Θi(ρ) and Bi(ρ) ≤ C Θi(ρ), for i ∈ {1, 2, . . . , n},

where

Θi(ρ) =


ρs++N−σi(p′i−1)−2(p′i−1/k) if s+ +N − σi(p′i − 1) > 0,
ρ−2(p′i−1/k) ln(ρ) if s+ +N − σi(p′i − 1) = 0,
ρ−2(p′i−1/k) if s+ +N − σi(p′i − 1) < 0.

To estimate the expressions Ii(ρ), i ∈ {1, 2, . . . , n}, we consider two cases.
Case 1: s+ +N−σi(p′i−1) > 0, for any i ∈ {1, 2, . . . , n}. Explicit computation
gives , for ρ sufficiently large,

I
1− 1

p1p2...pn
i ≤ Cραi , 1 ≤ i ≤ n,

where

αi =
(

1− 1
p1p2 . . . pn

)(
s+ +N − 2

(
1− 1

k

)
−
∑n
j=1(2 + σj)τij
p1p2 . . . pn − 1

)
,

and

τij =

{∏n
k=i pk

∏j−1
k=1 pk for i > j,

τij =
∏j−1
k=i pk for i ≤ j.

Now, we require that, at least, one of αi, i ∈ {1, 2, . . . , n}, be less than zero,
which is equivalent to

max{X1, X2, . . . , Xn} ≥ s+ +N − 2
(
1− 1

k

)
,

where the vector (X1, X2, . . . , Xn)T is the solution of (4.1). In this case, there is
i0 ∈ {1, 2, . . . , n} such that Ii0(ρ) is bounded uniformly with respect to the vari-
able ρ. Using the systems (4.2) and (4.3), we obtain that both Ii(ρ), 1 ≤ i ≤ n,
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are bounded uniformly with respect to the variable ρ. Moreover, the functions
Ii(ρ), i ∈ {1, 2, . . . , n}, are increasing in ρ. Consequently, the monotone conver-
gence theorem implies that the functions

(x, t) ≡ (r, ω, t) 7−→ |ui(x, t)|pi |x|σi
((r
ε

)s+ − (r
ε

)s−)Φ(ω).

is in L1(Kε×]0,+∞[). Precise that these functions correspond to

lim
ρ→+∞

|ui(x, t)|pi |x|σiϕρ(x, t).

Furthermore, note that

supp(∆ϕρ) ⊂ {t ∈ R+, 0 ≤ t ≤ 2ρ2/k} × {x ∈ Kε, ρ ≤ |x| ≤ 2ρ}

and

supp
(∂kϕρ
∂tk

)
⊂ {t ∈ R+, ρ2/k ≤ t ≤ 2ρ2/k} × {x ∈ Kε, ε ≤ |x| ≤ 2ρ}.

Whence, instead of (4.3) we have more precisely

I1(ρ) ≤max (||an||∞, 1) Ĩn(ρ)
1
pn

(
An(ρ)

1
p′n + Bn(ρ)

1
p′n

)
,

Ii(ρ) ≤max (||ai−1||∞, 1) Ĩi−1(ρ)
1

pi−1

(
Ai−1(ρ)

1
p′
i−1 + Bi−1(ρ)

1
p′
i−1

)
, 2 ≤ i ≤ n.

(4.4)
where

Ĩi(ρ) =
∫
Cρ
|x|σi |ui|piϕρ dx dt,

and Cρ = supp(∆ϕρ) ∪ supp
(∂kϕρ
∂tk

)
. Finally, using the dominated convergence

theorem, we obtain

lim
ρ→+∞

Ii(ρ) = 0, i ∈ {1, 2, . . . , n}.

This implies that (u1, u2, . . . , un) ≡ (0, 0, . . . , 0), which contradicts the fact that
(u1, u2, . . . , un) is assumed to be nontrivial weak solution. We complete the
proof by treating the case

Case 2: There is i0 ∈ {1, 2, . . . , n}, such that s+ + N − σi0(p′i0 − 1) ≤ 0. The
same arguments used in Case 1 give, for ρ sufficiently large,

I
1− 1

p1p2...pn
i ≤ Cρα̃i , 1 ≤ i ≤ n,

where α̃i ≤ αi, for i ∈ {1, 2, . . . , n}. Then, if there is i1 ∈ {1, 2, . . . , n} such
that αi1 ≤ 0 then α̃i1 ≤ 0. This implies that Ii1(ρ) is bounded uniformly with
respect to the variable ρ, which leads to the same conclusion as the Case 1. This
completes the proof. �
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When problem (2.3) is posed on the cone K instead of the cone-like domain
Kε, our result is also valid and the proof changes very slightly. Indeed, consider

∂kui
∂tk

−∆(aiui) ≥ |x|σi+1 |ui+1|pi+1 , x ∈ K, t ∈]0,+∞[, 1 ≤ i ≤ n,

un+1 = u1,

(4.5)

where pi > 1, σi > −2, for 1 ≤ i ≤ n, pn+1 = p1, σn+1 = σ1, and the initial
data (u(0)

i , u
(1)
i , . . . , u

(k−1)
i ) ∈ [L1

loc(K)]k, 1 ≤ i ≤ n.
The weak solutions of (4.5) are defined similarly as in Definition 2.1 with K

instead of Kε. Then we have the following result.

Theorem 4.2 Assume that for all (x, t) ∈ ∂K × [0,+∞[ and i ∈ {1, 2, . . . , n},
ui(x, t) ≥ 0 and ai(x, t) ≥ 0. Also assume that

∀x ∈ K, , ∀i ∈ {1, 2, . . . , n}; ∂k−1ui
∂tk−1

(x, 0) ≥ 0.

Let max{X1, X2, . . . , Xn} ≥ s+ +N − 2
(
1− 1

k

)
, where pi > 1 and σi > −2, for

1 ≤ i ≤ n. Then problem (S̃
n

k) has no nontrivial global weak solution.

For the Proof of this theorem, it suffices to use the same arguments of the
last proof with ϕ̃ρ (resp K) instead of ϕρ (resp Kε) to obtain the result. �

5 General case

We consider the problem

∂kui
∂tk
−∆(aiui) ≥ tγi+1 |x|σi+1 |ui+1|pi+1 , x ∈ Kε, t ∈]0,+∞[, 1 ≤ i ≤ n,

un+1 = u1,
(5.1)

where pi > 1, σi > −2, for 1 ≤ i ≤ n, pn+1 = p1, γn+1 = γ1, σn+1 = σ1, and
the initial data (u(0)

i , u
(1)
i , . . . , u

(k−1)
i ) ∈ [L1

loc(Kε)]k, 1 ≤ i ≤ n. We will assume
that γi ≤ 0 for i ∈ {1, 2, . . . , n}.

We start by giving the new estimates corresponding to (2.13) and (2.16),
(for given p > 1 and γ ≤ 0)∫ +∞

0

∫
N

|∆(ϕρ)(x, t)|p

(tγ |x|σϕρ)p−1 dxdt

≤ C

ρ2p

∫ 2ρθ

0

t−γ(p−1) dt

∫ 2ρ

ρ

∫
Ω

rs++N−1

rσ(p−1)
dθ dr

≤ C


ρs++N−σ(p−1)+θ−2p−γθ(p−1) if s+ +N − σ(p− 1) > 0,
ρθ−2p−γθ(p−1) ln(ρ) if s+ +N − σ(p− 1) = 0,
ρθ−2p−γθ(p−1) if s+ +N − σ(p− 1) < 0.
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≤ C


ρs++N−(σ+γθ)(p−1)+θ−2p if s+ +N − σ(p− 1) > 0,
ρθ−2p−γθ(p−1) ln(ρ) if s+ +N − σ(p− 1) = 0,
ρθ−2p−γθ(p−1) if s+ +N − σ(p− 1) < 0.

(5.2)

and

∫ ∫
supp

∣∣∣∣ ∂kϕρ∂tk

∣∣∣∣

∣∣∣∂kϕρ∂tk

∣∣∣p
(tγ |x|σϕρ)p−1 dx dt

≤ C


ρs++N−σ(p−1)−θ(kp−1)−γθ(p−1) if s+ +N − σ(p− 1) > 0,
ρ−θ(kp−1)−γθ(p−1) ln(ρ) if s+ +N − σ(p− 1) = 0,
ρ−θ(kp−1)−γθ(p−1) if s+ +N − σ(p− 1) < 0.

≤ C


ρs++N−(σ+γθ)(p−1)−θ(kp−1) if s+ +N − σ(p− 1) > 0,
ρ−θ(kp−1)−γθ(p−1) ln(ρ) if s+ +N − σ(p− 1) = 0,
ρ−θ(kp−1)−γθ(p−1) if s+ +N − σ(p− 1) < 0.

(5.3)

Let the vector (Y1, Y2, . . . , Yn) be the solution of the linear system

−1 p1 0 . . . 0

0 −1 p2
. . .

...
...

. . . . . . . . . 0

0
. . . . . . pn−1

pn 0 . . . 0 −1




Y1

Y2

...
Yn−1

Yn




σ1 + 2 + 2γ1/k
σ2 + 2 + 2γ2/k

...
σn−1 + 2 + 2γn−1/k
σn + 2 + 2γn/k


The we have the following non existence result.

Theorem 5.1 Assume that for all (x, t) ∈ ∂Kε× [0,+∞[ and i ∈ {1, 2, . . . , n},
ui(x, t) ≥ 0 and ai(x, t) ≥ 0. Also assume that

∀x ∈ Kε, ∀i ∈ {1, 2, . . . , n};
∂k−1ui
∂tk−1

(x, 0) ≥ 0.

Let
max{Y1, Y2, . . . , Yn} ≥ s+ +N − 2

(
1− 1

k

)
,

where pi > 1 and σi + 2γi/k > −2, for 1 ≤ i ≤ n. Then the problem 1.1 has no
nontrivial global weak solution.

Proof. We follow the previous proof and replace the expressions Ii(ρ), Ai(ρ)
and Bi(ρ) by

Ii(ρ) :=
∫ ∞

0

∫
Kε

|x|σi |ui|piϕρ dx dt,
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Ai(ρ) =
∫ ∞

0

∫
Kε

|∆ϕρ|p
′
i

(tγi |x|σiϕρ)p
′
i−1

dx dt

Bi(ρ) =
∫ ∞

0

∫
Kε

|∂
kϕρ
∂tk
|p′i

(tγi |x|σiϕρ)p
′
i−1

dx dt,

respectively. By setting the parameter θ = 2/k, we conclude that

Ai(ρ) ≤ C Θi(ρ) and Bi(ρ) ≤ C Θi(ρ),

where

Θi(ρ) =


ρs++N−(σi+2γi/k)(p′i−1)−2(p′i−1/k) if s+ +N − σi(p′i − 1) > 0,
ρ−2(p′i−1/k)−2γi(p

′
i−1)/k ln(ρ) if s+ +N − σi(p′i − 1) = 0,

ρ−2(p′i−1/k)−2γi(p
′
i−1)/k if s+ +N − σ(p′i − 1) < 0,

for any i ∈ {1, 2, . . . , N}. As in the previous proof, note that the leading
exponent in the previous estimate is

s+ +N − (σi + 2γi/k)(p′i − 1)− 2(p′i − 1/k).

In other words, the only difference with the last proof is that the parameter σi
must be replaced by σi + 2γi/k. Which achieves the proof. �

Remark. If we consider the semilinear problem (1.2) instead of (2.1) with
γ ≤ 0, then σ has to be replaced by σ+ 2γ/k in Theorem 3.1 and Theorem 3.2.
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