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Existence of solutions for discontinuous functional

equations and elliptic boundary-value problems ∗

Siegfried Carl & Seppo Heikkilä

Abstract

We prove existence results for discontinuous functional equations in
general Lp-spaces and apply these results to the solvability of implicit and
explicit elliptic boundary-value problems involving discontinuous nonlin-
earities. The main tool in the proof is a fixed point result in lattice-ordered
Banach spaces proved by the second author.

1 Introduction

In this paper we shall first prove existence results for the functional equations

h(x) = f(x, φ(h(x)), h(x)) and h(x) = g(x, φ(h(x)))

in the space Lp(Ω), 1 ≤ p <∞, where Ω is a measure space, f : Ω×R×R→ R,
g : Ω × R → R and φ : Lp(Ω) → Lp(Ω). The proofs are based on a fixed point
result in [4], which is derived by applying a recursion principle introduced in [5].

Then the existence results are applied to study the existence of weak solu-
tions to boundary-value problems of elliptic differential equations of the form

Λu(x) = f(x, u(x),Λu(x)) and Λu(x) = g(x, u(x)),

where

Λu(x) := −
N∑

i,j=1

∂

∂xi

(
aij(x)

∂u(x)
∂xj

)
+ q(x, u(x)).

The functions f , g, and the mapping φ may be discontinuous in their arguments.
Concrete and worked examples are provided to demonstrate the applicability of
the results obtained.
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2 Existence results for functional equations

In this section we assume that Ω = (Ω,A, µ) is a measure space, and that the
space Lp(Ω), 1 ≤ p <∞, is ordered a.e. pointwise.

In the proof of our existence theorem for the functional equation

h(x) = f(x, φ(h(x)), h(x)) a.e. in Ω, (2.1)

we make use of the following fixed point result.

Lemma 2.1 Assume that a mapping G : Lp(Ω)→ Lp(Ω) is increasing, and that
‖Gh‖p ≤M + ψ(‖h‖p), where ψ : R+ → R+ is increasing, and M + ψ(R) ≤ R
for some R > 0. Then G has a fixed point.

Proof Choose an R > 0 such that M + ψ(R) ≤ R. Because ψ is increasing,
then G maps the set P = {h ∈ Lp(Ω) | ‖h‖p ≤ R} into itself. Thus G has by
[4, Corollary 5] a fixed point in P . ♦

For the functions φ : Lp(Ω) → Lp(Ω) and f : Ω × R × R → R we have the
following hypotheses:

(φ) φ is increasing, and ‖φ ◦ h‖p ≤ m+ κ‖h‖p for some m ≥ 0 and κ > 0.

(f1) f is sup-measurable, i.e., x 7→ f(x, u(x), v(x)) is measurable in Ω whenever
u, v : Ω→ R are measurable.

(f2) |f(x, y, z)| ≤ k(x)+c1(x)|y|α+c2(x)|z|β for a.e. x ∈ Ω and for all y, z ∈ R,
where k ∈ Lp(Ω), and either

(i) 0 < α, β < 1, c1 ∈ L
p

1−α (Ω), c2 ∈ L
p

1−β (Ω), and f(x, ·, ·) is increasing
for a.e. x ∈ Ω, or

(ii) α = β = 1, κ‖c1‖∞+ ‖c2‖∞ < 1, where κ is the constant in (φ), and
the function (y, z) 7→ f(x, y, z) + λz is increasing for a.e. x ∈ Ω and
for some λ ≥ 0.

Our existence result for the functional equation (2.1) reads as follows.

Theorem 2.2 Under the assumptions (φ), (f1), and (f2), Equation (2.1) has
a solution h in Lp(Ω).

Proof The hypotheses (φ) and (f1) imply that for each h ∈ Lp(Ω) the relation

Gh := f(·, φ(h(·)), h(·)) (2.2)

defines a measurable functionGh : Ω→ R. To show that (2.2) defines a mapping
G : Lp(Ω) → Lp(Ω) we have to prove that Gh ∈ Lp(Ω). Applying the growth
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condition of (f2), the hypothesis (φ) and the Hölder inequality we obtain

‖Gh‖p = ‖f(·, φ(h(·)), h(·))‖p ≤ ‖k‖p + ‖c1(·)|φ(h(·))|α‖p + ‖c2(·)|h(·)|β‖p
≤ ‖k‖p + (‖c1(·)p‖ 1

1−α
‖ |φ(h(·)|pα‖ 1

α
)1/p + (‖c2(·)p‖ 1

1−β
‖ |h(·)|pβ‖ 1

β
)1/p

= ‖k‖p + ‖c1‖ p
1−α
‖φ ◦ h‖αp + ‖c2‖ p

1−β
‖h‖βp

≤ ‖k‖p + ‖c1‖ p
1−α

(m+ κ‖h‖p)α + ‖c2‖ p
1−β
‖h‖βp .

Thus Gh ∈ Lp(Ω), and
‖Gh‖p ≤M + ψ(‖h‖p), (2.3)

where M = ‖k‖p and ψ(r) := ‖c1‖ p
1−α

(m+ κr)α + ‖c2‖ p
1−β

rβ .
a) Assume first that the hypotheses (f2) (i) hold. If h1, h2 ∈ Lp(Ω), h1 ≤ h2,
then φ(h1) ≤ φ(h2) by (φ). Since f(x, ·, ·) is increasing, then for a.e. x ∈ Ω,

Gh1(x) = f(x, φ(h1(x)), h1(x)) ≤ f(x, φ(h2(x)), h2(x)) = Gh2(x) .

This proves that G is increasing. Since 0 < α, β < 1, then the mapping ψ :
R+ → R+ defined in (2.3) is increasing, and r − ψ(r) → ∞ as r → ∞. Thus
M +ψ(R) ≤ R when R is large enough, whence G has a fixed point by Lemma
2.1.
b) Assume next that the hypothesis (f2) (ii) holds with λ = 0. Then f(x, ·, ·)
is increasing, whence G is increasing by the above proof. Since α = β = 1,
then ψ given by (2.3) is of the form ψ(r) = ‖c1‖∞(m + κr) + ‖c2‖∞r. If
κ‖c1‖∞+ ‖c2‖∞ < 1, then M +ψ(R) ≤ R when R is sufficiently large. Thus G
has a fixed point by Lemma 2.1

The above proof shows that in the cases a) and b) G has a fixed point
h ∈ Lp(Ω). This implies by (2.2) that h(x) = Gh(x) = f(x, φ(h(x)), h(x)) a.e.
in Ω.
c) Assume finally that the hypotheses (f2) (ii) hold with λ > 0. Then a function
f̃ : Ω× R× R, defined by

f̃(x, y, z) =
f(x, y, z) + λz

1 + λ
, x ∈ Ω, y, z ∈ R, (2.4)

is sup-measurable, f̃(x, ·, ·) is increasing, and

|f̃(x, y, z)| ≤ ‖k̃‖2 + c̃1(x)|y|+ c̃2(x)|z|,

where k̃2 = k2
1+λ , c̃1 = c1

1+λ , c̃2 = c2+λ
1+λ . Since κ‖c1‖∞ + ‖c2‖∞ < 1, then

κ‖c̃1‖∞ + ‖c̃2‖∞ =
κ‖c1‖∞ + ‖c2‖∞ + λ

1 + λ
<

1 + λ

1 + λ
= 1

Thus f̃ satisfies the hypotheses (f1) and (f2) (ii) with λ = 0. The proof
of the case b) above implies an existence of a h ∈ Lp(Ω) such that h(x) =
f̃(x, φ(h(x)), h(x)), or equivalently, by (2.4), h(x) = f(x, φ(h(x)), h(x)) a.e. in
Ω. This concludes the proof. ♦
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As a consequence of Theorem 2.2 we obtain an existence result for the equa-
tion

h(x) = g(x, φ(h(x))) a.e. in Ω. (2.5)

For the next proposition we assume the following hypotheses:

(g1) g is sup-measurable, and g(x, ·) is increasing for a.e. x ∈ Ω.

(g2) |g(x, y)| ≤ k(x) + c1(x)|y|α for a.e. x ∈ Ω and for all y ∈ R, where
k ∈ Lp(Ω), and either 0 < α < 1 and c1 ∈ L

p
1−α (Ω), or α = 1 and

κ‖c1‖∞ < 1.

Proposition 2.3 Assume that φ : Lp(Ω) → Lp(Ω) satisfies the hypothesis (φ)
and that g : Ω× R→ R satisfies (g1) and (g2). Then (2.5) has a solution h in
Lp(Ω).

Remark 2.4 The hypotheses of Theorem 2.2 and Proposition 2.2 allow the
functions f and g to be discontinuous in all their arguments. Even the mapping
φ may be discontinuous.

3 Applications to elliptic boundary-value prob-
lems

Let Ω ⊂ RN , N ≥ 3, be a bounded domain with a Lipschitz boundary ∂Ω. In
this section we study the existence of weak solutions of the implicit elliptic BVP

Λu(x) = f(x, u(x),Λu(x)) in Ω,
u = 0 on ∂Ω,

(3.1)

where

Λu(x) := −
N∑

i,j=1

∂

∂xi

(
aij(x)

∂u(x)
∂xj

)
+ q(x, u(x)).

Theorem 2.2 will be the main tool in our investigations. We assume that the
coefficients aij ∈ L∞(Ω) satisfy the ellipticity condition

N∑
i,j=1

aij(x)ξiξj ≥ γ
N∑
i=1

ξ2
i (3.2)

for a.e. x ∈ Ω, all ξ1, . . . , ξN ∈ R, and some γ > 0.
Let W 1,2

0 (Ω) denote the usual Sobolev space of square integrable functions
having generalized homogeneous boundary values, and denote its dual space by
W−1,2(Ω). We are going to introduce conditions which ensure that (3.1) has a
weak solution in the following sense.
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Definition A function u ∈W 1,2
0 (Ω) is called a weak solution of the BVP (3.1)

if there exists a function h ∈ L2(Ω) such that

h(x) = f(x, u(x), h(x)) for a.e. x ∈ Ω, (3.3)

and u is a weak solution of the semilinear BVP

Λu(x) = h(x) in Ω,
u = 0 on ∂Ω.

(3.4)

We shall first prove an existence, uniqueness and comparison result for the
BVP (3.4) assuming that W 1,2

0 (Ω) and L2(Ω) are equipped with the natural
partial ordering of functions defined by the order cone L2

+(Ω) of all nonnegative
functions of L2(Ω). On the function q we assume the following hypotheses:

(q1) q is a Carathéodory function and q(x, ·) is increasing for a.e. x ∈ Ω.

(q2) |q(x, y)| ≤ k0(x) + c0(x) |s|p0−1 for a.e. x ∈ Ω and for all x ∈ R, where
k0 ∈ L

p0
p0−1 (Ω), c0 ∈ L∞+ (Ω) and 1 < p0 ≤ 2∗ := 2N

N−2 (critical exponent).

Lemma 3.1 Assume that q : Ω × R → R satisfies (q1) and (q2). Then (3.4)
has a unique weak solution u for each h ∈ L2(Ω). Moreover, u is increasing
with respect to h and there exist constants m ≥ 0 and κ > 0 such that

‖u‖1,2 ≤ m+ κ‖h‖2. (3.5)

Proof It is well-known that

a(u, v) :=
∫

Ω

N∑
i,j=1

aij(x)
∂u(x)
∂xi

∂v(x)
∂xj

, u, v ∈W 1,2
0 (Ω) (3.6)

defines a bounded bilinear form a : W 1,2
0 (Ω)×W 1,2

0 (Ω)→ R. The assumptions
(q1) and (q2) imply that the mapping A : W 1,2

0 (Ω)→W−1,2(Ω) given by

〈Au, v〉 := a(u, v) +
∫

Ω

q(x, u(x)) v(x) dx, u, v ∈W 1,2
0 (Ω), (3.7)

is well-defined, continuous and strongly monotone, and hence bijective by [7,
Theorem 26.A].

To each h ∈ L2(Ω) there corresponds a unique functional h̃ ∈ W−1,2(Ω)
given by

〈h̃, v〉 =
∫

Ω

h(x)v(x) dx, v ∈W 1,2
0 (Ω). (3.8)

Denoting u = A−1h̃, we then have Au = h̃, which by (3.7) and (3.8) is equivalent
to

a(u, v) +
∫

Ω

q(x, u(x)) v(x) dx =
∫

Ω

h(x)v(x) dx, v ∈W 1,2
0 (Ω). (3.9)
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Thus u is, by definition, a weak solution of (3.4). To prove that u is increasing
with respect to h, let h1, h2 ∈ L2(Ω) satisfy h1 ≤ h2. Denoting by ui the weak
solutions of (3.4) with h = hi, i = 1, 2, it follows from (3.9) that

a(u1 − u2, v) +
∫

Ω

(q(x, u1(x))− q(x, u2(x)))v(x) dx

=
∫

Ω

(h1(x)− h2(x))v(x) dz ≤ 0 (3.10)

for all v ∈ (W 1,2
0 (Ω))+ := W 1,2

0 (Ω)∩L2
+(Ω). Choosing in (3.10) v = (u1−u2)+,

and noticing that due to the monotonicity of q(x, ·) the inequality∫
Ω

(q(x, u1(x))− q(x, u2(x)))(u1 − u2)+(x) dx ≥ 0

holds, and that a is coercive and a((u1− u2)−, (u1− u2)+) = 0, we obtain from
(3.10)

c‖(u1 − u2)+‖21,2 ≤ a((u1 − u2)+, (u1 − u2)+) = a(u1 − u2, (u1 − u2)+) ≤ 0.

This result implies that (u1−u2)+ = 0, i.e. u1 ≤ u2, and hence proves that the
weak solution u of (3.4) is increasing with respect to h.

To prove estimate (3.5), let h ∈ L2(Ω) be given, and let u ∈ W 1,2
0 (Ω) be

the weak solution of (3.4). The monotonicity of q(x, ·) along with the contin-
uous embedding W 1,2

0 (Ω) ⊂ Lp0(Ω) and the coercivity of a yield the following
estimate:

c‖u‖21,2 ≤ a(u, u) ≤ a(u, u) +
∫

Ω

(q(x, u(x))− q(x, 0))u(x) dx

=
∫

Ω

h(x)u(x) dx−
∫

Ω

q(x, 0)u(x) dx

≤ ‖h‖2‖u‖2 + ‖k0‖ p0
p0−1
‖u‖p0 ≤ (b ‖k0‖ p0

p0−1
+ ‖h‖2)‖u‖1,2,

for some positive constant b. Thus (3.5) holds with m = b
c‖k0‖ p0

p0−1
and κ = 1/c.

♦
As an application of Theorem 2.2 and Lemma 3.1, we shall prove the follow-

ing existence result for (3.1).

Theorem 3.2 Assume that q : Ω × R → R satisfies the hypotheses (q1) and
(q2), and that f : Ω × R × R → R satisfies the hypotheses (f1) and (f2) with
p = 2. Then the BVP (3.1) possesses a weak solution.

Proof If follows from Lemma 3.1 that the mapping φ : L2(Ω)→ L2(Ω), which
assigns to each h ∈ L2(Ω) the weak solution u := φ(h) ∈ W 1,2

0 (Ω) ⊂ L2(Ω) of
the BVP (3.4), is increasing. Moreover, the inequality (3.5) holds, whence

‖φ ◦ h‖2 = ‖u‖2 ≤ ‖u‖1,2 ≤ m+ κ‖h‖2, h ∈ L2(Ω).
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This proves that φ satisfies the hypothesis (φ). Thus the hypotheses of Theorem
2.2 hold when p = 2, whence there exists a function h ∈ L2(Ω) such that

h(x) = f(x, φ(h(x)), h(x)) = f(x, u(x), h(x)) a.e. in Ω,

and u is the weak solution of (3.4). This implies by Definition 3.1 that u is a
weak solution of (3.1). ♦

As a consequence of Theorem 3.2, we obtain an existence result for the
(explicit) BVP

Λu(x) = g(x, u(x)) a.e. in Ω,
u = 0 on ∂Ω,

(3.11)

where

Λu(x) := −
N∑

i,j=1

∂

∂xi

(
aij(x)

∂u(x)
∂xj

)
+ q(x, u(x)).

Proposition 3.3 Assume that q : Ω×R→ R satisfies the hypotheses (q1) and
(q2), and that g : Ω× R→ R satisfies the hypotheses (g2) and (g2) with p = 2.
Then the BVP (3.11) has a weak solution.

Remark 3.4 (i) The hypotheses of Theorem 3.2 and Proposition 3.3 allow both
functions f and g to be discontinuous in all their arguments.
(ii) Theorem 3.2 and Proposition 3.3 also apply to problems in domains Ω of
dimensions N = 1 and N = 2, since in these cases the critical exponent 2∗ =∞
and Lemma 3.1 is valid with an exponent p0 satisfying 1 < p0 <∞.
(iii) If the coefficients aij are uniformly Lipschitz continuous, it follows by the
regularity result [3, Theorem 8.8] that the weak solutions of problems (3.1) and
(3.11) satisfy their differential equation a.e. pointwise. This holds, in particular,
when aij = δij which is the case in the following examples, where [z] denotes
the greatest integer ≤ z ∈ R.

Example 3.5 Assume that R4 is equipped with the Euclidean norm |·|. Choose
Ω = {x ∈ R4 : 1

2 < |x| < 1}, and consider the BVP

Λu(x) = 5 + [6|x|] + 7[109u(x)]
1
3 + 8[1010Λu(x)]

1
5 , a.e. in Ω,

u = 0 on ∂Ω,
(3.12)

where Λu(x) := −∆u(x) + u(x)3, for x ∈ Ω. The BVP (3.12) is of the form
(3.1), where

aij(x) ≡ δij , q(x, y) = y3 and f(x, y, z) = 5 + [6|x|] + 7[109y]1/3 + 8[1010z]1/5.

The critical exponent here is 2∗ = 4 and it is easy to see that the hypotheses
(q), (f1) and (f2) with p = 2 hold, whence the BVP (3.12) has by Theorem 3.2
a weak solution.
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Example 3.6 For Ω = (0, 1), consider the boundary-value problem

−u′′(x) = 2 + 2[2− 2x] + 2 [(2u(x)− 2x)
1
3 ] + [(−u′′(x)− 1)

1
3 ] a.e. in (0, 1)

u(0) = u(1) = 0 .
(3.13)

Problem (3.13) is of the form (3.1), with

q(x, y) ≡ −1, and f(x, y, z) = 1+2[2−2x]+2 [(2y−2x)
1
3 ]+[(z−1)

1
3 ]. (3.14)

By elementary calculations one can show that for each h ∈ L2(Ω) the function

u(x) = φ(h(x)) = (1− x)
∫ x

0

t(1 + h(t))dt+ x

∫ 1

x

(1− t)(1 + h(t))dt

=
x− x2

2
+ (1− x)

∫ x

0

th(t)dt+ x

∫ 1

x

(1− t)h(t)dt, x ∈ [0, 1]
(3.15)

is a unique solution of the BVP

Λu(x) := −u′′(x)− 1 = h(x) in (0, 1),
u(0) = u(1) = 0

in W 1,2
0 (0, 1), and that

‖u‖ = ‖φ ◦ h‖2 ≤
1

2
√

30
(1 + 2‖h‖2).

Thus the hypothesis (φ) holds. Obviously, f is sup-measurable, i.e., (f1) is
fulfilled. Since

|f(x, y, z)| ≤ 15 + 4|y|1/3 + |z|1/3,
then the hypothesis (f2) (i) is satisfied. It then follows from Theorem 3.1 that
the BVP (3.13) has a solution.

Example 3.7 For Ω = (0, 1), consider the boundary-value problem

−u′′(x) = 2 + 2 [u(x)− 2x+ 1] +
[−u′′(x)− 2]

2
a.e. in (0, 1),

u(0) = u(1) = 0.
(3.16)

Problem (3.16) is of the form (3.1), where

q(x, y) ≡ −2, and f(x, y, z) = 2 [y − 2x+ 1] +
[z − 2]

2
. (3.17)

For each h ∈ L2(Ω) the function

u(x) = φ(h(x)) = (1− x)
∫ x

0

t(2 + h(t))dt+ x

∫ 1

x

(1− t)(2 + h(t))dt

= x− x2 + (1− x)
∫ x

0

th(t)dt+ x

∫ 1

x

(1− t)h(t)dt, x ∈ [0, 1]
(3.18)
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is a unique solution of the BVP

Λu(x) := −u′′(x)− 2 = h(x) in (0, 1)
u(0) = u(1) = 0

in W 1.2
0 (0, 1). Moreover,

‖φ ◦ h‖2 ≤
1√
30

(1 + ‖h‖2).

Thus the hypothesis (φ) holds with m = κ = 1/
√

30. Obviously, f is sup-
measurable, i.e. the hypothesis (f1) is satisfied. Since

|f(x, y, z)| ≤ 6 + 4|x|+ 2|y|+ 1
2
|z|,

and since (2/
√

30) + (1/2) < 1, then also the hypothesis (f2) (ii) is fulfilled.
Thus it follows from Theorem 3.2 that the BVP (3.16) possesses a solution.

Remark 3.8 (i) Based on the method of proof of the abstract fixed point re-
sult obtained in [4, Corollary 5] an algorithm has been developed to calculate
approximations for Examples 3.6 and 3.7, which can be used to infer the exact
solutions. Computational results will be given in a forthcoming paper.
(ii) We have restricted to homogeneous boundary value problems only for the
sake of simplicity. Nonhomogeneous Dirichlet boundary conditions as well as
Neumann or Robin type boundary conditions involving even discontinuous non-
linearities can be treated.
(iii) As for existence results for discontinuous explicit and implicit elliptic BVP’s
different from those presented in this paper, see e.g., [1, 2, 5, 6] and the references
therein. The existence of extremal solutions is considered in [1, 2, 5].
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