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Positive solutions of nonlinear elliptic equations

in a half space in R2 ∗

Imed Bachar, Habib Mâagli, & Lamia Mâatoug

Abstract

We study the existence and the asymptotic behaviour of positive so-
lutions of the nonlinear equation ∆u + f(., u) = 0, in the domain D =
{(x1, x2) ∈ R2 : x2 > 0}, with u = 0 on the boundary. The aim is to
prove some existence results for the above equation in a general setting
by using a fixed-point argument.

1 Introduction

In [12], Zeddini considered the nonlinear elliptic problem

∆u + f(., u) = 0 in D

u > 0 in D

u = 0 on ∂D,

(1.1)

in the sense of distributions, where D is the outside of the unit disk in R2 and f
is a nonnegative function in D×(0,∞) non-increasing with respect to the second
variable. Then, when f is in a certain Kato class, he proved the existence of
infinitely many positive continuous solutions on D. More precisely, he showed
that for each b > 0, there exists a positive continuous solution u satisfying

lim
|x|→∞

u(x)
Log|x|

= b.

Note that the existence results of problem (1.1) have been extensively studied
for the special nonlinearity f(x, t) = p(x)q(t), for both bounded and unbounded
domain D in Rn(n ≥ 1), with smooth compact boundary (see for example [3,
4, 5, 6] and the references therein). On the other hand, in [7, 9, 10, 11], the
authors considered the problem

∆u + g(., u) = 0 in D

u > 0 in D

u = 0 on ∂D,

(1.2)
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2 Positive solutions of nonlinear elliptic equations EJDE–2002/41

where there is no restriction on the sign of g, and D is an unbounded domain in
R
n (n ≥ 1) with a compact Lipschitz boundary. Then they proved the existence

of infinitely many solutions provided that g is in a certain Kato class. Namely,
they showed that there exists a number b0 > 0 such that for each b ∈ (0, b0],
there exists a positive continuous solution u in D satisfying

lim
|x|→∞

u(x)
h(x)

= b,

where h is a positive solution of the homogeneous Dirichlet problem 4u =
0 in D ,u = 0 on ∂D.
In this paper, we consider the domain

D = R
2
+ = {(x1, x2) ∈ R2 : x2 > 0},

which has a non-compact boundary. The purpose of this paper is two-folded.
One is to introduce a new Kato class K of functions on D and to study the
properties of this class. The other is to investigate the existence of positive con-
tinuous solutions on (1.1) and (1.2). Indeed, we shall establish some existence
theorems for problems (1.1) and (1.2), when f and g are required to satisfy suit-
able assumptions related to the class K. Note that solutions of these problems
are understood as distributional solutions in D.

The outline of the paper is as follows. In section 2, we prove some inequalities
on the Green’s function G(x, y) = 1

4πLog(1 + 4x2y2
|x−y|2 ) of the Laplacian in D. In

particular, we establish the fundamental inequality

G(x, y)G(y, z)
G(x, z)

≤ C0

[ y2

x2
G(x, y) +

y2

z2
G(y, z)

]
which is called the 3G-Theorem. This enable us to define and study, in section
3, a new Kato class K on D.

Definition A Borel measurable function ϕ in D belongs to the class K if ϕ
satisfies

lim
α→0

sup
x∈D

∫
(|x−y|≤α)∩D

y2

x2
G(x, y)|ϕ(y)|dy = 0 , (1.3)

lim
M→∞

sup
x∈D

∫
(|y|≥M)∩D

y2

x2
G(x, y)|ϕ(y)| dy = 0 . (1.4)

To study Problem (1.1) in section 4, we assume that f satisfies:

(H1) f : D × (0,∞) → [0,∞) is measurable, continuous and non-increasing
with respect to the second variable.

(H2) For all c > 0, f(., c) ∈ K.

(H3) For all c > 0, V (f(., c)) > 0, where V = (−∆)−1 is the potential kernel
associated to ∆.
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As usual, we denote by B(D) the set of Borel measurable functions in D and
B+(D) the set of nonnegative functions. C(D) will denote the set of continuous
functions in D and

C0(D) = {v ∈ C(D) : lim
x→∂D

v(x) = lim
|x|→∞

v(x) = 0}.

Throughout this paper, the letter C will denote a generic positive constant
which may vary from line to line.

Theorem 1.1 Assume (H1)-(H3). Then for each b > 0, the problem (1.1) has
at least one positive solution u continuous on D and satisfying

lim
x2→∞

u(x)
x2

= b.

Moreover, we have for x in D,

bx2 ≤ u(x) ≤ bx2 + min
(
δ,

∫
D

G(x, y)f(y, by2)dy
)
,

where δ = infα>0(α+ ‖V f(., α)‖∞).

Theorem 1.2 Assume (H1)-(H3). Then the problem (1.1) has a unique solu-
tion u ∈ C0(D), satisfying

x2

C(|x|+ 1)2
≤ u(x) ≤ min(δ,

∫
D

G(x, y)f(y,
y2

C(|y|+ 1)2
)dy), ∀x ∈ D.

We point out, that for some functions f of the type f(x, t) = p(x)t−σ, with
σ ≥ 0, we get better estimates on the solution. Namely for each x ∈ D, we have

u(x) ≤ C x
1

1+σ
2

(|x|+ 1)
2

1+σ
,

for some positive constant C.
In section 5, we consider Problem (1.2) under the following hypotheses:

(A1) The function g is measurable on D × (0,∞), continuous with respect to
the second variable and satisfies

|g(x, t| ≤ tψ(x, t) for (x, t) ∈ D × (0,∞),

where ψ is a nonnegative measurable function on D× (0,∞) such that the
function t→ ψ(x, t) is nondecreasing on (0,∞) and limt→0 ψ(x, t) = 0.

(A2) The function defined as x→ ψ(x, x2) on D belongs to the class K.

Theorem 1.3 Assume (A1)-(A2). Then (1.2) has infinitely many solutions.
More precisely, there exists b0 > 0 such that for each b ∈ (0, b0], there exists a
solution u of (1.2) continuous on D and satisfying

b

2
x2 ≤ u(x) ≤ 3b

2
x2 and lim

x2→∞

u(x)
x2

= b.
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2 Properties of Green’s function

Lemma 2.1 For x and y in D, we have the following properties:

(i) If x2y2 ≤ |x− y|2, then max(x2, y2) ≤
√

5+1
2 |x− y|.

(ii) If |x− y|2 ≤ x2y2, then 3−
√

5
2 x2 ≤ y2 ≤ 3+

√
5

2 x2.

Proof (i) If x2y2 ≤ |x − y|2 then |y − x̃| ≥
√

5
2 x2, where x̃ = (x1,

3
2x2). It

follows that

|y − x| ≥ |y − x̃| − |x− x̃| ≥
√

5− 1
2

x2.

i.e., x2 ≤
√

5+1
2 |x− y|. Thus, interchange the role of x and y, we obtain (i).

(ii) If |x− y|2 ≤ x2y2 then |x2 − y2|2 ≤ x2y2. Hence

[
y2 −

3 +
√

5
2

x2

][
y2 −

3−
√

5
2

x2

]
≤ 0.

Proposition 2.2 There exists C > 0 such that, for all x and y in D

x2y2

C(|x|+ 1)2(|y|+ 1)2
≤ G(x, y) ≤ 1

π

x2y2

|x− y|2
. (2.1)

1
π

y2
2

|x− y|2 + 4x2y2
≤ y2

x2
G(x, y) ≤ C(1 +G(x, y)). (2.2)

Proof Recall that the Green’s function G of ∆ in D is

G(x, y) =
1

4π
Log(1 +

4x2y2

|x− y|2
). (2.3)

To prove (2.1) and the first inequality in (2.2), we use that

t

1 + t
≤ Log(1 + t) ≤ t,∀t ≥ 0, and |x− y| ≤ (|x|+ 1)(|y|+ 1), ∀x, y ∈ D.

The second inequality in (2.2) follows from Lemma 2.1. Indeed, if x2y2 ≤ |x−y|2
then

y2

x2
G(x, y) ≤ C y2

2

|x− y|2
≤ C

and if |x− y|2 ≤ x2y2 then

y2

x2
G(x, y) ≤ CG(x, y). ♦

Theorem 2.3 (3G-Theorem) There exists a constant C0 > 0 such that for
all x, y and z in D, we have

G(x, z)G(z, y)
G(x, y)

≤ C0

[ z2

x2
G(x, z) +

z2

y2
G(y, z)

]
. (2.4)
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Proof. Let N(x, y) = x2y2
G(x,y) , for x and y in D. Then (2.4) is equivalent to

N(x, y) ≤ C0(N(y, z) +N(z, x)). (2.5)

Using the inequalities t
1+t ≤ Log(1 + t) ≤ t,∀t ≥ 0, we deduce by (2.1) and

(2.2) that for all x and y in D,

π|x− y|2 ≤ N(x, y) ≤ π(|x− y|2 + 4x2y2). (2.6)

Then to prove (2.5), we need to consider two cases:
Case i: x and y in D with x2y2 ≤ |x− y|2. Then by (2.6), for all z in D,

N(x, y) ≤ 5π|x− y|2 ≤ 10π(|x− z|2 + |z − y|2) ≤ 10(N(x, z) +N(z, y)).

Case ii: x and y in D with |x− y|2 ≤ x2y2. Then by Lemma 2.1,

3−
√

5
2

x2 ≤ y2 ≤
3 +
√

5
2

x2.

If |x− z|2 ≤ x2z2 or |y − z|2 ≤ y2z2, then by Lemma 2.1

3−
√

5
2

x2 ≤ z2 ≤
3 +
√

5
2

x2, or
3−
√

5
2

y2 ≤ z2 ≤
3 +
√

5
2

y2.

Recall that for all a and b in (0,∞),

ab

a+ b
≤ min(a, b) ≤ 2

ab

a+ b
,

and for all x, y and z in D, |x− y|2 ≤ 4 max(|x− z|2, |z− y|2), then in this case
we have

Log(1 +
4x2y2

|x− y|2
) ≥ C min

[
Log(1 +

4z2y2

|z − y|2
), Log(1 +

4x2z2

|x− z|2
)
]
.

Which is equivalent to (2.5).
If |x − z|2 ≥ x2z2 and |y − z|2 ≥ y2z2, then using (2.6) and Lemma 2.1, we
obtain

N(x, y) ≤ 5πx2y2 ≤ C|x− z||y − z|
≤ C(|x− z|2 + |y − z|2) ≤ C(N(x, z) +N(y, z)). ♦

Now we are ready to study the properties of the functional class K.

3 The class K.

Proposition 3.1 Let ϕ be a function in K. Then the function y → y2
2ϕ(y) is

in L1
loc(D).
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Proof Since ϕ ∈ K, then by (1.3) there exists α > 0 such that

sup
x∈D

∫
(|x−y|≤α)∩D

y2

x2
G(x, y)|ϕ(y)| dy ≤ 1.

Let R > 0 and a1, . . . , an in B(0, R) ∩D with B(0, R) ∩D ⊂ ∪1≤i≤nB(ai, α).
Then by (2.2), there exists C > 0 such that for all i ∈ {1, . . . , n} and y ∈
B(ai, α) ∩D

y2
2 ≤ C

y2

(ai)2
G(ai, y).

Hence, we have∫
B(0,R)∩D

y2
2 |ϕ(y)|dy ≤ C

∑
1≤i≤n

∫
(|xi−y|≤α)∩D

y2

(ai)2
G(ai, y)|ϕ(y)|dy

≤ Cn sup
x∈D

∫
(|x−y|≤α)∩D

y2

x2
G(x, y)|ϕ(y)|dy

≤ Cn <∞ ♦

In the sequel, we use the notation

‖ϕ‖ = sup
x∈D

∫
D

y2

x2
G(x, y)|ϕ(y)| dy . (3.1)

Proposition 3.2 If ϕ ∈ K, then ‖ϕ‖ < +∞.

Proof Let α > 0 and M > 0. Then we have∫
D

y2

x2
G(x, y) |ϕ(y)| dy ≤

∫
(|x−y|≤α)∩D

y2

x2
G(x, y)|ϕ(y)|dy

+
∫

(|y|≥M)∩D

y2

x2
G(x, y)|ϕ(y)|dy

+
∫

(|x−y|≥α)∩(|y|≤M)∩D

y2

x2
G(x, y)|ϕ(y)|dy.

By (2.3), we have∫
(|x−y|≥α)∩(|y|≤M)∩D

y2

x2
G(x, y)|ϕ(y)|dy ≤ C

∫
B(0,M)∩D

y2
2 |ϕ(y)|dy.

Thus the result follows immediately from (1.3)), (1.4) and Proposition 3.1. ♦

Proposition 3.3 Let ϕ be a function in K and h be a positive superharmonic
function in D.
a) For x0 ∈ D,

lim
r→0

sup
x∈D

1
h(x)

∫
B(x0 , r)∩D

G(x, y)h(y) |ϕ(y)| dy = 0 (3.2)
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lim
M→+∞

sup
x∈D

1
h(x)

∫
D∩(|y|≥M)

G(x, y)h(y) |ϕ(y)| dy = 0. (3.3)

b) For all x ∈ D and C0 as in Theorem 2.3,∫
D

G(x, y)h(y) |ϕ(y)| dy ≤ 2C0‖ϕ‖h(x). (3.4)

Proof Let h be a positive superharmonic function in D. Then by [8;Theorem
2.1, p.164], there exists a sequence (fn)n of positive measurable functions in D
such that

h(y) = sup
n

∫
D

G(y, z)fn(z) dz .

Hence, we need only to verify (3.2), (3.3) and (3.4) for h(y) = G(y, z), uniformly
for z ∈ D.
a) Let r > 0. By using Theorem 2.3, we obtain

1
G(x, z)

∫
B(x0 , r)∩D

G(x, y)G(y, z) |ϕ(y)| dy

≤ 2C0 sup
ξ∈D

∫
B(x0 , r)∩D

y2

ξ2
G(ξ, y) |ϕ(y)| dy .

Let α > 0 and M > 0. Then by (2.1), we have∫
B(x0 , r)∩D

y2

x2
G(x, y) |ϕ(y)| dy ≤

∫
B(x0 , r)∩D∩(|x−y|≤α)

y2

x2
G(x, y) |ϕ(y)| dy

+ C

∫
B(x0 , r)∩D∩(|x−y|≥α)∩(|y|≤M)

y2
2 |ϕ(y)| dy

+
∫
B(x0 , r)∩D∩(|y|≥M)

y2

x2
G(x, y) |ϕ(y)| dy.

Then (3.2) follows from (1.3), (1.4) and Proposition 3.1. On the other hand, we
have

1
G(x, z)

∫
(|y|≥M)∩D

G(x, y)G(y, z) |ϕ(y)| dy

≤ 2C0 sup
ξ∈D

∫
(|y|≥M)∩D

y2

ξ2
G(ξ, y) |ϕ(y)| dy

which converges to zero as M →∞. This gives (3.3).
b) By using Theorem 2.3, we obtain

1
G(x, z)

∫
D

G(x, y)G(y, z) |ϕ(y)| dy ≤ 2C0‖ϕ‖.
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Corollary 3.4 Let ϕ be a function in K. Then we have

sup
x∈D

∫
D

G(x, y) |ϕ(y)| dy <∞, (3.5)∫
D

y2

(|y|+ 1)2
|ϕ(y)| <∞, (3.6)∫

D∩(|y|≤M)

y2|ϕ(y)|dy <∞, ∀M > 0. (3.7)

Proof Inequality (3.5) follows from (3.4) with h = 1 in D and Proposition
3.2. Let x0 ∈ D. Then by (2.1) and (3.5), we have∫

D

y2

(|y|+ 1)2
|ϕ(y)|dy ≤ C (|x0|+ 1)2

|x0|
(sup
x∈D

∫
D

G(x, y)|ϕ(y)|dy) <∞,

which gives (3.6). Inequality (3.7) follows immediately from (3.6).

Proposition 3.5 Let ϕ ∈ K. Then the function

V ϕ(x) =
∫
D

G(x, y)ϕ(y)dy

is defined in D and is in C0(D).

Proof Let x0 ∈ D and r > 0. Let x, x′ ∈ B(x0,
r
2 ) ∩D. Then for M > 0

|V ϕ(x)− V ϕ(x′)|

≤
∫
D

|G(x, y)−G(x′, y)||ϕ(y)|dy

≤ 2 sup
ξ∈D

∫
B(x0,r)∩D

G(ξ, y)|ϕ(y)|dy + 2 sup
ξ∈D

∫
(|y|≥M)∩D

G(ξ, y)|ϕ(y)|dy

+
∫
D∩(|y−x0|≥r)∩(|y|≤M)

|G(x, y)−G(x′, y)||ϕ(y)|dy.

By (2.1), there exists C > 0 such that for all x ∈ B(x0,
r
2 ) ∩ D, for all y ∈

B(0,M) ∩ (D\B(x0, r)),
G(x, y) ≤ Cy2.

Moreover, G(x, y) is continuous on (x, y) ∈ (B(x0,
r
2 )∩D)×(D\B(x0, r)). Then

by (3.7) and Lebesgue’s theorem, we have that∫
D∩(|y−x0|≥r)∩(|y|≤M)

|G(x, y)−G(x′, y)||ϕ(y)|dy → 0 as |x− x′| → 0.

Hence, we obtain by (3.2) and (3.3) with h = 1 that V ϕ is continuous in D.
Now, we will show that

lim
x→∂D

V ϕ(x) = lim
|x|→+∞

V ϕ(x) = 0.
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Let x0 ∈ ∂D and r > 0. Let x ∈ B(x0,
r
2 ) ∩D. Then for M > 0,

|V ϕ(x)| ≤
∫
D

G(x, y) |ϕ(y)| dy

≤ sup
ξ∈D

∫
B(x0,r)∩D

G(ξ, y)|ϕ(y)|dy + sup
ξ∈D

∫
(|y|≥M)∩D

G(ξ, y)|ϕ(y)|dy

+
∫
D∩(|y−x0|≥r)∩(|y|≤M)

G(x, y)|ϕ(y)|dy.

Since ∫
D∩(|y−x0|≥r)∩(|y|≤M)

G(x, y)|ϕ(y)|dy ≤ Cx2

∫
D∩(|y|≤M)

y2|ϕ(y)|dy,

then we obtain by (3.7), (3.2) and (3.3) with h = 1 that

lim
x→∂D

V ϕ(x) = 0.

Let M > 0 and x in D such that |x| ≥M + 1, then we have

|V ϕ(x)| ≤
∫
D

G(x, y)|ϕ(y)| dy

≤
∫

(|y|≤M)∩D
G(x, y) |ϕ(y)| dy +

∫
(|y|≥M)∩D

G(x, y)|ϕ(y)| dy .

Since G(x, y) ≤ C x2y2
(|x|−M)2 , for |y| ≤ M , then from (3.7) and (3.3) with h = 1,

we deduce that
lim

|x|→+∞
V ϕ(x) = 0

Proposition 3.6 Let λ, µ be in R and θ be the function defined on D by

θ(y) =
1

(|y|+ 1)µ−λyλ2
.

Then θ ∈ K if and only if λ < 2 < µ.

Proof Let λ < 2 < µ and α > 0. Then we have

I =
∫

(|x−y|≤α)∩D

y2

x2
Log(1 +

4x2y2

|x− y|2
)

1
(|y|+ 1)µ−λyλ2

dy

≤
∫

(|x−y|≤α)∩D1

y2

x2
Log(1 +

4x2y2

|x− y|2
)

1
(|y|+ 1)µ−λyλ2

dy

+
∫

(|x−y|≤α)∩D2

y2

x2
Log(1 +

4x2y2

|x− y|2
)

1
(|y|+ 1)µ−λyλ2

dy

= I1 + I2,
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where

D1 = {y ∈ D : x2y2 ≤ |x− y|2} and D2 = {y ∈ D : |x− y|2 ≤ x2y2}.

So, using Log(1 + t) ≤ t, for t > 0 and Lemma 2.1, we obtain

I1 ≤
∫

(|x−y|≤α)∩D1

y2−λ
2

|x− y|2
dy

≤ C

∫
(|x−y|≤α)∩D1

1

|x− y|λ
dy ≤ C

∫ α

0

t1−λdt,

which converges to zero as α→ 0.
On the other hand, we have from Lemma 2.1, that there is C > 0 such that if
y ∈ D2,

1
C

(|x|+ 1) ≤ |y|+ 1 ≤ C(|x|+ 1).

Hence

I2 ≤ C
1

xλ2 (|x|+ 1)µ−λ

∫
(|x−y|≤α)∩D2

Log(1 +
(cx2)2

|x− y|2
)dy,

where c = 1 +
√

5. Let γ ∈ ] max(0, λ), 2[. Since Log(1 + t2) ≤ Ctγ ,∀t ≥ 0, then

I2 ≤ C
xγ−λ2

(|x|+ 1)µ−λ

∫ inf(α,cx2)

0

t1−γdt ≤ C max(α2−λ, α2−γ),

which converges to zero as α→ 0. Now, we will show that

lim
M→∞

(
sup
x∈D

∫
(|y|≥M)

y2

x2
Log(1 +

4x2y2

|x− y|2
)

1
(|y|+ 1)µ−λyλ2

dy
)

= 0.

By the above argument, for ε > 0, there exists α > 0 such that

sup
x∈D

∫
(|y|≥M)∩D∩(|x−y|≤α)

y2

x2
Log(1 +

4x2y2

|x− y|2
)

1
(|y|+ 1)µ−λyλ2

dy ≤ ε.

Fixing this α and letting M > 1, we have

sup
x∈D

∫
(|y|≥M)∩D∩(|x−y|≥α)

y2

x2
Log(1 +

4x2y2

|x− y|2
)

1
(|y|+ 1)µ−λyλ2

dy

≤ sup
x∈D

∫
(|y|≥M)∩D∩(|x−y|≥α)

y2−λ
2

|x− y|2|y|µ−λ
dy

≤ sup
|x|≤M/2

∫
(|y|≥M)∩D

dy

|x− y|2|y|µ−2

+ sup
|x|≥M/2

[ ∫
(M∨ |x|2 ≤|y|≤2|x|)∩D∩(|x−y|≥α)

dy

|x− y|2|y|µ−2

+
∫

(|y|≥2|x|)∩D

dy

|x− y|2|y|µ−2

]
+ sup
|x|≥2M

∫
(M≤|y|≤ |x|2 )∩D

dy

|x− y|2|y|µ−2
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≤ C(
∫

(|y|≥M)∩D

1
|y|µ

dy + sup
|x|≥M/2

Log 3|x|
α

|x|µ−2
)

≤ C(
1

Mµ−2
+ sup
|x|≥M/2

Log 3|x|
α

|x|µ−2
),

which converges to zero as M → ∞. Conversely, if θ ∈ K then we have by
Proposition 3.5 that

lim
x2→0

V θ(x) = lim
x2→+∞

V θ(x) = 0, for x = (0, x2).

On the other hand, it follows from Lemma 2.1 that

V θ(x) =
1

4π

∫
D

Log(1 +
4x2y2

|x− y|2
)

1
(|y|+ 1)µ−λyλ2

dy

≥ C

∫
D∩(|x−y|2≤x2y2)

1
(|y|+ 1)µ−λyλ2

dy

≥ C
1

xλ2 (|x|+ 1)µ−λ

∫
|x̃−y|≤

√
5

2 x2

dy ≥ C x2−λ
2

(x2 + 1)µ−λ
,

where x̃ = (0, 3
2x2). Hence, it is necessary that λ < 2 < µ. ♦

Moreover, we have the following estimates.

Proposition 3.7 There exists C > 0 such that for all x in D, we have

V θ(x) ≤ C xµ−2
2

(|x|+ 1)2µ−4
, if 2 < µ < min(3, 4− λ) (3.8)

V θ(x) ≤ C x2

(|x|+ 1)2
, if λ < 1 and µ > 3 (3.9)

V θ(x) ≤ C x2

(|x|+ 1)2
Log(

(|x|+ 1)2

x2
), if

{
λ < 1
µ = 3 or

{
λ = 1
µ ≥ 3 (3.10)

V θ(x) ≤ C x2−λ
2

(|x|+ 1)4−2λ
, if 1 < λ < 2 and µ ≥ 4− λ. (3.11)

For the proof, we need the following lemma.

Lemma 3.8 Let λ < 2, B := {x ∈ R2, |x| < 1}, and

w(x) =
∫
B

GB(x, y)
1

(1− |y|)λ
dy, for x ∈ B,

where GB is the Green’s function of ∆ in B. Then for each x ∈ B,

1) w(x) ≤ C(1− |x|), if λ < 1

2) w(x) ≤ C(1− |x|)Log( 2
1−|x| ), if λ = 1

3) w(x) ≤ C(1− |x|)2−λ, if 1 < λ < 2.
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Proof Since

GB(x, y) =
1

4π
Log(1 +

(1− |x|2)(1− |y|2)
|x− y|2

),

and the function w is radial, then by elementary calculus we have

w(x) = C

∫ 1

0

Log(
1

r ∨ |x|
)

r

(1− r)λ
dr,

where r ∨ |x| = max(r, |x|). Since tLog( 1
t ) ≤ 1− t,∀t ∈ [0, 1], then we have

w(x) ≤ C
∫ 1

0

1− (r ∨ |x|)
(1− r)λ

dr.

Hence, if |x| ≤ 1
2 then

w(x) ≤ C
∫ 1

0

(1− r)1−λdr <∞,

and if |x| ≥ 1
2 then

w(x) ≤ C[(1− |x|)(
∫ 1

2

0

1
(1− r)λ

dr +
∫ |x|

1
2

1
(1− r)λ

dr) +
∫ 1

|x|
(1− r)1−λdr]

≤ C[(1− |x|) + (1− |x|)
∫ |x|

1
2

1
(1− r)λ

dr + (1− |x|)2−λ].

Which implies the result. ♦

Proof of Proposition 3.7 Let γ : D → B be the Möbius transformation
defined by γ(x) = x∗ = e− 2(x+e)

|x+e|2 , where e = (0, 1). Then for x, y ∈ D,

G(x, y) = GB(x∗, y∗).

On the other hand, it is easy to see that

1√
2

(|x|+ 1) ≤ |x+ e| ≤ (|x|+ 1),∀x ∈ D. (3.12)

Since for x ∈ D, we have 1− |x∗|2 = 4x2
|x+e|2 , then by (3.12) we obtain that

2x2

(|x|+ 1)2
≤ δB(x∗) = 1− |x∗| ≤ 8x2

(|x|+ 1)2
. (3.13)

It follows that

V θ(x) ≤ C

∫
D

GB(x∗, y∗)
1

(|y|+ 1)µ+λ(δB(y∗))λ
dy
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≤ C

∫
B

GB(x∗, ξ)
1

|ξ − e|4−µ−λ
1

(δB(ξ))λ
dξ.

Since 1− |ξ| ≤ |ξ − e| ≤ 2,∀ξ ∈ B, we have

V θ(x) ≤ C
∫
B

GB(x∗, ξ)
1

(δB(ξ))
dξ, if 4− µ− λ ≤ 0

and

V θ(x) ≤ C
∫
B

GB(x∗, ξ)
1

(δB(ξ))4−µ dξ, if 4− µ− λ > 0.

Thus the required inequalities follow from Lemma 3.8 and (3.13).

4 Proofs of Theorems 1.1 and 1.2

For this section, we need some preliminary results. Recall that the potential
kernel V is defined on B+(D) by

V φ(x) =
∫
D

G(x, y)φ(y)dy, x ∈ D.

Hence, for φ ∈ B+(D) such that φ ∈ L1
loc(D) and V φ ∈ L1

loc(D), we have in
the distributional sense that ∆(V φ) = −φ, in D. We point out if V φ 6=∞, we
have V φ ∈ L1

loc(D), (see [1], p.51). Let us recall that V satisfies the complete
maximum principle, i.e for each φ ∈ B+(D) and v a nonnegative superharmonic
function on D such that V φ ≤ v in {φ > 0} we have V φ ≤ v in D, (cf. [8],
Theorem 3.6, p.175]).

Lemma 4.1 Let h ∈ B+(D) and v be a nonnegative superharmonic function
on D. Then for all w ∈ B(D) such that V (h|w|) <∞ and w + V (hw) = v, we
have 0 ≤ w ≤ v.

Proof We denote by w+ = max(w, 0) and w− = max(−w, 0). Since V(h|w|) <
∞, then we have

w+ + V (hw+) = v + w− + V (hw−).

Hence
V (hw+) ≤ v + V (hw−) in {w+ > 0}.

Since v+ V (hw−) is a nonnegative superharmonic function in D, then we have
as consequence of the complete maximum principle that

V (hw+) ≤ v + V (hw−) in D,

that is V (hw) ≤ v = w + V (hw). This implies that 0 ≤ w ≤ v.
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Theorem 4.2 Assume (H1)-(H3). Let α > 0 and b > 0. Then the problem

(Pα)
∆u+ f(., u) = 0 in D

u > 0 in D

u = α on ∂D

has at least one positive solution uα ∈ C(D) satisfying

lim
x2→∞

uα(x)
x2

= b.

Proof Let α > 0. It follows from (H2) and Proposition 3.5 that V (f(., α)) ∈
C0(D). So, in the sequel, we denote

β = α+ ‖V (f(., α))‖∞.

To apply a fixed-point argument, we consider the convex set

F = {w ∈ C(D ∪ {∞}) : α ≤ w(x) ≤ β, ∀x ∈ D}.

and on this set we define the integral operator

Tw(x) = α+
α

α+ bx2

∫
D

G(x, y)f(y,
(α+ by2)

α
w(y))dy, x ∈ D.

By (H1), we have

f(y,
(α+ by2)

α
w(y)) ≤ f(y, α),∀w ∈ F. (4.1)

Then for w ∈ F
α ≤ Tw(x) ≤ β ∀x ∈ D.

As in the proof of Proposition 3.5 we show that the family TF is equicontinuous
in D ∪ {∞}. In particular, for all v ∈ F, Tw ∈ C(D ∪ {∞}) and so TF ⊂ F .
Moreover, the family {Tw(x), w ∈ F} is uniformly bounded in D ∪ {∞}. It
follows by Ascoli’s theorem that TF is relatively compact in C(D∪{∞}). Next,
we prove the continuity of T in Y . We consider a sequence (wn) in F which
converges uniformly to a function w in F . Then we have

|Twn(x)− Tw(x)|

≤ α

α+ bx2

∫
D

G(x, y)|f(y,
(α+ by2)

α
wn(y))− f(y,

(α+ by2)
α

w(y))|dy.

Since f is continuous with respect to the second variable, we deduce by (4.1),
(H2), (3.5) and the Lebesgue’s theorem that for each x ∈ D ∪ {∞}

Twn(x)→ Tw(x) as n→∞.
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Since TY is a relatively compact family in C(D ∪ {∞}), we have the uniform
convergence, namely

‖Twn − Tw‖∞ → 0 as n→∞.

Thus we have proved that T is a compact mapping from F to itself. Hence, by
the Schauder’s fixed point-theorem, there exists wα ∈ F such that

wα(x) = α+
α

α+ bx2

∫
D

G(x, y)f(y,
(α+ by2)

α
wα(y))dy,∀x ∈ D.

Put uα(x) = (α+bx2)
α wα(x), for x ∈ D. Then we have

uα(x) = α+ bx2 +
∫
D

G(x, y)f(y, uα(y))dy,∀x ∈ D. (4.2)

By (H1), we have for each y ∈ D,

f(y, uα(y)) ≤ f(y, α). (4.3)

Then we deduce by (H2) and Proposition 3.1 that the map y → f(y, uα(y)) ∈
L1

loc(D), and by Proposition 3.5, that V (f(., uα)) ∈ C0(D) ⊂ L1
loc(D). Apply

∆ on both sides of equality (4.2), we obtain that

∆uα + f(., uα) = 0 in D (in the sense of distributions).

Furthermore, it follows from (4.2) that

α+ bx2 ≤ uα(x) ≤ β + bx2, ∀x ∈ D. (4.4)

Hence

lim
x2→∞

uα(x)
x2

= b.

Now, using (4.3), (H2), Proposition 3.5 and (4.2), we obtain limx→∂D uα(x) = α.
Then, uα is a positive continuous solution of the problem (Pα).

Proposition 4.3 Let f : D × (0,∞) → [0,∞) be a measurable function sat-
isfying (H1) and α1, α2, b1, b2 be real numbers such that 0 ≤ α1 ≤ α2 and
0 ≤ b1 ≤ b2. If u1 and u2 are two positive functions continuous on D satisfying
for each x in D

u1(x) = α1 + b1x2 + V (f(., u1))(x),
u2(x) = α2 + b2x2 + V (f(., u2))(x).

Then
0 ≤ u2(x)− u1(x) ≤ α2 − α1 + (b2 − b1)x2, ∀x ∈ D.
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Proof Let h be the function defined on D as

h(x) =

{
f(x,u1(x))−f(x,u2(x))

u2(x)−u1(x) if u1(x) 6= u2(x)

0 if u1(x) = u2(x).

Then h ∈ B+(D) and

u2(x)− u1(x) + V (h(u2 − u1))(x) = α2 − α1 + (b2 − b1)x2.

Now, since

V (h|u2 − u1|) ≤ V (f(., u1)) + V (f(., u2)) ≤ u1 + u2 <∞,

we deduce the result from Lemma 4.1.

Proof of Theorem 1.1 Let (αn) be a sequence of positive real numbers, non-
increasing to zero. For each n ∈ N, we denote by un the continuous solution
of the problem given by the integral equation (4.2) with α = αn. Then, by
Proposition 4.3, the sequence (un) decreases to a function u. Since

un(x)− αn = bx2 +
∫
D

G(x, y)f(y, un(y))dy ≥ bx2 > 0. (4.5)

Then the sequence (un − αn) increases to u and so u > 0 in D. Hence,

u = inf
n
un = sup

n
(un − αn)

is a positive continuous function in D. Using (H1) and applying the monotone
convergence theorem, we get

u(x) = bx2 +
∫
D

G(x, y)f(y, u(y))dy , ∀x ∈ D. (4.6)

Then, it follows from (4.6) that V (f(., u)) ∈ L1
loc(D). On the other hand, since u

is positive in D, then by (H2) and Proposition 3.1, the function y → f(y, u(y)) ∈
L1

loc(D). Applying ∆ on both sides of equality (4.6), we conclude that u satisfies

∆u+ f(., u) = 0 in D.

Since for x in D and n in N,

0 ≤ un(x)− αn ≤ u(x) ≤ un(x) and lim
x2→∞

un(x)
x2

= b,

we deduce that

lim
x→∂D

u(x) = 0 and lim
x2→∞

u(x)
x2

= b.

Thus, u ∈ C(D) and u is a positive solution of the problem(1.1). Now, let

δ = inf
α>0

(α+ ‖V f(., α‖∞).
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Then by (H3) and (H1), δ > 0. By (4.4) we have that

bx2 ≤ u(x) ≤ bx2 + δ.

By (H1) and (4.6),

bx2 ≤ u(x) ≤ bx2 +
∫
D

G(x, y)f(y, by2)dy.

Which implies that

bx2 ≤ u(x) ≤ bx2 + min(δ,
∫
D

G(x, y)f(y, by2)dy).

Corollary 4.4 Let 0 < b1 ≤ b2 and f1 and f2 be two nonnegative measurable
functions in D×(0,∞), satisfying the hypotheses (H1)-(H3), such that 0 ≤ f1 ≤
f2. If we denote by uj ∈ C(D) the positive solution of the problem (1.1) with
f = fj and b = bj, j ∈ {1, 2}, given by (4.6), then we have

0 ≤ u2 − u1 ≤ (b2 − b1)x2 + V (f2(., u2)− f1(., u2)) in D.

Proof It follows from (4.6) that

u1 = b1x2 + V (f1(., u1)) and u2 = b2x2 + V (f2(., u2)).

Let h be the nonnegative measurable function defined on D by

h(x) =

{
f1(x,u2(x))−f1(x,u1(x))

u1(x)−u2(x) if u1(x) 6= u2(x)

0 if u1(x) = u2(x).

Then h ∈ B+(D) and we have

u2 − u1 + V (h(u2 − u1)) = (b2 − b1)x2 + V (f2(., u2)− f1(., u2)).

Now, since

V (h|u2 − u1|) ≤ V (f1(., u2)) + V (f1(., u1))
≤ V (f2(., u2)) + V (f1(., u1))
= u2 + u1 <∞

and (b2−b1)x2 +V (f2(., u2)−f1(., u2)) is a nonnegative superharmonic function
on D, we deduce the result from Lemma 4.1. ♦

Example Let σ > 0, λ < 1 − σ and µ > max(2, 3 − σ). Suppose that the
function f satisfies (H1), (H3) and such that

f(y, t) ≤ 1
(|y|+ 1)µ−λyλ2 tσ

.
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Then for each b > 0, there exists C > 0 such that the problem

∆u+ f(., u) = 0 in D

u > 0 in D

u = 0 on ∂D

lim
x2→∞

u(x)
x2

= b,

has a continuous solution u in D satisfying

bx2 ≤ u(x) ≤ Cx2 , ∀x ∈ D.

Proof of Theorem 1.2 Let α > 0 and (bn) be a sequence of positive real
numbers, non-increasing to zero. If uα,n denotes the positive continuous solution
of the problem (Pα) given by (4.2) for b = bn, then for each x in D

uα,n(x) = α+ bnx2 +
∫
D

G(x, y)f(y, uα,n(y))dy, (4.7)

and if un denotes the positive continuous solution of the problem (1.1) given by
(4.6) for b = bn, then

un(x) = bnx2 +
∫
D

G(x, y)f(y, un(y))dy,∀x ∈ D. (4.8)

By Proposition 4.3, the sequence (un) decreases to a function u and by (H1) the
sequence (un − bnx2) increases to u. Then u is a positive continuous function
in D. Using the monotone convergence theorem, we deduce that u satisfies

u(x) =
∫
D

G(x, y)f(y, u(y))dy, ∀x ∈ D. (4.9)

Moreover, from Proposition 4.3 and (4.3), we have

u(x) ≤ uα,n(x) ≤ α+ V f(., α)(x), ∀x ∈ D. (4.10)

Then it follows from Proposition 3.5 that

lim
x→∂D

u(x) = lim
|x|→∞

u(x) = 0 .

Now, by (4.10) and (H1), we have∫
D

G(x, y)f(y, δ)dy ≤ u(x) ≤ δ ∀x ∈ D,

where δ = inf
α>0

(α+ ‖V f(., α‖∞). Then, we get from (2.1) that

x2

C(|x|+ 1)2

∫
D

y2

(|y|+ 1)2
f(y, δ)dy ≤ u(x) , ∀x ∈ D.
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Hence we deduce from (H2) and (3.6) that

x2

C(|x|+ 1)2
≤ u(x). (4.11)

Since f is non-increasing with respect to the second variable, then we have

u(x) ≤ min(δ,
∫
D

G(x, y)f(y,
y2

C(|y|+ 1)2
)dy).

Finally, we intend to show the uniqueness of the solution. Let u and v be
two solutions of (1.1) in C0(D). Suppose that there exists x0 ∈ D such that
u(x0) < v(x0). Put w = v − u. Then w ∈ C0(D) and satisfies

∆w + f(., v)− f(., u) = 0, in D.

Let Ω = {x ∈ D,w(x) > 0}. Then Ω is an open nonempty set in D and by
(H3) we deduce that ∆w ≥ 0, in Ω with w = 0 on ∂Ω. Hence, by the maximum
principle ([2], p.465-466), we get w ≤ 0 in Ω. Which is in contradiction with
the definition of Ω. ♦

We close this section by giving another comparison result for the solutions
u of the problem (1.1), in the case of the special nonlinearity f(x, t) = p(x)q(t).
The following hypotheses on p and q are adopted.

i) The function p is nontrivial nonnegative and is in K ∩Cγloc(D), 0 < γ < 1.

ii) The function q : (0,∞)→ (0,∞) is a continuously differentiable and non-
increasing.

In the sequel, we define the function Q in [0,∞) by

Q(t) =
∫ t

0

1
q(s)

ds.

From the hypothesis adopted on q, we note that the function Q is a bijection
from [0,∞) to itself. Then we have the following theorem.

Theorem 4.5 Let u be the positive solution of

∆u(x) + p(x)q(u(x)) = 0 x ∈ D, u ∈ C0(D). (4.12)

Then q(δ)V p ≤ u ≤ Q−1(V p) in D.

Proof Since u ≤ δ in D and q is non-increasing, we deduce from (4.9) that

q(δ)V p(x) ≤ u(x) =
∫
D

G(x, y)p(y)q(u(y))dy, ∀x ∈ D.

To show the upper estimate, we consider the function v defined in D by

v = Q(u)− V p.
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Then v ∈ C2(D) and

∆v =
1

q(u)
∆u+ p− q′(u)

q2(u)
|∇u|2 ≥ 0.

In addition, since V p ∈ C0(D), we deduce that v ∈ C0(D). Thus, the maximum
principle implies that v ≤ 0.

Corollary 4.6 Let λ < 2 < µ. Suppose further that the function p satisfies

p(y) ≤ θ(y) ∀y ∈ D,

where θ(y) = 1/((|y|+ 1)µ−λyλ2 ). Let u be the positive solution of (4.12). Then
there exists C > 0 such that for each x ∈ D,

1
C

x2

(|x|+ 1)2
≤ u(x) ≤ Q−1(rλ,µ(x)),∀x ∈ D,

where rλ,µ is the right hand function in the inequalities of Proposition 3.7.

Proof The lower estimate is obtained from (4.11). Using Theorem 4.5, the
upper estimate follows from the monotonicity of Q−1 and Proposition 3.7.

Example Let λ < 2, µ ≥ 4− λ and σ ≥ 0. Suppose further that the function
p satisfies

p(y) ≤ 1
(|y|+ 1)µ−λyλ2

, for y ∈ D.

Then the equation

∆u+ pu−σ = 0 in D, u ∈ C0(D)

has a unique positive solution u ∈ C2+γ(D) which for each x ∈ D it satisfies:

i) 1
C

x2
(|x|+1)2 ≤ u(x) ≤ C x

2−λ
1+σ
2

(|x|+1)
4−2λ
1+σ

, if 1 < λ < 2.

ii) 1
C

x2
(|x|+1)2 ≤ u(x) ≤ C x

1
1+σ
2

(|x|+1)
2

1+σ

[
Log( 2(|x|+1)2

x2
)
] 1

1+σ , if λ = 1.

iii) 1
C

x2
(|x|+1)2 ≤ u(x) ≤ C x

1
1+σ
2

(|x|+1)
2

1+σ
, if λ < 1.

5 Proof of Theorem 1.3

Let
C0(D) := {w ∈ C(D) : lim

|x|→∞
w(x) = 0}.

Then C0(D) is a Banach space with the uniform norm ‖w‖∞ = supx∈D |w(x)|.
Let ϕ0 be a positive function belonging to K and let

F0 := {ϕ ∈ K : |ϕ(x)| ≤ ϕ0(x), ∀x ∈ D}.
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Lemma 5.1 The family of the functions{∫
D

y2

x2
G(., y)ϕ(y)dy, ϕ ∈ F0

}
is uniformly bounded and equicontinuous on D ∪ {∞}. Consequently it is rela-
tively compact in C0(D).

Proof Let T be the operator defined on F0 as

Tϕ(x) =
∫
D

y2

x2
G(x, y)ϕ(y) dy .

Then for all ϕ ∈ F0,

|Tϕ(x)| ≤
∫
D

y2

x2
G(x, y)ϕ0(y) dy .

Since ϕ0 ∈ K, from Proposition 3.2, ‖Tϕ‖∞ ≤ ‖ϕ0‖ for all ϕ ∈ F0. Thus the
family T (F0) = {Tϕ, ϕ ∈ F0} is uniformly bounded.

Now, we prove the equicontinuity of T (F ) on D ∪ {∞}. Let x0 ∈ D and
r > 0. Let x, x′ ∈ B(x0,

r
2 ) ∩D and ϕ ∈ F0, then for M > 0,

|Tϕ(x)− Tϕ(x′)| ≤ 2 sup
x∈D

∫
B(x0,r)∩D

y2

x2
G(x, y)ϕ0(y) dy

+2 sup
x∈D

∫
(|y|≥M)∩D

y2

x2
G(x, y)ϕ0(y)dy

+
∫

(|x0−y|≥r)∩(|y|≤M)∩D
|G(x, y)

x2
− G(x′, y)

x′2
|y2ϕ0(y)dy.

By (2.1), there exists C > 0 such that for all x ∈ B(x0,
r
2 ) ∩ D, for all y ∈

B(0,M) ∩ (D\B(x0, r)),

y2

x2
G(x, y)ϕ0(y) ≤ Cy2

2ϕ0(y).

Moreover, G(x,y)
x2

is continuous on (x, y) ∈ (B(x0,
r
2 )∩D)× (D\B(x0, r)). Then

by Proposition 3.1 and Lebesgue’s theorem, we have∫
(|x0−y|≥r)∩(|y|≤M)∩D

|G(x, y)
x2

− G(x′, y)
x′2

|y2ϕ0(y) dy → 0,

as |x− x′| → 0. Then it follows from (3.2) that

|Tϕ(x)− Tϕ(x′)| → 0 as |x− x′| → 0

uniformly for all ϕ ∈ F0. On the other hand, to establish compactness we need
to show that

lim
|x|→+∞

Tϕ(x) = 0, uniformly for ϕ ∈ F0.
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Let M > 0 and x in D such that |x| ≥M + 1, then

|Tϕ(x)| ≤
∫
D

y2

x2
G(x, y)ϕ0(y) dy

≤
∫

(|y|≤M)∩D

y2

x2
G(x, y)ϕ0(y) dy +

∫
(|y|≥M)∩D

y2

x2
G(x, y)ϕ0(y) dy .

Since lim|x|→+∞ y2
G(x,y)
x2

= 0 uniformly for |y| ≤ M , and y2
x2
G(x, y) ≤ 1

πy
2
2 , for

|x−y| ≥ 1, then from Proposition 3.1, Lebesgue’s theorem and (3.3) with h = 1,
we deduce that

lim
|x|→+∞

Tϕ(x) = 0

uniformly for all ϕ ∈ F0. Finally, by Ascoli’s theorem, the family T (F0) is
relatively compact in C0(D).

Proof of Theorem 1.3 Let β ∈ (0, 1). Then, by (A1),(A2) and Lemma 5.1,
the function

Tβ(x) =
∫
D

y2

x2
G(x, y) ψ(y, βy2) dy

is continuous on D satisfying

lim
|x|→+∞

Tβ(x) = 0 and lim
β→0

Tβ(x) = 0 ∀x ∈ D.

Moreover, the function β → Tβ(x) is nondecreasing on (0, 1). Then, by Dini
Lemma, we have

lim
β→0

sup
x∈D

∫
D

y2

x2
G(x, y)ψ(y, βy2) dy = 0.

Thus, there exists β ∈ (0, 1) such that for each x ∈ D,∫
D

y2

x2
G(x, y)ψ(y, βy2) dy ≤ 1

3
.

Let b0 = 2
3β and b ∈ (0, b0]. In order to apply a fixed-point argument, set

S =
{
w ∈ C(D ∪ {∞}) :

b

2
≤ w(x) ≤ 3b

2
, x ∈ D}.

Then, S is a nonempty closed bounded and convex set in C(D ∪ {∞}). Define
the operator Γ on S as

Γw(x) = b+
1
x2

∫
D

G(x, y)g( y, y2w(y)) dy , x ∈ D.

First, we shall prove that the operator Γ maps S into itself. Let v ∈ S, then for
any x ∈ D, we have by (A1) that

|Γw(x)− b| ≤ 3b
2

∫
D

y2

x2
G(x, y)ψ(y, βy2) dy ≤ b

2
.
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It follows that b
2 ≤ Γw ≤ 3b

2 and by Lemma 5.1, Γ(S) is included in C(D∪{∞}).
So ΓS ⊂ S.

Next, we shall prove the continuity of Γ in the supremum norm. Let (wk)k
be a sequence in S which converges uniformly to w ∈ S. It follows from (A1)
and Lebesgue’s theorem that

∀x ∈ D, Γwk(x)→ Γw(x) as k → +∞.

Since Γ(S) is a relatively compact family in C(D ∪ {∞}), then the pointwise
convergence implies the uniform convergence. Thus we have proved that Γ
is a compact mapping from S to itself. Now the Schauder fixed-point theorem
implies the existence of w ∈ S such that Γw = w. For x ∈ D, put u(x) = x2w(x).
Therefore we have

u(x) = bx2 +
∫
D

GD(x, y)g(y, u(y)) dy.

Since g(y, u(y)) ≤ y2ψ(y, y2), then we have by (A2) and (3.7) that y → g(y, u(y)
is in L1

loc(D). Applying ∆ in both sides of the above equation, we get

∆u+ g(., u) = 0, inD.

It is clear that u is a solution of (1.2), continuous on D,

b

2
x2 ≤ u(x) ≤ 3b

2
x2 and lim

x2→+∞

u(x)
x2

= b.

Example Let σ > 0 and λ < 2 < µ. Let p be a measurable function in D
such that

|p(x)| ≤ C

(|x|+ 1)µ−λxλ+σ
2

, ∀x ∈ D.

Then there exists b0 > 0 such that for each b ∈ (0, b0], the problem

∆u(x) + p(x)uσ+1(x) = 0, x ∈ D
u(x) > 0, x ∈ D

u
∣∣
∂D

= 0

has a solution u continuous on D and satisfying

b

2
x2 ≤ u(x) ≤ 3b

2
x2 and lim

x2→∞

u(x)
x2

= b.
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