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Existence of global solutions to a quasilinear wave

equation with general nonlinear damping ∗

Mohammed Aassila & Abbes Benaissa

Abstract

In this paper we prove the existence of a global solution and study
its decay for the solutions to a quasilinear wave equation with a general
nonlinear dissipative term by constructing a stable set in H2 ∩H1

0 .

1 Introduction

We consider the problem

u′′ − Φ(‖∇xu‖22)∆xu+ g(u′) + f(u) = 0 in Ω× [0,+∞[,
u = 0 on Γ× [0,+∞[,

u(x, 0) = u0(x), u′(x, 0) = u1(x) on Ω,
(1.1)

where Ω is a bounded domain in Rn with a smooth boundary ∂Ω = Γ, Φ(s) is
a C1- class function on [0,+∞[ satisfying Φ(s) ≥ m0 > 0 for s ≥ 0 with m0

constant.
For the problem (1.1), when Φ(s) ≡ 1 and g(x) = δx (δ > 0), Ikehata and

Suzuki [11] investigated the dynamics, they have shown that for sufficiently small
initial data (u0, u1), the trajectory (u(t), u′(t)) tends to (0, 0) in H1

0 (Ω)×L2(Ω)
as t→ +∞. When g(x) = δ|x|m−1x (m ≥ 1) and f(y) = −β|y|p−1y (β > 0, p ≥
1), Georgiev and Todorova [6] have shown that if the damping term dominates
over the source, then a global solution exists for any initial data. Quite recently,
Ikehata [8] proved that a global solution exists with no relation between p and
m, and Todorova [27] proved that the energy decay rate is E(t) ≤ (1+t)−2/(m−1)

for t ≥ 0, she used a general method on the energy decay introduced by Nakao
[19]. Unfortunately this method does not seem to be applicable to the case of
more general functions g.

Aassila [2] proved the existence of a global decaying H2 solution when g(x)
has not necessarily a polynomial growth near zero and a source term of the form
β|y|p−1y, but with small parameter β. The decay rate of the global solution
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depends on the polynomial growth near zero of g(x) as it was proved in [3, 27,
15].

When Φ(s) is not a constant function, g(x) ≡ 0 and f(y) ≡ 0 the equation is
often called the wave equation of Kirchhoff type. This equation was introduced
to study the nonlinear vibrations of an elastic strings by Kirchhoff [14], and the
existence of global solutions was investigated by many authors [25, 13, 7]. In
[9], the authors discussed the existence of a global decaying solution in the case
Φ(s) = m0 + s

(γ+2)
2 , γ ≥ 0, g(v) = |v|rv, 0 ≤ r ≤ 2/(n − 2) (0 ≤ r ≤ ∞ if

n = 1, 2), f(u) = −|u|αu, 0 < α ≤ 4/(n− 2) (0 < α <∞ if n = 1, 2) by use of a
stable set method due to Sattinger [26]. But, then, the method in [9] cannot be
applied to the case α > 4/(n− 2), which is caused by the construction of stable
set in H1

0 . Quite recently, in [10] (see also [1]) Ikehata, Matsuyama and Nakao
have constructed a stable set in H1

0 ∩H2 to obtain a global decaying solution to
the initial boundary value problem for quasilinear visco-elastic wave equations.

Our purpose in this paper is to give a global solvability in the class H1
0 ∩H2

and energy decay estimates of the solutions to problem (1.1) for a general non-
linear damping g. We use some new techniques introduced in [2] to derive a
decay rate of the solution. So we use the argument combining the method in
[2] with the concept of stable set in H1

0 ∩ H2. We also use some ideas from
[17] introduced in the study of the decay rates of solutions to the wave equation
utt −∆u+ g(ut) = 0 in Ω× R+.

We conclude this section by stating our plan and giving some notations.
In section 2 we shall prepare some lemmas needed for our arguments. Section
3 is devoted to the proof of the global existence and decay estimates to the
problem (1.1). Section 4 is devoted to the proof of the global existence and
decay estimates to the problem (1.1) in the case α = 0, i.e., f(u) = −u. In
this case the smallness of |Ω| (the volume of Ω) will play an essential role in
our argument. In the last section we shall treat the case Φ ≡ 1, we prove only
the global decaying H1

0 solution, but we obtain more results than the case when
Φ 6≡ 1. The condition that β (k1 in our paper) is small is removed here, also we
extend some results obtained by Ono [24] and Martinez [17].

Throughout this paper the functions considered are all real valued. We omit
the space variable x of u(t, x), ut(t, x) and simply denote u(t, x), ut(t, x) by u(t),
u′(t), respectively, when no confusion arises. Let l be a number with 2 ≤ l ≤ ∞.
We denote by ‖ . ‖l the Ll norm over Ω. In particular, L2 norm is denoted ‖ . ‖2.
( . ) denotes the usual L2 inner product. We use familiar function spaces H1

0 ,
H2.

2 Preliminaries

Let us state the precise hypotheses on Φ, g and f .

(H1) Φ is a C1-class function on R+ and satisfies

Φ(s) ≥ m0 and |Φ′(s)| ≤ m1s
γ/2 for 0 ≤ s <∞ (2.1)
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for some constants m0 > 0, m1 ≥ 0, and γ ≥ 0.

(H2) g is a C1 odd increasing function and

c2|x| ≤ |g(x)| ≤ c3|x|q if |x| ≥ 1 with 1 ≤ q ≤ N + 2
(N − 2)+

,

where c1, c2 and c3 are positive constants.

(H3) f(.) is a C1(R) satisfying

|f(u)| ≤ k2|u|α+1 and |f ′(u)| ≤ k2|u|α for allu ∈ R (2.2)

with some constant k2 > 0, and

0 < α <
2

(N − 4)+
, (2.3)

where (N − 4)+ = max{N − 4, 0}. A typical example of these functions
is f(u) = −|u|αu.

We first state three well known lemmas, and then we prove two other lemmas
that will be needed later.

Lemma 2.1 (Sobolev-Poincaré inequality) Let q be a number with 2 ≤ q <
+∞ (n = 1, 2) or 2 ≤ q ≤ 2n/(n − 2) (n ≥ 3), then there is a constant c∗ =
c(Ω, q) such that

‖u‖q ≤ c∗‖∇u‖2 for u ∈ H1
0 (Ω).

Lemma 2.2 (Gagliardo-Nirenberg) Let 1 ≤ r < q ≤ +∞ and p ≤ q. Then,
the inequality

‖u‖Wm,q ≤ C‖u‖θWm,p‖u‖1−θr for u ∈Wm,p ∩ Lr

holds with some C > 0 and

θ =
(k
n

+
1
r
− 1
q

)(m
n

+
1
r
− 1
p

)−1

provided that 0 < θ ≤ 1 (we assume 0 < θ < 1 if q = +∞).

Lemma 2.3 ([15]) Let E : R+ → R+ be a non-increasing function and assume
that there are two constants p ≥ 1 and A > 0 such that∫ +∞

S

E
p+1

2 (t) dt ≤ AE(S), 0 ≤ S < +∞.

Then

E(t) ≤ cE(0)(1 + t)
−2
p−1 ∀t ≥ 0, if p > 1 ,

E(t) ≤ cE(0)e−ωt ∀t ≥ 0, if p = 1,

where c and ω are positive constants independent of the initial energy E(0).
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Lemma 2.4 ([17]) Let E : R+ → R+ be a non increasing function and φ :
R+ → R+ an increasing C2 function such that

φ(0) = 0 and φ(t)→ +∞ as t→ +∞.

Assume that there exist p ≥ 1 and A > 0 such that∫ +∞

S

E(t)
p+1

2 (t)φ′(t) dt ≤ AE(S). 0 ≤ S < +∞,

Then

E(t) ≤ cE(0)(1 + φ(t))−2/(p−1) ∀t ≥ 0, if p > 1,

E(t) ≤ cE(0)e−ωφ(t) ∀t ≥ 0, if p = 1,

where c and ω are positive constants independent of the initial energy E(0).

Proof Let f : R+ → R+ be defined by f(x) := E(φ−1(x)), (we remark that
φ−1 has a sense by the hypotheses assumed on φ). f is non-increasing, f(0) =
E(0) and if we set x := φ(t) we obtain∫ φ(T )

φ(S)

f(x)
p+1

2 dx =
∫ φ(T )

φ(S)

E(φ−1(x))(p+1)/2 dx

=
∫ T

S

E(t)
p+1

2 φ′(t) dt

≤AE(S) = Af(φ(S)) 0 ≤ S < T < +∞.

Setting s := φ(S) and letting T → +∞, we deduce that∫ +∞

s

f(x)
p+1

2 dx ≤ Af(s) 0 ≤ s < +∞.

Thanks to Lemma 2.3, we deduce the desired results. �

Remark 2.5 The use of a ‘weight function’ φ(t) to establish the decay rate of
solutions to hyperbolic PDE was successfully done by Aassila [3], Martinez [17],
and Mochizuki and Motai [18].

Lemma 2.6 ([17]) There exists a function φ : R+ → R increasing and such
that φ is concave and φ(t)→ +∞ as t→ +∞, φ′(t)→ 0 as t→ +∞, and∫ +∞

1

φ′(t)
(
g−1(φ′(t))

)2
dt < +∞.
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Proof. If such a function exists, we can assume that φ(1) = 1. Setting s :=
φ(t) we obtain∫ +∞

1

φ′(t)
(
g−1(φ′(t))

)
dt =

∫ +∞

1

(
g−1(φ′(φ−1(s)))

)2
ds

=
∫ +∞

1

g−1
( 1

(φ−1)′(s)
)2
ds.

Let us define

ψ(t) := 1 +
∫ t

1

1
g(1/s)

ds, t ≥ 1.

Note that ψ is increasing, of class C2, and

ψ′(t) =
1

g(1/t)
→ +∞ as t→ +∞.

Hence ψ(t)→ +∞ as t→ +∞ and∫ +∞

1

(
g−1

( 1
ψ′(s)

))2

ds =
∫ +∞

1

1
s2
ds < +∞.

Furthermore ψ′ is non-decreasing, and hence ψ is convex. Let us verify that
ψ−1 is concave: from ψ(ψ−1(s)) = s we have

(ψ−1)′′(s) = −
ψ′′(ψ−1(s))

(
(ψ−1)′(s)

)2
ψ′ (ψ−1(s))

= −
ψ′′
(
ψ−1(s)

)
(ψ′(ψ−1(s)))3 ≤ 0.

In conclusion, if we set φ(t) := ψ−1(t) for all t ≥ 1, we see that φ verify all the
hypotheses of lemma 2.6. �

First, we shall construct a stable set in H1
0 ∩ H2. For this, we define the

following functionals:

J(u) ≡ 1
2

∫ ‖∇xu‖22
0

Φ(s) ds+
∫

Ω

∫ u

0

f(η) dη dx for u ∈ H1
0 ,

J̃(u) ≡ Φ(‖∇xu‖22)‖∇xu‖22 +
∫

Ω

f(u)u dx for u ∈ H1
0

E(u, v) ≡ 1
2
‖v‖22 + J(u) for (u, v) ∈ H1

0 × L2.

Lemma 2.7 Let 0 < α < 4/(N − 4)+. Then, for any K > 0, there exists a
number ε0 ≡ ε0(K) > 0 such that if ‖∆xu‖ ≤ K and ‖∇xu‖ ≤ ε0, we have

J(u) ≥ m0

4
‖∇xu‖22 and J̃(u) ≥ m0

2
‖∇xu‖22. (2.4)
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Proof: We see from the Gagliardo-Nirenberg inequality that

‖u‖α+2
α+2 ≤ C‖u‖

(α+2)(1−θ)
2N

(N−2)
‖∆xu‖(α+2)θ

2 ≤ C‖∇xu‖(α+2)(1−θ)
2 ‖∆xu‖(α+2)θ

2 (2.5)

with

θ =
(N − 2

2N
− 1
α+ 2

)+( 2
N

+
N − 2

2N
− 1

2

)−1

=
((N − 2)α− 4)+

2(α+ 2)
(≤ 1). (2.6)

Here, we note that

(α+ 2)(1− θ)− 2 =


α if 0 < α ≤ 4

N−2

(0 < α <∞ for N = 1, 2),
(4−N)α+4

2 if 4
N−2 < α < 4

N−4

( 4
N−2 < α <∞ for N = 3, 4).

(2.7)

Hence, if ‖∆xu‖2 ≤ K, we have

J(u) ≥ m0

2
‖∇xu‖22 −

k2

α+ 2
‖u‖α+2

α+2

≥ m0

2
‖∇xu‖22 − C‖∇xu‖

(α+2)(1−θ)
2 ‖∆xu‖(α+2)θ

2

≥
{m0

2
− CK(α+2)θ‖∇xu‖(α+2)(1−θ)−2

2

}
‖∇xu‖22.

(2.8)

Using (2.7), we define ε0 ≡ ε0(K) by

CK(α+2)θε
(α+2)(1−θ)−2
0 =

m0

4
.

Thus, we obtain

J(u) ≥ m0

4
‖∇xu‖22 (2.9)

if ‖∇xu‖2 ≤ ε0. It is clear that (2.9) is valid for J̃(u). �

Let us define a stable in H1
0 ∩H2 as follows: For some K > 0,

WK ≡
{

(u, v) ∈ (H1
0 ∩H2)×H1

0 : ‖∆xu‖2 < K,

‖∇xv‖2 < K and
√

4m−1
0 E(u, v) < ε0

}
Remark 2.8 If f(u)u ≥ 0, we do not need ε0(K), and WK is replaced by

W̃K ≡ {(u, v) ∈ (H1
0 ∩H2)×H1

0 : ‖∆xu‖2 < K, ‖∇xv‖2 < K}
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3 Global Existence and Asymptotic Behavior

A simple computation shows that

E′(t) = −
∫

Ω

u′g(u′) dx ≤ 0,

hence the energy is non-increasing and in particular E(t) ≤ E(0) for all t ≥ 0.

Lemma 3.1 Let u(t) be a strong solution satisfying (u(t), u′(t)) ∈ WK on [0, T [
for some K > 0. Then we have

E(t) ≤ cE(0)
(
G−1

(1
t

))2

on [0, T [,

where c is a positive constant independent of the initial energy E(0) and G(x) =
xg(x). Furthermore, if x 7→ g(x)/x is non-decreasing on [0, η] for some η > 0,
then

E(t) ≤ cE(0)
(
g−1

(1
t

))2

on [0, T [,

where c is a positive constant independent of the initial energy E(0).

Proof of lemma 3.1 For the rest of this article, we denote by c various
positive constants which may be different at different occurences. We multiply
the first equation of (1.1) by Eφ′u, where φ is a function satisfying all the
hypotheses of lemma 2.6, we obtain

0 =
∫ T

S

Eφ′
∫

Ω

u(u′′ − Φ(‖∇xu‖22)∆u+ g(u′) + f(u)) dx dt

=
[
Eφ′

∫
Ω

uu′ dx
]T
S
−
∫ T

S

(E′φ′ + Eφ′′)
∫

Ω

uu′ dx dt− 2
∫ T

S

Eφ′
∫

Ω

u′2 dx dt

+
∫ T

S

Eφ′
∫

Ω

(
u′2 + Φ(‖∇xu‖22)|∇u|2 + f(u)u

)
dx dt

+
∫ T

S

Eφ′
∫

Ω

ug(u′) dx dt .

Under the assumption (u(t), u′(t)) ∈ WK , the functionals J(u(t)) and J̃(u(t))
are both equivalent to ‖∇xu(t)‖22, by lemma 2.7. So we deduce that∫ T

S

E2φ′ dt ≤−
[
Eφ′

∫
Ω

uu′ dx
]T
S

+
∫ T

S

(E′φ′ + Eφ′′)
∫

Ω

uu′ dx dt

+ 2
∫ T

S

Eφ′
∫

Ω

u′2 dx dt−
∫ T

S

Eφ′
∫

Ω

ug(u′) dx dt

≤−
[
Eφ′

∫
Ω

uu′ dx
]T
S

+
∫ T

S

(E′φ′ + Eφ′′)
∫

Ω

uu′ dx dt
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+ 2
∫ T

S

Eφ′
∫

Ω

u′2 dx dt+ c(ε)
∫ T

S

Eφ′
∫
|u′|≤1

g(u′)2 dx dt

+ ε

∫ T

S

Eφ′
∫
|u′|≤1

u2 dx dt−
∫ T

S

Eφ′
∫
|u′|>1

ug(u′) dx dt

for all ε > 0. Choosing ε small enough, we deduce that∫ T

S

E2φ′ dt

≤ −
[
Eφ′

∫
Ω

uu′ dx
]T
S

+
∫ T

S

(E′φ′ + Eφ′′)
∫

Ω

uu′ dx dt+ c

∫ T

S

Eφ′
∫

Ω

u′2 dx dt

≤ cE(S)−
∫ T

S

Eφ′
∫
|u′|>1

ug(u′) dx dt+ c

∫ T

S

Eφ′
∫

Ω

u′2 dx dt.

Also, we have∫ T

S

Eφ′
∫
|u′|>1

ug(u′) dx dt

≤
∫ T

S

Eφ′
(∫

Ω

|u|q dx
)1/(q+1)(∫

|u′|>1

|g(u′)|
(q+1)
q dx

)q/(q+1)

≤c
∫ T

S

E3/2φ′
(∫
|u′|>1

u′g(u′) dx
)q/(q+1)

≤
∫ T

S

φ′E3/2(−E′)
q

(q+1)

≤c
∫ T

S

φ′(E
3
2−

q
q+1 )

(
(−E′)

q
(q+1)E

q
q+1

)
≤c(ε′)

∫ T

S

φ′(−E′E) dt+ ε′
∫ T

S

φ′E(q+1)( 3
2−

q
(q+1) ) dt

≤c(ε′)E(S)2 + ε′E(0)(q−1)/2

∫ T

S

φ′E2 dt

for every ε′ > 0. Choosing ε′ small enough, we obtain∫ T

S

E2φ′ dt ≤ cE(S) + c

∫ T

S

Eφ′
∫

Ω

u′2 dx dt

We want to majorize the last term of the above inequality, we have∫ T

S

Eφ′
∫

Ω

u′2 dx dt =
∫ T

S

Eφ′
∫

Ω1

u′2 dx dt+
∫ T

S

Eφ′
∫

Ω2

u′2 dx dt

+
∫ T

S

Eφ′
∫

Ω3

u′2 dx dt,

where, for t ≥ 1,

Ω1 := {x ∈ Ω : |u′| ≤ h(t)}, Ω2 := {x ∈ Ω : h(t) < |u′| ≤ h(1)},
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Ω3 := {x ∈ Ω : |u′| > h(1)},

and h(t) := g−1(φ′(t)), which is a positive non-increasing function and satisfies
h(t)→ 0 as t→ +∞. Because∫ T

S

Eφ′
∫

Ω1

u′2 dx dt ≤c
∫ T

S

E(t)φ′(t)
(∫

Ω1

h(t)2 ds
)
dt

≤cE(S)
∫ T

S

φ′(t)(g−1(φ′(t)))2 dt ≤ cE(S),

we have the following: Since g is non-decreasing, for x ∈ Ω2 we have φ′(t) =
g(h(t)) ≤ |g(u′)|, and hence∫ T

S

Eφ′
∫

Ω2

u′2 dx dt ≤
∫ T

S

E

∫
Ω2

|g(u′)|u′2 dx dt

≤h(1)
∫ T

S

E

∫
Ω2

u′g(u′) dx dt ≤ h(1)
2
E(S)2 ;

and since g(x) ≥ cx for x ≥ h(1), we have∫ T

S

Eφ′
∫

Ω3

u′2 dx dt ≤c
∫ T

S

Eφ′
∫

Ω

u′g(u′) dx dt

≤c
∫ T

S

E(−E′) dx dt ≤ cE(S)2.

Then we deduce that ∫ T

S

E2φ′ dt ≤ cE(S),

and thanks to Lemma 2.6, we obtain

E(t) ≤ c E(0)
φ(t)

, ∀t ≥ 1.

Let s0 be such that g(1/s0) ≤ 1, since g is non-decreasing we have

ψ(s) ≤ 1 + (s− 1)
1

g(1/s)
≤ s 1

g(1/s)
=

1
G(1/s)

∀s ≥ s0,

hence s ≤ φ
(
1/G(1/s)

)
and

1
φ(t)

≤ 1
s

with t :=
1

G(1/s)
.

Thus
1
φ(t)

≤ G−1(1/t).
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Now define H(x) := g(x)/x, H is non-decreasing, H(0) = 0, then we use the
function h(t) := H−1(φ′(t)). On Ω2 it holds that

φ′(t)(u′)2 ≤ |H(u′)|(u′)2 = u′g(u′).

The same calculations as above with

φ−1(t) = 1 +
∫ t

1

1
H(1/s)

ds

yield E(t) ≤ c E(0)
(
g−1(1/t)

)2. �

Lemma 3.2 Let u(t) be a strong solution satisfying (u(t), u′(t)) ∈ WK on [0, T [
for some K > 0. Assume that∫ +∞

0

(
g−1(1/t)

)min{γ+1,α(1−θ0)}
dt < +∞.

Then we have
‖∇u′(t)‖22 + ‖∆u(t)‖22 ≤ Q2

1(I0, I1,K),

with limI0→0Q
2
1(I0, I1,K) = I2

1 and where we set

I2
0 = E(0) =

1
2
‖u1‖22 + J(u0), I2

1 = ‖∇u1‖22 + Φ(‖∇xu0‖22)‖∆u0‖22

Proof Multiplying the first equation of (1.1) by −∆u′(t) and integrating over
Ω, we obtain

1
2
d

dt

[
‖∇u′(t)‖22 + Φ(‖∇xu‖22)‖∆u(t)‖22

]
+
(
∇g(u′(t)),∇u′(t)

)
= −

∫
Ω

f ′(u)∇u.∇u′(t) dx
)

+ Φ′(‖∇xu‖22)(∇u′(t),∇u(t))‖∆xu‖22.

We set
E1(t) ≡ ‖∇xu′‖22 + Φ(‖∇xu‖22)‖∆xu‖22

Using the assumptions on Φ, g et f , we have

d

dt
E1(t) ≤C‖∇xu‖γ+1

2 ‖∇xu′‖2‖∆xu‖22 + 2k2

∫
Ω

|u|α|∇xu||∇xu′| dx

≤C
{
E(t)(γ+1)/2K3 +

(∫
Ω

|u|2α|∇xu|2 dx
)1/2(∫

Ω

|∇xu′| dx
)1/2}

(3.1)
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Here, we see from the Gagliardo-Nirenberg inequality that(∫
Ω

|u|2α|∇xu|2 dx
)1/2

≤ ‖u(t)‖αNα‖∇xu(t)‖ 2N
(N−2)

≤ C‖u(t)‖α(1−θ0)
2N

(N−2)
‖∆xu(t)‖αθ02 ‖∆xu(t)‖2

≤ C‖∇xu(t)‖α(1−θ0)
2 ‖∆xu(t)‖αθ0+1

2

≤ CE(t)α(1−θ0)Kαθ0+1

(3.2)

with

θ0 =
(N − 2

2
− 1
α

)+

=
((N − 2)α− 2)+

2α
(≤ 1).

Hence, it follows from (3.1) and (3.2) that

d

dt
E1(t) ≤ C

{
E(t)

(γ+1)
2 K3 + E(t)

α(1−θ0)
2 Kαθ0+2

}
. (3.3)

we conclude that

‖∆xu(t)‖22 + ‖∇xu′(t)‖22

≤ 1
min{1,m0}

{
I2
1 + CK3

∫ ∞
0

E(t)(γ+1)/2 dt+ CKαθ0+2

∫ ∞
0

E(t)α(1−θ0)/2 dt
}

Example Let g(x) be the inverse function of

M(0) = 0 and M(x) =
xσ

(log(− log x))β
for 0 < x < x0, (β, σ > 0).

The function g exists and satisfies the hypothesis (H2), when 0 < σ < 1 (see
Appendix). So

g−1(1/t) =
1

tσ(log(log t))β

the conditions in the Lemma 3.2 give∫ ∞
t0

1
tσ(γ+1)(log(log t))β(γ+1)

dt <∞, (3.4)∫ ∞
t0

1
tσα(1−θ0)(log(log t))βα(1−θ0)

dt <∞, (3.5)

which are similar to Bertrand integrals. So, when γ = 0, the first integral (3.4)
is not finite, we obtain the following cases: if σ(γ+ 1) > 1, the integral is finite,
if σ(γ+ 1) = 1, and β(γ+ 1) > 1, also the integral is finite. The second integral
(3.5), is fine under the following conditions:

σ−1 < α ≤ 2
(N − 2)+

for N = 1, 2, 3
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or

α >
2(1− σ)

σ
for N = 3

or
α = σ−1 and β−1 < α ≤ 2

(N − 2)+
for N = 1, 2, 3

or

α =
2(1− σ)

σ
and α >

2(1− β)
β

for N = 3.

Hence, we must restrict ourselves to 1 ≤ N ≤ 3.

Remark 3.3 When Φ ≡ 1, g(x) = |x|p−1x, p ≥ 1, and f(y) = −|y|q−1y with
q ≥ 1, we obtain

E(t) ≤ cE(0)e−ωt ∀t ≥ 0, c > 0, ω > 0, if p = 1

E(t) ≤ cE(0)
(1 + t)2/(p−1)

∀t ≥ 0, c > 0 if p > 1.

Also

Q2
1(I0, I1,K) = I2

1 + cK2Iq−1
0 , Q2

2(I0, I1,K) = I2
1 + cK(q−1)θ+2I

(q−1)(1−θ)
0 .

When g(x) = |x|p−1x, p ≥ 1, f(y) ≡ 0, and p < γ+2, we obtain the same above
results (see [1]).

Theorem 3.4 Under the hypotheses of lemma 3.1 and 3.2 there exists an open
set S1 ⊂ (H2(Ω)∩H1

0 (Ω))×H1
0 (Ω), which includes (0, 0) such that if (u0, u1) ∈

S1, the problem (1.1) has a unique global solution u satisfying

u ∈ L∞([0,∞[;H2(Ω) ∩H1
0 (Ω)) ∩W 1,∞([0,∞[;H1

0 (Ω)) ∩W 2,∞([0,∞[;L2(Ω)),

furthermore we have the decay estimate

E(t) ≤ c E(0)
(
g−1(1/t)

)2 ∀t > 0. (3.6)

Proof of theorem 3.4

Let K > 0. Put

SK ≡ {(u0, u1) ∈ WK |Q1(I0, I1,K) < K}, S1 ≡
⋃
K>0

SK .

Note that if E0, E1 are sufficiently small, then SK is not empty.
If (u0, u1) ∈ SK for some K > 0, then an assumed strong solution u(t) exist

globally and satisfies (u(t), u′(t)) ∈ WK for all t ≥ 0. Let {wj}∞j=1 be the basis
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of H1
0 consisted by the eigenfunction of −∆ with Dirichlet condition. We define

the approximation solution um (m=1, 2, . . . ) in the form

um =
m∑
j=1

gjmwj

where gjm(t) are determined by

(u′′m(t), wj) + Φ(‖∇xum(t)‖22)(∇xum(t),∇xwm)
+(g(u′m(t)), wj) + (f(um(t)), wj) = 0

(3.7)

for j ∈ {1, 2, . . . ,m} with the initial data where um(0) and u′m(0) are determined
in such a way that

um(0) = u0m =
m∑
j=1

(u0, wj)wj → u0 strongly in H1
0 ∩H2 as m→∞,

u′m(0) = u1m =
m∑
j=1

(u1, wj)wj → u1 strongly in H1
0 as m→∞.

By the theory of ordinary differential equations, (3.7) has a unique solution
um(t). Suppose that (u0, u1) ∈ SK for K > 0. Then, (um(0), u′m(0)) ∈ SK for
large m. It is clear that all the estimates obtained above are valid for um(t) and,
in particular, um(t) exists on [0,∞[. Thus, we conclude that (um(t), u′m(t)) ∈
WK for all t ≥ 0 and all the estimates are valid for um(t) for all t ≥ 0.

Thus, um(t) converges along a subsequence to u(t) in the following way:

um(.)→ u(.) weakly * in L∞loc([0,∞);H1
0 ∩H2),

u′m(.)→ ut(.) weakly * in L∞loc([0,∞);H1
0 ),

um(.)→ utt(.) weakly * in L∞loc([0,∞);L2),

and hence,

Φ(‖∇xum(.)‖22)∇xum(.)→ Φ(‖∇xu(.)‖22)∇xu(.) weakly * in L∞loc([0,∞);H1
0 ),

g(um(.))→ g(u(.)) weakly * in L∞loc([0,∞);H1
0 ),

Therefore, the limit function u(t) is a desired solution belonging to

L∞([0,∞[;H1
0 ∩H2) ∩W 1,∞([0,∞[;H1

0 ) ∩W 2,∞([0,∞[;L2)

The uniqueness can be proved by use of the monotonicity of g, nα < 2n/(n−
4) and sup0≤t≤T (‖u(t)‖H2 + ‖u′(t)‖H1

0
) ≤ C(T ) <∞ (see [2]). �

4 The case α = 0

In this section we shall discuss the existence of a global solution to the problem
(1.1) with f(u) ≡ −u. More precisely, we impose an assumption on f(u) instead
of (H3) as follows:
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(H.3)’ f(.) satisfies f(u) = −k3u for u ∈ R with k3C(Ω) < m0, k3 > 0, where
C(Ω) is a quantity such that

C(Ω) = sup
u∈H1

0\{0}

‖u‖2
‖∇xu‖2

(4.1)

Remark 4.1 The condition k3C(Ω) < m0 implies that |Ω| is small in some
sense. On the other hand, if f(u) = u, we need not take C(Ω) into consideration.

Our result reads as follows.

Theorem 4.2 Under the hypotheses of Lemma 3.1 (we replace (H.3) by (H.3)’)
and 3.2 , there exists an open unbounded set S2 in (H2∩H1

0 )×H1
0 , which includes

(0, 0), such that if (u0, u1) ∈ S2, the problem (1.1) has a unique solution u in
the sense of theorem 3.4 which satisfies the decay estimate (3.6).

Proof of theorem 4.2

This proof is also given in parallel way to the proof of theorem 3.4 so se just
sketch the outline.

First, let k3C(Ω) < m0. Then, by (4.1,)

J(u) =
1
2

∫ ‖∇xu‖22
0

Φ(s) ds− k3

2
‖u‖22 ≥

1
2

(m0 − k3C(Ω))‖∇xu‖22. (4.2)

We may assume J̃(u) also satisfies (4.2). If u(t) is a strong solution satisfying
‖∇xu(t)‖2 < K and ‖∇xu′(t)‖2 < K on [0, T [ for some K > 0, then as in lemma
3.1, we derive the decay estimate

E(t) ≤ c
(
g−1(1/t)

)2
. (4.3)

Multiplying the equation by −∆xu
′, we see

1
2
d

dt
E1(t) ≤ |Φ′(‖∇xu(t)‖22)|(∇xu(t),∇xu′(t))‖∆xu(t)‖22 +

k3

2
d

dt
‖∇xu(t)‖22

≤ CK3E(t)(γ+1)/2 +
k3

2
d

dt
‖∇xu(t)‖22

(4.4)
where we set

E1(t) = Φ(‖∇xu(t)‖22)‖∆xu(t)‖22 + ‖∇xu′(t)‖22.

we integrate (4.4) to obtain

‖∆xu(t)‖22 + ‖∇xu(t)‖22

≤ 1
min{1,m0}

{
I2
1 + CK3

∫ ∞
0

E(t)
(γ+1)

2 dt+ k3‖∇xu(t)‖22 − k3‖∇xu0‖22
}
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≤ 1
min{1,m0}

{
I2
1 + CI2

0 + C Iγ+1
0 K3

∫ ∞
0

(
g−1(1/t)

)(γ+1)
dt
}

≡ Q2
2(I0, I1,K) on [0, T [.

Defining

SK ≡ {(u0, u1) ∈ H1
0 ∩H2 : Q2(I0, I1,K) < K}, S2 ≡

⋃
K>0

SK

we conclude that if (u0, u1) ∈ S2, the corresponding solution to the problem
(1.1) exists globally and satisfies the estimate

E(t) ≤ c
(
g−1(1/t)

)2
and ‖∆xu(t)‖22 + ‖∇xu′(t)‖22 < K2,

for all t > 0. The proof of theorem 4.2 is complete.

5 The case Φ ≡ 1

Usually, we study global existence for Kirchhoff equation (i.e. when Φ 6≡ 1)
in the class H2 ∩ H1

0 (also when f ≡ g ≡ 0). Thus the condition in Lemma
3.2 excludes some functions g which verify (H2), for example g(x) = e−1/x or
g(x) = e−e

1/x
or the example above. We consider the case Φ ≡ 1 (or a constant

function) and we prove a global H1
0 solution that decays. Here we do not need

the condition of Lemma 3.2 and we will take only α ≤ 4/(n − 2)+ because we
work only in H1

0 (Ω).
Now, we consider the initial boundary-value problem

u′′ −∆xu+ g(u′) + f(u) = 0 in Ω× [0,+∞[,
u = 0 on Γ× [0,+∞[,

u(x, 0) = u0(x), u′(x, 0) = u1(x) on Ω,
(5.1)

First, we shall construct a stable set in H1
0 . For this, we need define the following

functionals:

J(u) ≡ 1
2
‖∇xu‖22 +

∫
Ω

∫ u

0

f(η) dη dx for u ∈ H1
0 ,

J̃(u) ≡ ‖∇xu‖22 +
∫

Ω

f(u)u dx for u ∈ H1
0 ,

E(u, v) ≡ 1
2
‖v‖22 + J(u) for (u, v) ∈ H1

0 × L2.

Then we can define the stable set

W = {u ∈ H1
0 (Ω) : ‖∇xu‖22 − k1‖u‖α+2

α+2 > 0} ∪ {0}
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Lemma 5.1 (i) If α < 4/[n − 2]+, then W is an open neighborhood of 0 in
H1

0 (Ω).
(ii) If u ∈ W, then

‖∇xu‖22 ≤ d∗J(u) with d∗ =
2(α+ 2)

α
. (5.2)

Proof. (i) From the Sobolev-Poincaré inequality (see lemma 2.1) we have

k1‖u‖α+2
α+2 ≤ Ak1‖∇xu‖α2 ‖∇xu‖22 (5.3)

where A = cα+2
∗ . Let

U(0) ≡
{
u ∈ H1

0 (Ω) : ‖∇xu‖α2 <
1
Ak1

}
.

Then, for any u ∈ U(0)\{0}, we deduce from (5.3) that

k1‖u‖α+2
α+2 < ‖∇xu‖22,

that is, K(u) > 0. This implies U(0) ⊂ W.
(ii) By the definition of K(u) and J(u) we have the inequality

J(u) ≥ 1
2
‖∇xu‖22 −

k1

α+ 2
‖u‖α+2

α+2 ≥
α

2(α+ 2)
‖∇xu‖22

�

Lemma 5.2 Let u(t) be a strong solution of (5.1). Suppose that

u(t) ∈ W and J̃(u(t)) ≥ 1
2
‖∇xu(t)‖22 (5.4)

for 0 ≤ t < T . Then we have

E(t) ≤ cE(0)
(
G−1(1/t)

)2
on [0, T [,

where c is a positive constant independent of the initial energy E(0) and G(x) =
xg(x). Furthermore, if x 7→ g(x)/x is non-decreasing on [0, η] for some η > 0,
then we have

E(t) ≤ cE(0)
(
g−1(1/t)

)2
on [0, T [,

where c is a positive constant independent of the initial energy E(0).

Examples

1) If g(x) = e−1/xp for 0 < x < 1, p > 0, then E(t) ≤ c/(ln t)2/p.

2) If g(x) = e−e
1/x

for 0 < x < 1, then E(t) ≤ c/(ln(ln t))2.
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Proof of lemma 3.1 The functionals J(u(t)) and J̃(u(t)) are both equivalent
to ‖∇xu(t)‖22, indeed we have∫

Ω

f(u)u dx ≤ k1‖u‖α+2
α+2 ≤ ‖∇xu(t)‖22

So, we have
1
2
‖∇xu‖22 ≤ K(u(t)) ≤ 3

2
‖∇xu‖22.

Also, we have

|J(u(t))| ≤ 1
2
‖∇xu(t)‖22 +

1
α+ 2

‖∇xu‖22 ≤
α+ 4

2(α+ 2)
‖∇xu(t)‖22 .

Therefore,

K(u(t)) ≥ 1
2
‖∇xu‖22 ≥

α+ 2
α+ 4

J(u). (5.5)

Now, we can derive the decay estimate (3.6) by similar argument as lemma 3.1.

Theorem 5.3 Suppose that α ≤ 4/(n − 2) (α < ∞ if n ≤ 2), and suppose
that initial data {u0, u1} belongs to W, and its initial energy E(0) is sufficiently
small such that

C4E(0)α/2 < 1, (5.6)

where C4 = 2k1c
α+2
∗ d

α/2
∗ . Then, Problem (5.1) has a unique global solution

u ∈ W satisfying

u ∈ L∞([0,∞[;H1
0 (Ω)) ∩W 1,∞([0,∞[;L2(Ω));

furthermore, we have the decay estimate

E(t) ≤ c E(0)
(
g−1(1/t)

)2 ∀t > 0 . (5.7)

Proof of Theorem 3.4

Since u0 ∈ W and W is an open set, putting

T1 = sup{t ∈ [0,+∞) : u(s) ∈ W for 0 ≤ s ≤ t},

we see that T1 > 0 and u(t) ∈ W for 0 ≤ t < T1. If T1 < Tmax < ∞, where
Tmax is the lifespan of the solution, then u(T1) ∈ ∂W; that is

K(u(T1)) = 0 and u(T1) 6= 0. (5.8)

We see from lemma 2.2 and lemma 5.1 that

k1‖u(t)‖α+2
α+2 ≤

1
2
B(t)‖∇xu(t)‖22 (5.9)
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for 0 ≤ t ≤ T1, where we set

B(t) = C4E(0)α/2 (5.10)

with C4 = 2k1c
α+2
∗ d

α/2
∗ . Next, we put

T2 ≡ sup{t ∈ [0,+∞) : B(s) < 1 for 0 ≤ s < t},

and then we see that T2 > 0 and T2 = T1 because B(t) < 1 by (5.6). Then

K(u(t)) ≥ ‖∇xu(t)‖22 −
1
2
B(t)‖∇xu(t)‖22 ≥

1
2
‖∇xu(t)‖22 (5.11)

for 0 ≤ t ≤ T1. Moreover, (5.8) and (5.11) imply

K(u(T1)) ≥ 1
2
‖∇xu(T1)‖22 > 0

which is a contradiction, and hence, it might be T1 = Tmax. Therefore, (5.7)
hold true for 0 ≤ T ≤ Tmax, and such estimate give the desired a priori estimate;
that is, the local solution u can be extended globally (i.e., Tmax = ∞). The
proof of theorem 5.3 is now complete. �

Remarks: a) By a similar argument as the proof of Theorem 4.2, we can
extend Theorem 5.3 to the case α = 0.
b) It seems to be interesting to study a global decaying H2 solution for Kirchhoff
equation with nonlinear source and boundary damping terms or with nonlinear
boundary damping and source terms, also in the case of polynomial damping
term i.e. the following problems

u′′ − Φ(‖∇xu‖22)∆xu+ f(u) = 0 in Ω× [0,+∞[,
u = 0 on Γ0 × [0,+∞[,

∂u

∂ν
= −Q(x)g(u′) on Γ1 × [0,+∞[,

u(x, 0) = u0(x), u′(x, 0) = u1(x) on Ω,

and

u′′ − Φ(‖∇xu‖22)∆xu = 0 in Ω× [0,+∞[,
u = 0 on Γ0 × [0,+∞[,

∂u

∂ν
= −Q(x)g(u′) + f(u) on Γ1 × [0,+∞[,

u(x, 0) = u0(x), u′(x, 0) = u1(x) on Ω,

We plan to address these questions in a future investigation.
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Appendix

Let g(x) be the inverse of the function M(x) defined by

M(0) = 0, M(x) =
xσ

(log(− log x))β
for 0 < x < x0, (σ, β > 0).

For x = 1/t(0 < x < x0) we have

g−1(1/t) =
1

tσ(log(log t))β
(t ≥ t0).

Now, we prove that the function g(x) exists and verifies the hypothesis (H2).
Indeed,

(M(x))′ =
xσ
[
σ(log(− log x))− β

log x

]
(log(− log x))β+1

, (σ, β > 0).

When x is near 0 (0 < x < x0), it is clear that (M(x))′ ≥ 0, so M(x) is an
increasing continuous function. Thus the function g exists. We have also

x

M(x)
=

(log(− log x))β

xσ−1
→ 0

as x → 0 if 0 < σ < 1, so M(x) → 0 (as x → 0) not faster than x (near 0).
We deduce that g(x) → 0 as x → 0 faster than x i.e. |g(x)| ≤ c|x|. We obtain
hypothesis (H2). Now, M(x)/x is a decreasing function; indeed,

(M(x)
x

)′
=
xσ−2

[
(σ − 1)(log(− log x))− β

log x

]
(log(− log x))β+1

.

For x = e−n, and n big, we see that (M(x)/x)′ ≤ 0. g is a bijective and
decreasing function, so for each x and y near 0, such that x ≤ y, we have
M(x)/x ≥ M(y)/y, also there exist unique x′ and y′ such that M(x) = x′

and M(y) = y′ (because M is a bijective function), also M(x) is an increasing
function, thus, we have

x ≤ y ⇐⇒M(x) = x′ ≤M(y) = y′

Therefore,

x′ ≤ y′ ⇐⇒ x′

g(x′)
≥ y′

g(y′)

⇐⇒ g(x′)
x′
≤ g(y′)

y′
for 0 < x < x0.
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