Existence results for second-order neutral functional differential and integrodifferential inclusions in Banach spaces *

Haeng Joo Lee, Jeongyo Park, \& Jong Yeoul Park

Abstract

In this paper, we investigate the existence of mild solutions on a compact interval to second order neutral functional differential and integrodifferential inclusions in Banach spaces. The results are obtained by using the theory of continuous cosine families and a fixed point theorem for condensing maps due to Martelli.

1 Introduction

In this paper we prove the existence of mild solutions, defined on a compact interval, for second-order neutral functional differential and integrodifferential inclusions in Banach spaces. In Section 3 we consider the second-order neutral functional differential inclusion

$$
\begin{gather*}
\frac{d}{d t}\left[y^{\prime}(t)-g\left(t, y_{t}\right)\right] \in A y(t)+F\left(t, y_{t}\right), \quad t \in J=[0, T] \tag{1.1}\\
y_{0}=\phi, \quad y^{\prime}(0)=x_{0}
\end{gather*}
$$

where $J_{0}=[-r, 0], F: J \times C\left(J_{0}, E\right) \rightarrow 2^{E}$ is a bounded, closed, convex valued multivalued map, $g: J \times C\left(J_{0}, E\right) \rightarrow E$ is given function, $\phi \in C\left(J_{0}, E\right), x_{0} \in$ E, and A is the infinitesimal generator of a strongly continuous cosine family $\{C(t): t \in R\}$ in a real Banach space E with the norm $|\cdot|$.

For a continuous function y defined on the interval $J_{1}=[-r, T]$ and $t \in J$, we denote by y_{t} the element of $C\left(J_{0}, E\right)$ defined by

$$
y_{t}(\theta)=y(t+\theta), \quad \theta \in J_{0} .
$$

Here $y_{t}(\cdot)$ represents the history of the state from time $t-r$, up to the present time t.

[^0]In Section 4 we investigate the existence of mild solutions for second order neutral functional integrodifferential inclusion

$$
\begin{gather*}
\frac{d}{d t}\left[y^{\prime}(t)-g\left(t, y_{t}\right)\right] \in A y(t)+\int_{0}^{t} K(t, s) F\left(s, y_{s}\right) d s, \quad t \in J=[0, T] \tag{1.2}\\
y_{0}=\phi, \quad y^{\prime}(0)=x_{0}
\end{gather*}
$$

where A, F, g, ϕ are as in the problem (1.1) and $K: D \rightarrow R, D=\{(t, s) \in$ $J \times J: t \geq s\}$.

In many cases it is advantageous to treat the second order abstract differential equations directly rather than to convert them into first order systems. A useful tool for the study of abstract second order equations is the theory of strongly continuous cosine families. Here we use of the basic ideas from cosine family theory $[17,18]$.

Existence results for differential inclusions on compact intervals, are given in the papers of Avgerinos and Papageorgiou [1], Papageorgiou [15, 16], and Benchohra [3, 4] for differential inclusions on noncompact intervals.

This paper is motivated by the recent papers of Benchohra and Ntouyas $[4,5,6]$ and Ntouyas [14]. In [4] second order functional differential inclusions are studied. In [5,6] functional differential and integrodifferential inclusions are studied. In [14] neutral functional integrodifferential equations was studied. Here we compose the above results and prove the existence of mild solutions for problems (1.1) and (1.2), relying on a fixed point theorem for condensing maps due to Martelli [13].

2 Preliminaries

In this section, we introduce notation, definitions, and preliminary facts from multivalued analysis which are used throughout this paper.

Let $C(J, E)$ be the Banach space of continuous functions from J into E with the norm

$$
\|y\|_{\infty}:=\sup \{|y(t)|: t \in J\} .
$$

Let $B(E)$ denote the Banach space of bounded linear operators from E into E. A measurable function $y: J \rightarrow E$ is Bochner integrable if and only if $|y|$ is Lebesque integrable. (For properties of the Bochner integral see Yosida [19].)

Let $L^{1}(J, E)$ denotes the Banach space of continuous functions $y: J \rightarrow E$ which are Bochner integrable, with the norm

$$
\|y\|_{L^{1}}=\int_{0}^{T}|y(t)| d t \quad \text { for all } y \in L^{1}(J, E)
$$

Let $(X,\|\cdot\|)$ be a Banach space. A multivalued map $G: X \rightarrow 2^{X}$ is convex (closed) valued, if $G(x)$ is convex (closed) for all $x \in X . G$ is bounded on bounded sets if $G(D)=\bigcup_{x \in D} G(x)$ is bounded in X, for any bounded set D of X, i.e.,

$$
\sup _{x \in D}\{\sup \{\|y\|: y \in G(x)\}\}<\infty
$$

A map G is called upper semicontinuous on X if, for each $x_{0} \in X$, the set $G\left(x_{0}\right)$ is a nonempty closed subset of X and if for each open set V of X containing $G\left(x_{0}\right)$, there exists an open neighborhood A of x_{0} such that $G(A) \subseteq$ V.

A map G is said to be completely continuous if $G(D)$ is relatively compact for every bounded subset $D \subseteq X$. If the multivalued map G is completely continuous with nonempty compact values, then G is upper semicontinuous if and only if G has a closed graph, i.e., for $x_{n} \rightarrow x_{*}, y_{n} \rightarrow y_{*}$, with $y_{n} \in G x_{n}$ we have $y_{*} \in G x_{*}$. The map G has a fixed point if there is $x \in X$ such that $x \in G x$.

In the following, $B C C(X)$ denotes the set of all nonempty bounded closed and convex subsets of X. A multivalued map $G: J \rightarrow B C C(X)$ is said to be measurable if for each $x \in X$, the distance between x and $G(t)$ is a measurable function on J. For more details on multivalued maps, see the books of Deimling [7] and Hu and Papageorgiou [11].

An upper semicontinuous map $G: X \rightarrow 2^{X}$ is said to be condensing if, for any bounded subset $D \subseteq X$, with $\alpha(D) \neq 0$, we have

$$
\alpha(G(D))<\alpha(D)
$$

where α denotes the Kuratowski measure of noncompactness. For properties of the Kuratowski measure, we refer to Banas and Goebel [2].

We remark that a completely continuous multivalued map is the easiest example of a condensing map.

We say that the family $\{C(t): t \in R\}$ of operators in $B(E)$ is a strongly continuous cosine family if
(i) $C(0)=I$, is the identity operator in E
(ii) $C(t+s)+C(t-s)=2 C(t) C(s)$ for all $s, t \in R$
(iii) The map $t \rightarrow C(t) y$ is strongly continuous for each $y \in X$.

The strongly continuous sine family $\{S(t): t \in R\}$, associated to the given strongly continuous cosine family $\{C(t): t \in R\}$, is defined by

$$
S(t) y=\int_{0}^{t} C(s) y d s, \quad y \in E, t \in R
$$

The infinitesimal generator $A: E \rightarrow E$ of a cosine family $\{C(t): t \in R\}$ is defined by

$$
A y=\left.\frac{d^{2}}{d t^{2}} C(t) y\right|_{t=0}
$$

For more details on strongly continuous cosine and sine families, we refer the reader to the books of Goldstein [10] and to the papers of Fattorini [8, 9] and of Travis and Webb [17, 18].

The considerations of this paper are based on the following fixed point theorem.

Lemma 2.1 ([13]) Let X be a Banach space and $N: X \rightarrow B C C(X)$ be a condensing map. If the set $\Omega:=\{y \in X: \lambda y \in N y$, for some $\lambda>1\}$ is bounded, then N has a fixed point.

3 Second Order Neutral Differential Inclusions

In this section we give an existence result for the problem (1.1). Let us list the following hypotheses.
(H1) A is the infinitesimal generator of a strongly continuous cosine family $C(t), t \in R$, of bounded linear operators from E into itself.
(H2) $C(t), t>0$ is compact.
(H3) $F: J \times C\left(J_{0}, E\right) \rightarrow B C C(E) ;(t, u) \rightarrow F(t, u)$ is measurable with respect to t for each $u \in C\left(J_{0}, E\right)$, upper semicontinuous with respect to u for each $t \in J$, and for each fixed $u \in C\left(J_{0}, E\right)$, the set

$$
S_{F, u}=\left\{f \in L^{1}(J, E): f(t) \in F(t, u) \text { for a.e. } t \in J\right\}
$$

is nonempty.
(H4) The function $g: J \times C\left(J_{0}, E\right) \rightarrow E$ is completely continuous and for any bounded set K in $C\left(J_{1}, E\right)$, the set $\left\{t \rightarrow g\left(t, y_{t}\right): y \in K\right\}$ is equicontinuous in $C(J, E)$.
(H5) There exist constants c_{1} and c_{2} such that

$$
|g(t, v)| \leq c_{1}\|v\|+c_{2}, \quad t \in J, v \in C\left(J_{0}, E\right)
$$

(H6) $\|F(t, u)\|:=\sup \{|v|: v \in F(t, u)\} \leq p(t) \Psi(\|u\|)$ for almost all $t \in J$ and $u \in C\left(J_{0}, E\right)$, where $p \in L^{1}\left(J, R_{+}\right)$and $\Psi: R_{+} \rightarrow(0, \infty)$ is continuous and increasing with

$$
\int_{0}^{T} m(s) d s<\int_{c}^{\infty} \frac{d s}{s+\Psi(s)}
$$

where $c=M\|\phi\|+M T\left[\left|x_{0}\right|+c_{1}\|\phi\|+2 c_{2}\right], m(t)=\max \left\{M c_{1}, M T p(t)\right\}$ and $M=\sup \{|C(t)|: t \in J\}$.

Remark (i) If $\operatorname{dim} E<\infty$, then for each $v \in C\left(J_{0}, E\right), S_{F, u} \neq \phi$ (see Lasota and Opial [10]).
(ii) $S_{F, u}$ is nonempty if and only if the function $Y: J \rightarrow R$ defined by

$$
Y(t):=\inf \{|v|: v \in F(t, u)\}
$$

belongs to $L^{1}(J, R)$ (see Papageorgiou $\left.[15]\right)$.

In order to define the concept of mild solution for (1.1), by comparison with abstract Cauchy problem

$$
\begin{gathered}
y^{\prime \prime}(t)=A y(t)+h(t) \\
y(0)=y_{0}, \quad y^{\prime}(0)=y_{1}
\end{gathered}
$$

whose properties are well known [17, 18], we associate problem (1.1) to the integral equation
$y(t)=C(t) \phi(0)+S(t)\left[x_{0}-g(0, \phi)\right]+\int_{0}^{t} C(t-s) g\left(s, y_{s}\right) d s+\int_{0}^{t} S(t-s) f(s) d s$,
$t \in J$, where

$$
f \in S_{F, y}=\left\{f \in L^{1}(J, E): f(t) \in F\left(t, y_{t}\right) \text { for a.e. } t \in J\right\} .
$$

Definition A function $y:(-r, T) \rightarrow E, T>0$ is called a mild solution of the problem (1.1) if $y(t)=\phi(t), t \in[-r, 0]$, and there exists a $v \in L^{1}(J, E)$ such that $v(t) \in F\left(t, y_{t}\right)$ a.e. on J, and the integral equation (3.1) is satisfied.

The following lemmas are crucial in the proof of our main theorem.
Lemma 3.1 ([12]) Let I be a compact real interval, and let X be a Banach space. Let F be a multivalued map satisfying (H3), and let Γ be a linear continuous mapping from $L^{1}(I, X)$ to $C(I, X)$. Then, the operator

$$
\Gamma \circ S_{F}: C(I, X) \rightarrow B C C(C(I, X)), \quad y \rightarrow\left(\Gamma \circ S_{F}\right)(y)=\Gamma\left(S_{F, y}\right)
$$

is a closed graph operator in $C(I, X) \times C(I, X)$.
Now, we are able to state and prove our main theorem.
Theorem 3.2 Assume that Hypotheses (H1)-(H6) are satisfied. Then system (1.1) has at least one mild solution on J_{1}.

Proof. Let $C:=C\left(J_{1}, E\right)$ be the Banach space of continuous functions from J_{1} into E endowed with the supremum norm

$$
\|y\|_{\infty}:=\sup \left\{|y(t)|: t \in J_{1}\right\}, \quad \text { for } y \in C .
$$

Now we transform the problem into a fixed point problem. Consider the multivalued map, $N: C \rightarrow 2^{C}$ defined by $N y$ the set of functions $h \in C$ such that

$$
h(t)= \begin{cases}\phi(t), & \text { if } t \in J_{0} \\ C(t) \phi(0)+S(t)\left[x_{0}-g(0, \phi)\right] & \\ +\int_{0}^{t} C(t-s) g\left(s, y_{s}\right) d s+\int_{0}^{t} S(t-s) f(s) d s, & \text { if } t \in J\end{cases}
$$

where

$$
f \in S_{F, y}=\left\{f \in L^{1}(J, E): f(t) \in F\left(t, y_{t}\right) \text { for a.e. } t \in J\right\} .
$$

We remark that the fixed points of N are mild solutions to (1.1).
We shall show that N is completely continuous with bounded closed convex values and it is upper semicontinuous. The proof will be given in several steps. Step 1. $N y$ is convex for each $y \in C$. Indeed, if h_{1}, h_{2} belong to $N y$, then there exist $f_{1}, f_{2} \in S_{F, y}$ such that, for each $t \in J$ and $i=1,2$, we have
$h_{i}(t)=C(t) \phi(0)+S(t)\left[x_{0}-g(0, \phi)\right]+\int_{0}^{t} C(t-s) g\left(s, y_{s}\right) d s+\int_{0}^{t} S(t-s) f_{i}(s) d s$.
Let $0 \leq \alpha \leq 1$. Then, for each $t \in J$, we have

$$
\begin{aligned}
\left(\alpha h_{1}+(1-\alpha) h_{2}\right)(t)= & C(t) \phi(0)+S(t)\left[x_{0}-g(0, \phi)\right]+\int_{0}^{t} C(t-s) g\left(s, y_{s}\right) d s \\
& +\int_{0}^{t} S(t-s)\left[\alpha f_{1}(s)+(1-\alpha) f_{2}(s)\right] d s
\end{aligned}
$$

Since $S_{F, y}$ is convex (because F has convex values), then

$$
\alpha h_{1}+(1-\alpha) h_{2} \in N y
$$

Step 2. N maps bounded sets into bounded sets in C. Indeed, it is enough to show that there exists a positive constant ℓ such that, for each $h \in N y$, $y \in B_{q}=\left\{y \in C:\|y\|_{\infty} \leq q\right\}$, one has $\|h\|_{\infty} \leq \ell$. If $h \in N y$, then there exists $f \in S_{F, y}$ such that for each $t \in J$ we have

$$
h(t)=C(t) \phi(0)+S(t)\left[x_{0}-g(0, \phi)\right]+\int_{0}^{t} C(t-s) g\left(s, y_{s}\right) d s+\int_{0}^{t} S(t-s) f(s) d s
$$

By (H5) and (H6), we have that, for each $t \in J$,

$$
\begin{aligned}
|h(t)| \leq & |C(t) \phi(0)|+\left|S(t)\left[x_{0}-g(0, \phi)\right]\right|+\left|\int_{0}^{t} C(t-s) g\left(s, y_{s}\right) d s\right| \\
& +\left|\int_{0}^{t} S(t-s) f(s) d s\right| \\
\leq & M\|\phi\|+M T\left[\left|x_{0}\right|+c_{1}\|\phi\|+2 c_{2}\right]+M c_{1} \int_{0}^{t}\left\|y_{s}\right\| d s \\
& +M T \sup _{y \in[0, q]} \Psi(y)\left(\int_{0}^{t} p(s) d s\right)
\end{aligned}
$$

Then for each $h \in N\left(B_{q}\right)$ we have

$$
\begin{aligned}
\|h\|_{\infty} \leq & M\|\phi\|+M T\left[\left|x_{0}\right|+c_{1}\|\phi\|+2 c_{2}\right]+M c_{1} \int_{0}^{T}\left\|y_{s}\right\| d s \\
& +M T \sup _{y \in[0, q]} \Psi(y)\left(\int_{0}^{T} p(s) d s\right):=\ell
\end{aligned}
$$

Step 3. N maps bounded sets into equicontinuous sets of C. Let $t_{1}, t_{2} \in J$, $0<t_{1}<t_{2}$, and let $B_{q}=\left\{y \in C:\|y\|_{\infty} \leq q\right\}$ be a bounded set of $C\left(J_{1}, E\right)$. For each $y \in B_{q}$ and $h \in N y$, there exists $f \in S_{F, y}$ such that for $t \in J$,

$$
h(t)=C(t) \phi(0)+S(t)\left[x_{0}-g(0, \phi)\right]+\int_{0}^{t} C(t-s) g\left(s, y_{s}\right) d s+\int_{0}^{t} S(t-s) f(s) d s
$$

Thus,

$$
\begin{aligned}
\mid h\left(t_{2}\right) & -h\left(t_{1}\right) \mid \\
\leq & \left|\left[C\left(t_{2}\right)-C\left(t_{1}\right)\right] \phi(0)\right|+\left|\left[S\left(t_{2}\right)-S\left(t_{1}\right)\right]\left[x_{0}-g(0, \phi)\right]\right| \\
& +\left|\int_{0}^{t_{2}}\left[C\left(t_{2}-s\right)-C\left(t_{1}-s\right)\right] g\left(s, y_{s}\right) d s\right|+\left|\int_{t_{1}}^{t_{2}} C\left(t_{1}-s\right) g\left(s, y_{s}\right) d s\right| \\
& +\left|\int_{0}^{t_{2}}\left[S\left(t_{2}-s\right)-S\left(t_{1}-s\right)\right] f(s) d s\right|+\left|\int_{t_{1}}^{t_{2}} S\left(t_{1}-s\right) f(s) d s\right| \\
\leq & \left|C\left(t_{2}\right)-C\left(t_{1}\right)\right|\|\phi\|+\left|S\left(t_{2}\right)-S\left(t_{1}\right)\right|\left[\left|x_{0}\right|+c_{1}\|\phi\|+c_{2}\right] \\
& +\int_{0}^{t_{2}}\left|C\left(t_{2}-s\right)-C\left(t_{1}-s\right)\right|\left[c_{1}\left\|y_{s}\right\|+c_{2}\right] d s \\
& +\int_{t_{1}}^{t_{2}}\left|C\left(t_{1}-s\right)\right|\left[c_{1}\left\|y_{s}\right\|+c_{2}\right] d s \\
& +\int_{0}^{t_{2}}\left|S\left(t_{2}-s\right)-S\left(t_{1}-s\right)\right|\|f(s)\| d s+\int_{t_{1}}^{t_{2}}\left|S\left(t_{1}-s\right)\right|\|f(s)\| d s .
\end{aligned}
$$

As $t_{2} \rightarrow t_{1}$ the right-hand side of the above inequality tend to zero. The equicontinuities for the cases $t_{1}<t_{2} \leq 0$ and $t_{1} \leq 0 \leq t_{2}$ are obvious. As a consequence of Step 2, Step 3, (H2) and (H4) together with the Ascoli-Arzela theorem, we can conclude that $N: C \rightarrow 2^{C}$ is a compact multivalued map, and therefore, a condensing map.
Step 4. N has a closed graph. Let $y_{n} \rightarrow y_{*}, h_{n} \in N y_{n}$, and $h_{n} \rightarrow h_{*}$. We shall prove that $h_{*} \in N y_{*} . h_{n} \in N y_{n}$ means that there exists $f_{n} \in S_{F, y_{n}}$, such that for $t \in J$,
$h_{n}(t)=C(t) \phi(0)+S(t)\left[x_{0}-g(0, \phi)\right]+\int_{0}^{t} C(t-s) g\left(s, y_{n s}\right) d s+\int_{0}^{t} S(t-s) f_{n}(s) d s$.
We must prove that there exists $f_{*} \in S_{F, y_{*}}$ such that for $t \in J$,
$h_{*}(t)=C(t) \phi(0)+S(t)\left[x_{0}-g(0, \phi)\right]+\int_{0}^{t} C(t-s) g\left(s, y_{* s}\right) d s+\int_{0}^{t} S(t-s) f_{*}(s) d s$.
Clearly, we have that as $n \rightarrow \infty$,

$$
\begin{aligned}
& \|\left(h_{n}-C(t) \phi(0)-S(t)\left[x_{0}-g(0, \phi)\right]-\int_{0}^{t} C(t-s) g\left(s, y_{n s}\right) d s\right) \\
&-\left(h_{*}-C(t) \phi(0)-S(t)\left[x_{0}-g(0, \phi)\right]-\int_{0}^{t} C(t-s) g\left(s, y_{* s}\right) d s\right) \|_{\infty} \quad \rightarrow \quad 0
\end{aligned}
$$

Consider the linear and continuous operator $\Gamma: L^{1}(J, E) \rightarrow C(J, E)$ defined as

$$
f \rightarrow \Gamma(f)(t)=\int_{0}^{t} S(t-s) f(s) d s
$$

From Lemma 3.1, it follows that $\Gamma \circ S_{F}$ is a closed graph operator. Moreover, we have that

$$
h_{n}(t)-C(t) \phi(0)-S(t)\left[x_{0}-g(0, \phi)\right]-\int_{0}^{t} C(t-s) g\left(s, y_{n s}\right) d s \in \Gamma\left(S_{F, y_{n}}\right)
$$

Since $y_{n} \rightarrow y_{*}$, it follows from Lemma 3.1 that
$h_{*}(t)-C(t) \phi(0)-S(t)\left[x_{0}-g(0, \phi)\right]-\int_{0}^{T} C(t-s) g\left(s, y_{* s}\right) d s=\int_{0}^{t} S(t-s) f_{*}(s) d s$
for some $f_{*} \in S_{F, y_{*}}$. Therefore N is a completely continuous multivalued map, upper semicontinuous with convex closed values. In order to prove that N has a fixed point, we need one more step.
Step 5. The set

$$
\Omega:=\{y \in C: \lambda y \in N y, \text { for some } \lambda>1\}
$$

is bounded. Let $y \in \Omega$. Then $\lambda y \in N y$ for some $\lambda>1$. Thus, there exists $f \in S_{F, y}$ such that

$$
\begin{aligned}
y(t)= & \lambda^{-1} C(t) \phi(0)+\lambda^{-1} S(t)\left[x_{0}-g(0, \phi)\right]+\lambda^{-1} \int_{0}^{t} C(t-s) g\left(s, y_{s}\right) d s \\
& +\lambda^{-1} \int_{0}^{t} S(t-s) f(s) d s, \quad t \in J
\end{aligned}
$$

This implies by (H5)-(H6) that for each $t \in J$, we have

$$
\begin{aligned}
|y(t)| \leq & M\|\phi\|+M T\left[\left|x_{0}\right|+c_{1}\|\phi\|+2 c_{2}\right] \\
& +M c_{1} \int_{0}^{t}\left\|y_{s}\right\| d s+M T \int_{0}^{t} p(s) \Psi\left(\left\|y_{s}\right\|\right) d s
\end{aligned}
$$

We consider the function

$$
\mu(t)=\sup \{|y(s)|:-r \leq s \leq t\}, \quad t \in J
$$

Let $t^{*} \in[-r, t]$ be such that $\mu(t)=\left|y\left(t^{*}\right)\right|$. If $t^{*} \in J$, by the previous inequality we have for $t \in J$,

$$
\begin{aligned}
\mu(t) \leq & M\|\phi\|+M T\left[\left|x_{0}\right|+c_{1}\|\phi\|+2 c_{2}\right]+M c_{1} \int_{0}^{t^{*}}\left\|y_{s}\right\| d s \\
& +M T \int_{0}^{t^{*}} p(s) \Psi\left(\left\|y_{s}\right\|\right) d s \\
\leq & M\|\phi\|+M T\left[\left|x_{0}\right|+c_{1}\|\phi\|+2 c_{2}\right]+M c_{1} \int_{0}^{t} \mu(s) d s \\
& +M T \int_{0}^{t} p(s) \Psi(\mu(s)) d s
\end{aligned}
$$

If $t^{*} \in J_{0}$, then $\mu(t) \leq\|\phi\|$ and the previous inequality obviously holds. Let us denote the right-hand side of the above inequality as $v(t)$. Then, we have

$$
\begin{gathered}
c=v(0)=M\|\phi\|+M T\left[\left|x_{0}\right|+c_{1}\|\phi\|+2 c_{2}\right], \\
\mu(t) \leq v(t), \quad t \in J, \\
v^{\prime}(t)=M c_{1} \mu(t)+M T p(t) \Psi(\mu(t)), \quad t \in J .
\end{gathered}
$$

Using the nondecreasing character of Ψ, we get

$$
v^{\prime}(t) \leq M c_{1} v(t)+M T p(t) \Psi(v(t)) \leq m(t)[v(t)+\Psi(v(t))], \quad t \in J .
$$

This implies that for each $t \in J$ that

$$
\int_{v(0)}^{v(t)} \frac{d s}{s+\Psi(s)} \leq \int_{0}^{T} m(s) d s<\int_{v(0)}^{\infty} \frac{d s}{s+\Psi(s)}
$$

This inequality implies that there exists a constant L such that $v(t) \leq L, t \in J$, and hence $\mu(t) \leq L, t \in J$. Since for every $t \in J,\left\|y_{t}\right\| \leq \mu(t)$, we have

$$
\|y\|_{\infty}:=\sup \{|y(t)|:-r \leq t \leq T\} \leq L
$$

where L depends only on T and on the function p and Ψ. This shows that Ω is bounded.

Set $X:=C$. As a consequence of Lemma 2.1, we deduce that N has a fixed point which is a mild solution of the system (1.1).

4 Second Order Neutral Integrodifferential Inclusions

In this section we consider the solvability of the problem (1.2). We need the following assumptions
(H7) For each $t \in J, K(t, s)$ is measurable on $[0, t]$ and

$$
K(t)=\operatorname{ess} \sup \{|K(t, s)|, 0 \leq s \leq t\}
$$

is bounded on J.
(H8) The map $t \rightarrow K_{t}$ is continuous from J to $L^{\infty}(J, R)$, here $K_{t}(s)=K(t, s)$.
(H9) $\|F(t, u)\|:=\sup \{|v|: v \in F(t, u)\} \leq p(t) \Psi(\|u\|)$ for almost all $t \in J$ and $u \in C\left(J_{0}, E\right)$, where $p \in L^{1}\left(J, R_{+}\right)$and $\Psi: R_{+} \rightarrow(0, \infty)$ is continuous and increasing with

$$
\int_{0}^{T} m(s) d s<\int_{c}^{\infty} \frac{d s}{s+\Psi(s)}
$$

where $c=M\|\phi\|+M T\left[\left|x_{0}\right|+c_{1}\|\phi\|+2 c_{2}\right], m(t)=\max \left\{M c_{1}, M T^{2} \sup _{t \in J}\right.$ $K(t) p(t)\}$ and $M=\sup \{|C(t)|: t \in J\}$.

We define the mild solution for the problem (1.2) by the integral equation

$$
\begin{align*}
y(t)= & C(t) \phi(0)+S(t)\left[x_{0}-g(0, \phi)\right]+\int_{0}^{t} C(t-s) g\left(s, y_{s}\right) d s \tag{4.1}\\
& +\int_{0}^{t} S(t-s) \int_{0}^{s} K(s, u) f(u) d u d s, \quad t \in J,
\end{align*}
$$

where $f \in S_{F, y}=\left\{f \in L^{1}(J, E): f(t) \in F\left(t, y_{t}\right)\right.$ for a.e. $\left.t \in J\right\}$.
Definition A function $y:(-r, T) \rightarrow E, T>0$ is called a mild solution of the problem (1.2) if $y(t)=\phi(t), t \in[-r, 0]$, and there exists a $v \in L^{1}(J, E)$ such that $v(t) \in F\left(t, y_{t}\right)$ a.e. on J, and the integral equation (4.1) is satisfied.

Theorem 4.1 Assume that hypotheses (H1)-(H5), (H7)-(H9) are satisfied. Then system (1.2) has at least one mild solution on J_{1}.

Proof. Let $C:=C\left(J_{1}, E\right)$ be the Banach space of continuous functions from J_{1} into E endowed with the supremum norm

$$
\|y\|_{\infty}:=\sup \left\{|y(t)|: t \in J_{1}\right\}, \text { for } y \in C
$$

We transform the problem into a fixed point problem. Consider the multivalued map, $Q: C \rightarrow 2^{C}$ defined by $Q y$, the set of functions $h \in C$ such that

$$
h(t)= \begin{cases}\phi(t), & \text { if } t \in J_{0} \\ C(t) \phi(0)+S(t)\left[x_{0}-g(0, \phi)\right]+\int_{0}^{t} C(t-s) g\left(s, y_{s}\right) d s & \\ +\int_{0}^{t} S(t-s) \int_{0}^{s} K(s, u) f(u) d u d s, & \text { if } t \in J\end{cases}
$$

where

$$
f \in S_{F, y}=\left\{f \in L^{1}(J, E): f(t) \in F\left(t, y_{t}\right) \text { for a.e. } t \in J\right\}
$$

We remark that the fixed points of Q are mild solutions to (1.2).
As in Theorem 3.1 we can show that Q is completely continuous with bounded closed convex values and it is upper semicontinuous, and therefore a condensing map. We repeat only the Step 5 , i.e. we show that the set

$$
\Omega:=\{y \in C: \lambda y \in Q y, \text { for some } \lambda>1\}
$$

is bounded. Let $y \in \Omega$. Then $\lambda y \in Q y$ for some $\lambda>1$. Thus, there exists $f \in S_{F, y}$ such that

$$
\begin{aligned}
y(t)= & \lambda^{-1} C(t) \phi(0)+\lambda^{-1} S(t)\left[x_{0}-g(0, \phi)\right]+\lambda^{-1} \int_{0}^{t} C(t-s) g\left(s, y_{s}\right) d s \\
& +\lambda^{-1} \int_{0}^{t} S(t-s) \int_{0}^{s} K(s, u) f(u) d u d s, \quad t \in J
\end{aligned}
$$

This implies by (H5)-(H6) that for each $t \in J$, we have

$$
\begin{aligned}
|y(t)| \leq & M\|\phi\|+M T\left[\left|x_{0}\right|+c_{1}\|\phi\|+2 c_{2}\right] \\
& +M c_{1} \int_{0}^{t}\left\|y_{s}\right\| d s+M T^{2} \sup _{t \in J} K(t) \int_{0}^{t} p(s) \Psi\left(\left\|y_{s}\right\|\right) d s
\end{aligned}
$$

We consider the function

$$
\mu(t)=\sup \{|y(s)|:-r \leq s \leq t\}, \quad t \in J
$$

Let $t^{*} \in[-r, t]$ be such that $\mu(t)=\left|y\left(t^{*}\right)\right|$. If $t^{*} \in J$, by the previous inequality we have for $t \in J$,

$$
\begin{aligned}
\mu(t) \leq & M\|\phi\|+M T\left[\left|x_{0}\right|+c_{1}\|\phi\|+2 c_{2}\right] \\
& +M c_{1} \int_{0}^{t^{*}}\left\|y_{s}\right\| d s+M T^{2} \sup _{t \in J} K(t) \int_{0}^{t^{*}} p(s) \Psi\left(\left\|y_{s}\right\|\right) d s \\
\leq & M\|\phi\|+M T\left[\left|x_{0}\right|+c_{1}\|\phi\|+2 c_{2}\right] \\
& +M c_{1} \int_{0}^{t} \mu(s) d s+M T^{2} \sup _{t \in J} K(t) \int_{0}^{t} p(s) \Psi(\mu(s)) d s
\end{aligned}
$$

If $t^{*} \in J_{0}$, then $\mu(t) \leq\|\phi\|$ and the previous inequality obviously holds.
Let us denote the right-hand side of the above inequality as $v(t)$. Then, we have

$$
\begin{gathered}
c=v(0)=M\|\phi\|+M T\left[\left|x_{0}\right|+c_{1}\|\phi\|+2 c_{2}\right], \\
\mu(t) \leq v(t), \quad t \in J, \\
v^{\prime}(t)=M c_{1} \mu(t)+M T^{2} \sup _{t \in J} K(t) p(t) \Psi(\mu(t)), \quad t \in J .
\end{gathered}
$$

Using the nondecreasing character of Ψ, for $t \in J$,

$$
v^{\prime}(t) \leq M c_{1} v(t)+M T^{2} \sup _{t \in J} K(t) p(t) \Psi(v(t)) \leq m(t)[v(t)+\Psi(v(t))]
$$

This implies that for each $t \in J$,

$$
\int_{v(0)}^{v(t)} \frac{d s}{s+\Psi(s)} \leq \int_{0}^{T} m(s) d s<\int_{v(0)}^{\infty} \frac{d s}{s+\Psi(s)}
$$

This inequality implies that there exists a constant L such that $v(t) \leq L, t \in J$, and hence $\mu(t) \leq L, t \in J$. Since for every $t \in J,\left\|y_{t}\right\| \leq \mu(t)$, we have

$$
\|y\|_{\infty}:=\sup \{|y(t)|:-r \leq t \leq T\} \leq L
$$

where L depends only on T and on the function p and Ψ. This shows that Ω is bounded.

Set $X:=C$. As a consequence of Lemma 2.1, we deduce that Q has a fixed point and thus system (1.1) is controllable on J_{1}.

Acknowledgment: This work was supported by Brain Korea 21, 1999.

References

[1] E. P. Avgerinos and N. S. Papageorgiou, On quasilinear evolution inclusions, Glas. Mat. Ser. III, Vol.28, No.1, pp.35-52, 1993.
[2] J. Banas and K. Goebel, Measures of Noncompactness in Banach Spaces, Marcel Dekker, New York, NY, 1980.
[3] M. Benchohra, Existence of mild solutions on infinite intervals to first order initial value problems for a class of differential inclusions in Banach spaces, Discuss. Math. Differential Incl., Vol.19, pp.85-95, 1999.
[4] M. Benchohra and S. K. Ntouyas, An existence result on noncompact intervals for second order functional differential inclusions, J. Math. Anal. Appl., Vol.248, pp.520-531, 2000.
[5] M. Benchohra and S. K. Ntouyas, Existence results for functional differential and integrodifferential inclusions in Banach spaces, Indian J. Pure Appl. Math., Vol.32, No.5, pp.665-675, 2001.
[6] M. Benchohra and S. K. Ntouyas, Nonlocal Cauchy problem for neutral functional differential and integrodifferential inclusions in Banach spaces, J. Math. Anal. Appl., Vol.258, pp.573-590, 2001.
[7] K. Deimling, Multivalued Differential Equations, Walter de Gruyter, Berlin, Germany, 1992.
[8] O. Fattorini, Ordinary Differential Equations in Linear Topological Spaces I, J. Diff. Eqs., Vol.5, pp.72-105, 1968.
[9] O. Fattorini, Ordinary Differential Equations in Linear Topological Spaces II, J. Diff. Eqs., Vol.6, pp.50-70, 1969.
[10] J. K. Goldstein, Semigroups of Linear Operators and Applications, Oxford University Press, New York, NY, 1985.
[11] S. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis, Kluwer, Dordrecht, Holland, 1997.
[12] A. Lasota and Z. Opial, An Application of the Kakutani-Ky-Fan Theorem in the Theory of Ordinary Differential Equations, Bull.Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., Vol,13, pp.781-786, 1965.
[13] M. Martelli, A Rothe's Type Theorem for Noncompact Acyclic-Valued Map, Boll. Un. Math. Ital., Vol.4, pp.70-76, 1975.
[14] S. K. Ntouyas, Global Existence for Neutral Functional Integrodifferential Equations, Nonlinear Anal., Vol.30, No.4, pp.2133-2142, 1997.
[15] N. S. Papageorgiou, Boundary value problems for evolution inclusions, Comment. Math. Univ. Carol., Vol.29, pp.355-363, 1988.
[16] N. S. Papageorgiou, Mild solutions of semilinear evolution inclusions, Indian J. Pure Appl. Math., Vol.26, No.3, pp.189-216, 1995.
[17] C. C. Travis and G. F. Webb, Second-Order Differential Equations in Banach Spaces, Proceedings of the International Symposium on Nonlinear Equations in Abstract Spaces, Academic Press, New York, NY, pp.331361, 1978.
[18] C. C. Travis and G. F. Webb, Cosine Families and Abstract Nonlinear Second-Order Differential Equations, Acta. Math. Hungarica, Vol.32, pp.75-96, 1978.
[19] K. Yosida, Functional Analysis, 6th Edition, Springer Verlag, Berin, Germany, 1980.

Haeng Joo Lee (e-mail: leehj@pusan.ac.kr)
Jeongyo Park (e-mail: khpjy@hanmail.net)
Jong Yeoul Park (e-mail: jyepark@pusan.ac.kr)
Department of Mathematics, Pusan National University
Pusan 609-735, Korea

[^0]: *Mathematics Subject Classifications: 34A60, 34K40, 45K05.
 Key words: Mild solution, neutral functional differential and integrodifferential inclusions, fixed point.
 © 2002 Southwest Texas State University.
 Submitted August 8, 2002. Published November 6, 2002.

