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Existence of unstable manifolds for a certain class

of delay differential equations ∗

Hari P. Krishnan

Abstract

We prove a theorem for unstable manifolds in a differential equation
with a state-dependent delay. Although the equation cannot be formally
linearized, we find an associated linear delay equation whose dynamics are
qualitatively similar near the unstable manifold. Our proof relies upon
estimates of the derivative of a trajectory on the unstable manifold near
equilibrium.

1 Introduction

Various authors have studied the delay equation

ẋ(t) = f(x(t), x(t− r)), r = r(x(t)) (1.1)

over the past few years. Mackey [6] proposed that a special case of (1.1) could
be used to model the spot price of an agricultural commodity, such as corn.
Here, r(x(t)) represents the time delay between the production and delivery of
the commodity and depends upon the price x(t). Cooke and Huang [2] have
examined some of the difficulties that arise when attempting to linearize (1.1)
and have developed decay estimates for solutions near the origin. Mallet-Paret
and Nussbaum [7] proved the existence of a sawtooth-shaped, slowly oscillating
periodic solution to the equation

εẋ(t) = −x(t) + f(x(t− r)), r = r(x(t)) (1.1)

in the singular limit as ε goes to 0. Kuang and Smith [5], and Arino, Hadeler
and Hbid [1] have proved the existence of periodic solutions for certain types of
state-dependent delay equations, including (1.1).

When r is a constant, solutions to (1.1) are typically embedded in the space
C([−r, 0]), of continuous functions over the interval [−r, 0]. If f is sufficiently
well-behaved, it is possible to prove the existence and uniqueness of solutions
and also the existence of a smooth unstable manifold relative to (1.1).
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When r = r(x(t)) is non-constant, we run into difficulty since solutions are
not uniquely defined even locally in time. Unless we have a uniform bound for
|ẋ(t)|, x(t− r) and hence f(x(t− r)) will not be a Lipschitz function in the ar-
gument x(t). In this paper, we develop an alternative phase space setting which
allows us to control the derivative of x(t); we then prove existence, uniqueness
and unstable manifold results. Since the existence of an unstable manifold does
not depend on the choice of phase-space, our approach provides a consistent
way of looking at (1.1).

In section 2, we prove a straightforward existence result for solutions to (1.1),
relative to the phase space W 1,∞. In section 3, we show that (under appropriate
technical conditions), the unstable manifold is a smooth graph whenever f is at
least C2. We will take advantage of the fact that trajectories on the unstable
manifold are defined from time −∞ to the present and are thus as smooth as
possible.

2 Technical Preliminaries

Hale and Ladeira [3] have used the space W 1,∞ to show that solutions to the
equation

ẋ(t) = f(x(t), x(t− ρ)) (2.1)

depend smoothly on the delay parameter ρ. In [3], ρ is neither time- nor state-
dependent. However, it turns out that the space W 1,∞ is useful in the case
where the delay is state-dependent. We require the following definitions for
which we use the notation in [3].

Suppose that E is a linear space equipped with the norms | · | and N(·);
suppose further that we define the set BR,N = {x ∈ E : N(x) ≤ R} for any
fixed R > 0. (BR,N is a closed ball of radius R centered at 0 relative to the
N(·) norm.) Also suppose that, for any fixed R > 0, (BR,N , | · |) is a complete
metric space. Then we refer to E as a quasi-Banach space.

Let W 1,∞([−r∗, 0]) be the linear space of absolutely continuous functions
φ : [−r∗, 0]→ R whose derivatives are essentially bounded.

Note that W 1,∞ defines a quasi-Banach space when we set N(φ) = ‖φ‖∞ =
|φ(−r∗)|+ ess sup θ∈[−r∗,0]|φ̇(θ)| and

|φ| = ‖φ‖1 = |φ(−r∗)|+
∫ 0

−r∗
|φ̇(s)|ds.

For technical reasons, we also require the following definitions.
Let W 1,∞

α,0 ([−r∗, α]) = {φ ∈ W 1,∞([−r∗, α]) : φ(s) = 0 for s ∈ [−r∗, 0]},
where W 1,∞

α,0 is equipped with the norms ‖φ‖1α =
∫ α

0
|φ̇(s)|ds and ‖φ‖∞α =

ess sups∈[0,α]|φ̇(s)|.
Let

A(α, β) = {φ ∈W 1,∞
α,0 ([−r∗, α]) : ‖φ‖∞α ≤ β} ,
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B(α, β) = {φ ∈W 1,∞
α,0 ([−r∗, α]) : ‖φ‖1α ≤ β} .

When α ≤ 1, we note that A(α, β) ⊂ B(α, β) since, for φ ∈ A(α, β),
ess supf∈[0,α] |φ̇(s)| ≤ β implies that

∫ α
0
|φ̇(s)|ds ≤ β

∫ α
0
ds = βα ≤ β. In general,

we have the inclusion A(α, β) ⊂ B(α, αβ). We may now consider the initial
value problem

ẋ(t) = f(x(t), x(t− r)) , r = r(x(t)) , t > 0

x(θ) = φ(θ) , θ ∈ [−r∗, 0], φ(·) ∈W 1,∞.
(2.2)

For the rest of the paper, we will assume that (2.2) satisfies conditions (A1)
and (A2) below.

(A1) r : W 1,∞([−r∗, 0]) → R is smooth, with supφ∈W 1,∞ |Dφr| ≤ c < ∞, Dφr
denoting the Fréchet derivative of r with respect to φ. Also,
α ≤ infφ∈W 1,∞r(φ) ≤ r∗ <∞, for some α > 0 small.

(A2) f : R× R→ R is a globally Lipschitz function. In particular, for

(ξ1, η1), ξ2, η2) ∈ R× R, |f(ξ1, η1)− f(ξ2, η2)| ≤ L|ξ1 − ξ2|+M |η1 − η2|,

which specifies the Lipschitz constants L and M .

To give precise smoothness results, it will sometimes be necessary to make the
more stringent assumption

(A3) f : R× R→ R is a Ck function, with k ≥ 2, f(0) = 0, and f ′(0) 6= 0.

We shall proceed by reformulating the initial-value problem (2.2) as a fixed
point equation in the phase space W 1,∞([−r∗, α]). First notice that x(t) satisfies
the system (2.2) over the interval [−r∗, α] if and only if x(t) = φ0(t) + z(t),
φ0(t) = φ(t) for t ∈ [−r∗, 0], φ0(t) = φ(0) for t ∈ [0, α], and z(t) satisfies

z(t) =

{
0 , t ∈ [−r∗, 0]∫ t

0
f(φ(0) + z(s) , φ(s− r(φ(0) + z(s))))ds t ∈ [0, α].

(2.3)

Here we have made the observation that, since infφ (r(φ)) > α, φ0(s − r(x)) =
φ(s− r(x)) for any x ∈ R and z(s− r(φ(0) + z(s))) = 0. We can now define the
operator T : A(α, β)×BR,N ×S → A(α, β), with the function r ∈ S if and only
if r : W 1,∞([−r∗, 0])→ R

+, and r satisfies hypothesis (A1).
Solutions to (1.1) correspond to fixed points of the integral equation

T (z, φ, r)(t) =


0 , t ∈ [−r∗, 0]∫ t

0
f(φ(0) + z(s), φ(s− r(φ(0) + z(s))

+z(s− r(φ(0) + z(s))))ds, t ∈ [0, α].
(2.4)

defined on the interval t ∈ [0, α]. If we can show that z ∈ W 1,∞
α,0 is a unique

fixed point of the equation z = T (z, φ, r), it follows from the relation x(t) =
φ0(t)+z(t) that the map xt(φ, ·) can be continued from t = 0 to t = α. We prove
existence and uniqueness using the contraction mapping principle, dividing our
proof into the following lemmas.



4 Unstable manifolds for delay differential equations EJDE–2002/32

Lemma 2.1 Suppose that (A1) and (A2) are satisfied. Then for any fixed
R > 0 there exist α, β > 0 such that T (B(α, αβ)×BR×S) ⊂ B(α, αβ) and also
T (A(α, β)×BR × S) ⊂ A(α, β). Hence T is a self-mapping with respect to the
sets A(α, β) and B(α, αβ).

Proof. Since the proofs are similar, we show only that T (B(α, αβ)×BR×S) ⊂
B(α, αβ). From (A2),

‖T (z, φ, r)(t)‖1α =
∫ α

0

|f(φ(0) + z(s) , φ(s− r(z(s) + φ(0))))|ds

≤α{ sup
S∈[0,α]

M |φ(0) + z(s)|+ sup
S∈[0,α]

N |φ(s− r(z(s) + φ(0)))|}

≤α{M(R+ αβ) +NR};

thus, for α ≤ 1
β and β ≥ R(M +N) + 1, α{M(R + αβ) +NR} ≤ αβ, and the

proof is complete. �

Note that α > 0 can be made as small as necessary by choosing β large.
Thus the assumption that 0 ≤ α < infx∈Rr(x) is not overly restrictive.

Lemma 2.2 T is a uniform contraction, with respect to the norms ‖ · ‖1α and
‖ · ‖∞α , over B(α, αβ).

Proof. We need to show that, for α > 0 sufficiently small and for any pair
z, w ∈ B(α, αβ), there exists an element 0 < c0 < 1 with c0 = c0(α) such
that ‖T (z, φ, r(z)) − T (w, φ, r(w))‖1α ≤ c0‖z − w‖1α for any fixed φ ∈ BR. To
do this, we rewrite the quantity ‖T (z, φ, r(z))− T (w, φ, r(w))‖1α explicitly. We
then obtain

‖T (z,φ, r(z))− T (w, φ, r(w))‖1α

=
∫ α

0

|f(φ(0) + z(s), φ(s− r(φ(0) + z(s))))

− f(φ(0) + w(s), φ(s− r(φ(0) + w(s))))|ds

≤
∫ α

0

M |z(s)− w(s)|+N |φ(s− r(φ(s− r(φ(0) + w(s)))|ds .

This last inequality follows from (A2). Now, since z(0) = 0 = w(0), it follows
that

∫ α
0
|z(s)−w(s)|ds ≤ α

∫ α
0
|ż(s)− ẇ(s)|ds so it remains to estimate

∫ α
0
|φ(s−

r(φ(0) + rz(s))) − φ(s − r(φ(0) + w(s)))|ds. However, since φ ∈ BR, it follows
that

|φ(s− r(φ(0) + z(s)))− φ(s− r(φ(0) + w(s)))|
≤ R|r(φ(0) + z(s))− r(φ(0) + w(s))|
≤ Rc|z(s)− w(s)| ,

where above inequality follows Assumption (A1). Then we obtain
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∫ α

0

|φ(s− r(φ(0) + z(s)))− φ(s− r(φ(0) + w(s))|ds

≤ Rc
∫ α

0

|z(s)− w(s)|ds ≤ Rcα
∫ α

0

|ż(s)− ẇ(s)|ds.

Combining the above inequalities gives

‖T (z, φ, r(z))− T (w, φ, r(w))‖1α

≤ c
∫ α

0

|ż(s)− ẇ(s)|ds+ αRc

∫ α

0

|ż(s)− ẇ(s)|ds = α(1 +Rc)‖z − w‖1α.

Suppose that we fix any α < 1
1+Rc ; it follows that, with respect to the constant

c0 = α(1 + Rc) < 1, T is a contraction map on B(α, αβ). The proof for the
‖ · ‖∞α norm is similar and therefore omitted.

Lemma 2.3 Consider T : B(α, αβ) × BR × S → B(α, αβ) with r ∈ S fixed.
Then T = T (r, z, φ) is a Lipschitz continuous function in z and φ.

Proof. Fix r and consider (z, φ), (w,ψ) ∈ B(α, αβ) × BR; we need to show
that ‖T (z, φ) = T (w,ψ)‖1α ≤ c{‖z − w‖1α + ‖φ − ψ‖1} for some constant 0 ≤
c = c(α) < ∞. Because of the triangle inequality, it suffices to show that
‖T (z, φ)− T (w, φ)‖1α + ‖T (w, φ)− T (w,ψ)|1α ≤ c{‖z − w‖1α + ‖φ− ψ‖1}. From
the proof of Lemma 2.2, we know that ‖T (zφ)− T (w, φ)‖1α ≤ c‖z − w‖1α; thus,
it remains to show that ‖T (w, φ) − T (w,ψ)‖1α ≤ c{‖z − w‖1α + ‖φ − ψ‖1} for
some 0 ≤ c <∞. We write

‖T (w, φ)− T (w,ψ)‖1α =
∫ α

0

∣∣∣f(φ(0) + w(s) , φ(s− r(φ(0) + w(s))))

− f(ψ(0) + w(s) , ψ(s− r(ψ(0) + w(s))))
∣∣∣ds

≤M
∫ α

0

∣∣φ(0)− ψ(0)|ds+N

∫ α

0

∣∣∣φ(s− r(φ(0) + w(s)))

− ψ(s− r(ψ(0) + w(s)))
∣∣∣ds.

We know that

M

∫ α

0

|φ(0)− ψ(0)|ds =Mα|α(0)− ψ(0)|

=Mα|φ(−r∗) +
∫ 0

−r∗
φ̇(θ)dθ − ψ(−r∗)−

∫ 0

−r∗
ψ̇(θ)dθ|

≤Mα

{
|φ(−r∗)− ψ(−r∗)|+

∫ 0

−r∗
|φ̇(θ)− ψ̇(θ)|dθ

}
=Mα‖φ− ψ‖1α
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Also we know that

N

∫ α

0

|φ(s− r(φ(0) + w(s)))− ψ(s− r(ψ(0) + w(s)))|ds

≤N
{∫ α

0

|φ(s− r(φ(0) + w(s)))− φ(s− r(ψ(0) + w(s)))|ds

+
∫ α

0

|φ(s− r(ψ(0) + w(s)))− ψ(s− r(ψ(0) + w(s)))|ds
}

≤NRαc|ψ(0)− ψ(0)|+N

∫ 0

−r∗
|φ(θ)− ψ(θ)|dθ

≤NRαc|φ(0)− ψ(0)|+N

∫ 0

−r∗
[|φ(−r∗)− ψ(−r∗)|+

∫ θ

−r∗
|φ̇(σ)− ψ̇(σ)|dσ]dθ

≤NRαc|φ(0)− ψ(0)|+Nr∗‖φ− ψ‖1

≤N(Rα2cM + r∗)‖φ− ψ‖1.

The above estimates complete the proof. �

Using Lemmas 2.1, 2.2, and 2.3, with α > 0 and sufficiently small, the
contraction mapping theorem gives the following result.

Theorem 2.4 Consider the initial-value problem (2.2) subject to assumptions
(A1) and (A2), with φ(·) ∈ BR and R > 0 fixed. Then there exists a real number
α = α(R) > 0, independent of φ, such that x(t, φ) exists and is unique on [0, α].

It is also possible to establish a simple sufficient condition for global existence
(i.e., existence on the interval t ∈ [0,∞)), using the fact that equation (1.1) is
autonomous. The theorem that follows implies that the only way in which a
solution x(t, φ) can fail to exist is if it blows up in finite time.

Theorem 2.5 Consider the initial-value problem (2.2) subject to assumptions
(A1) and (A2), with φ(·) ∈ BR and R > 0 fixed. Further, suppose that the
solution x(t, φ) is non-continuable on the interval [0, b) for some 0 < b < ∞.
Then, for any fixed c > 0, there exists a t ∈ [0, b) such that |x(t, φ)| > c.

Proof. We apply a contradiction argument. Suppose that for some fixed µ >
0, supt∈[0,b)supθ∈[−r∗,0]|x(t + θ)| < µ and that x(t, φ) is not continuable on
[0, b). From assumption (A2), we know that, for |ξ|, |η| < µ, supξ,η|f(ξ, η)| ≤
(M + N)µ < ∞. Now we have assumed that ‖φ(·)‖∞ < R < ∞; hence, by
definition, ess supθ∈[−r∗,0] |φ̇(θ)| ≤ R and ‖xt(φ, ·)‖∞ ≤ µ+ max(µ,R) and for
all t ∈ [0, b), xt(φ, ·) ∈ Bµ+max(µ,R). Setting Rc = µ+max(µ,R), we know that,
for all t ∈ [0, b), there exists an α0 = α(R0) such that x(t, φ) is continuable from
t to t+ α0. Thus we gain a contradiction if we choose t = b− α0

2 , since x(t, φ)
can now be continued beyond b.
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3 An Unstable Manifold Theorem

In this section, we prove a theorem on local unstable manifolds for equation
(1.1). Significantly, it will turn out that the unstable manifold forms a smooth
graph, even though the vector field defined by (2.2) is not Fréchet differentiable
in the initial conditions. We set up our problem in the following way.

Consider the following two equations, ẋ(t) = f(x(t), x(t− r)), r = r(x(t))
and ẋ(t) = f(x(t), x(t− r(0))) under the assumption that f(0) = 0. We do not
claim that the second equation is a formal linearization of the first; however,
we will show that it gives a good description of the local dynamics near the
unstable manifold of ẋ(t) = f(x(t), x(t− r)), r = r(x(t)).

Suppose that 0 is a hyperbolic equilibrium point of ẋ(t) = f(x(t), x(t−r(0)));
it follows that the set Λ = {λ ∈ C : λ = −α + f ′(0)e−r(0)λ, Reλ > 0} is finite
and that the space W 1,∞([−r∗, 0]) can be decomposed as W 1,∞ = U ⊕ S, as
in Hale and Lunel [4]. Here we define U = {φ ∈ W 1,=∞ : xt(φ, ·) exists and
remains bounded (in the ‖ · ‖1-norm) for all t ≤ 0} and set φ ∈ U equal to φU .
Similarly, we define S = {φ ∈ W 1,∞ : xt(φ, ·) exists and remains bounded for
all t ≥ 0}, where xt(φ, ·) is a solution to the initial-value problem (2.2). The
dimension of U is equal to the elements (including multiplicities) in Λ, and is
finite. Associated with the sets U and S are the projections πU : W 1,∞ → U
and πS : W 1,∞ → S, with πUU = U and πSS = (I − πU )S = S.

We now examine at the dynamics of the solution map L : U → U defined by
ẋ(t) = f(x(t), x(t − r(0))), where U is a finite-dimensional subspace of W 1,∞.
Since the origin is a hyperbolic equilibrium point, there exist constants M0, β0 >
0, independent of φU ∈ U , such that, for t ≤ 0, supθ∈[−r∗,0]|T (t)φU (θ)| ≤
M0e

β0tsupθ∈[−r∗,0]|φU (θ)|. Since all norms are equivalent in finite dimensions,
we know that there exist constants M,β > 0, independent of φU , such that
‖T (t)φU‖1 ≤Meβt‖φU‖1. If we consider the restriction of g to U , the following
smoothness result can be proved.

Lemma 3.1 Suppose that, in (1.1) ẋ(t) = −αx(t) + f(x(t− r)), r = r(x(t)), r :
R → R

+ and f : R → R are C2 functions. Then there exists a neighbourhood
Nδ(0) ⊂ U such that the mapping g : U → R is Fréchet differentiable at all
points xt(·) ∈ Nδ(0).

Proof. Suppose that we fix a point xt(·) ∈ Nδ(0). Since f ∈ C2, from the
chain rule it is sufficient to show that the function g1 : U → R, defined by
g1(xt(·)) = x(t − r(x(t))), is Fréchet differentiable. We now prove that, for
ht(·) ∈ U,Dφg1(xt(·))ht = − dr

dx ẋ(t − r(x(t)))h(t) + h(t − r(x(t))), where Dφg1

is a linear operator since xt(·) is fixed. We can write∣∣g1(xt + ht)− g1(xt)−Dφg1(xt)ht
∣∣

=
∣∣x(t− r(x(t) + h(t))) + h(t− r(x(t) + h(t− r(x(t) + h(t)))

− x(t− r(x(t))) +
dr

dx
ẋ(t− r(x(t)))h(t)− h(t− r(x(t)))

∣∣
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=
∣∣x(t− r(x(t))− dr

dx
h(t) + o(h)) + h(t− r(x(t))− dr

dx
h(t) + o(h))

− x(t− r(x(t))) +
dr

dx
ẋ(t− r(x(t)))h(t)− h(t− r(x(t)))

∣∣
=
∣∣ẋ(t− r(x(t))

(
− dr

dx
h(t) + o(h)

)
+ ḣ(t− r(x(t)))

(
− dr

dx
h(t) + o(h)

)
+ x(t− r(x(t))) + h(t− r(x(t)))− x(t− r(x(t)))

+
dr

dx
ẋ(t− r(x(t)))h(t)− h(t− r(x(t)))

∣∣
=| − dr

dx
ḣ(t− r(x(t)))h(t) + o(h)|.

The proof will be complete if we can show that − dr
dx ḣ(t − r(x(t)))h(t) is o(h).

In particular, we need to show that, for any sequence {hn}, with each hn ∈
U, limn→∞‖hn‖1 = 0 implies that limn→∞supθ∈[−r∗,0]|ḣn(θ)| = 0. We proceed
by contradiction and suppose that there exists an ε > 0 such that, for all N ∈
ZZ+ and some n ≥ N, supθ∈[−r∗,0]|ḣn(θ)| > ε. From the fundamental theorem
of calculus, it follows that supθ∈[−r∗,o]|hn(θ)| ≤ ‖hn‖1. Also, it is obvious that
limn→∞supθ∈[−r∗,0]|hn(θ − r∗)| = 0 whenever limn→∞supθ∈[−r∗,0]|hn(θ)|, since
hn(·) ∈ U . Next, we substitute hn(· − r∗) into ẋ(t) = x(t− r(0)), thus defining
ḣn(·) over the interval [−r∗, 0]. We now find that, for all ε > 0, there exists a
δ = δ(ε) > 0 such that sup |ḣn(·)| < ε whenever ‖hn‖1 < δ. Since this property
holds for all n ≥ N = N(ε), we arrive at a contradiction and the proof is
complete. �

Remark. We may regard Lemma 3.1 from the following perspective. Al-
though, relative to the background space W 1,∞([−r∗, 0]), the ‖ · ‖∞-norm is
not equivalent to the ‖ · ‖1-norm, relative to U , the ‖ · ‖∞- and ‖ · ‖1-norms
are equivalent. This property guarantees the Fréchet differentiability of g when
restricted to U .

Trajectories on the unstable manifold appear as solutions to an integral
equation associated with ẋ(t) = f(x(t), x(t − r(0))). In order to specify the
integral equation, we require some additional notation. Suppose that Φ is a basis
for U and Ψ is a basis for UT , with (Φ,Ψ) = 1, so that πUφ = Φ(Ψ, φ). We then
define X(·) to be the fundamental matrix solution of ẋ(t) = f(x(t), x(t− r(0))),

K(t, s)(θ) =
∫ s

0

X(t+θ−τ)dτ , Xu
0 = ΦΨ(0) , K(t, s)u =

∫ s

0

T (t−τ)Xu
0 dτ,

and
K(t, s)s = πsK(t, s) = K(t, s)− Φ(Ψ,K(t, s)).

A function x∗t (φ, ·) ∈ W 1,∞([−r∗, 0]) satisfying equation ẋ(t) = f(x(t), x(t −
r(0))) must also satisfy the variation-of-constants formula (3.1) xt(φ, ·) = T (t)φ+∫ t

0
d[K(t, τ)]g(xτ ) (for a full treatment of (3.1), see [4]). The following lemma,

which is proved in [4], allows us to characterize the unstable set of ẋ(t) =
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f(x(t), x(t− r(0))). For convenience, we shall set Wu(0) = {φ ∈W 1,∞ : xt(·, φ)
exists for all t ≤ 0 and limt→−∞xt(·, φ) = 0}, and W s(0) = {φ ∈W 1,∞ : xt(·, φ)
exists for all t ≥ 0 and limt→+∞xt(·, φ) = 0}.

Lemma 3.2 Suppose that x∗(t, φ) is a solution of (1.1) that is defined and
bounded for all t ≤ 0. Then x∗t (·, φ) ∈ W 1,∞([−r∗, 0]) satisfies the integral
equation

xt(·) = T (t)φu +
∫ t

0

T (t− τ)Xu
0 f(xτ )dτ +

∫ t

−∞
d[K(t, τ)s]f(xτ ). (3.2)

The proof of this theorem can be found in [4]. We can now prove our main
theorem. We remark that if f ∈ Ck in the theorem below, k ≥ 2, then Wu

loc(0)
will be a Ck−1-manifold.

Theorem 3.3 Suppose that 0 is a hyperbolic equilibrium point of equation (1.1)
and f ∈ C2. Then there exists a neighborhood Nδ(0) of 0 in W 1,∞([−r∗, 0])and
a map π : U ∩Nδ(0) −→Wu(0) such that (·, π(·)) defines a smooth graph.

Proof. We start by proving the existence of the unstable manifold Wu(0). In
Lemma 3.1, we proved that g : W 1,∞([−r∗, 0]) → R is Lipschitz continuous.
Also, after writing

ẋ(t) =− αx(t) + f(x(t− r))
=− αx(t) + f ′(0)x(t− r(0)) + (f(x(t− r))− f ′(0)x(t− r(0)))
=− αx(t) + f ′(0)x(t− r(0)) + f1(x(t− r)),

with r = r(x(t)), we know that there exists a monotone increasing, contin-
uous function η(r) : [0,∞) → [0,∞) with η(0) = 0 such that, for any pair
φ, ψ ∈ T (r∗)W 1,∞([−r∗, 0]) with ‖φ‖1, ‖ψ‖1 ≤ σ, |f1(φ)−f1(ψ)| ≤ η(σ)‖φ−ψ‖1.
We now apply the contraction mapping principle to equation (3.2) for ‖φ‖1 suf-
ficiently small. Since ‖T (t)φu‖1 ≤ Meβt‖φu‖1 for t ≤ 0, we know that there
exists a constant C0 > 0 such that

‖T |uxt‖1 ≤ C0(eβt‖φu‖1+η(δ)
∫ 0

t

eβ(t−τ)‖xτ‖1dτ+η(δ)
∫ t

−∞
e−β(t−τ)‖xt‖1dτ),

where

T |uxt = T (t)φu +
∫ t

0

T (t− τ)Xu
0 f(xτ )dτ +

∫ t

−∞
d[K(t, τ)s]f(xt)

and ‖φ‖1 < δ
2C0

<< 1. We may view T |U as a self-mapping over the set

S(φ, δ) =
{
xt : (−∞, 0]→W 1,∞([−r∗, 0]), πux0 = φu ∈ U, sup

t∈[−∞,0)

‖xt‖1 ≤ δ
}
.

It follows that S(φ, δ) is closed and bounded with respect to the norm ‖xt‖ =
supt∈(−∞,0]‖xt‖1. Now, if δ is chosen so that η(δ) < β

4C0
, then an application
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of Gronwall’s inequality gives the estimate ‖T |Uxt‖1 < δ( 1
2 + 2C0

β η(δ)) < δ, and
T |U = T (φu) defines a contraction map. Thus, T |U has a unique fixed point,
which we call x∗t (φ

U , ·). x∗t (φU , ·) is an absolutely continuous function.
We now show that x∗t (φ

u, ·) is Lipschitz in φu. In particular, for any pair
φu, ψu ∈ U with ‖φu‖1, ‖ψu‖1 sufficiently small, we find a constant C1 > 0,
independent of φu, ψu, such that ‖x∗t (φu, ·) − x∗t (ψu, ·)‖1 ≤ C1‖φu − ψu‖1 for
t ≤ 0. But now

x∗t (φ
u,·)− x∗t (ψu, ·)

=T (t)(φu − ψu) +
∫ t

0

T (t− τ)Xu
0 (f(x∗τ (φu, ·))− f(x∗τ (ψu, ·))dτ

+
∫ t

−∞
d[K(t, τ)s](f(x∗τ (φu, ·))− f(x∗τ (ψu, ·))

and hence

‖x∗t (φu,·)− x∗t (ψu, ·)‖1

≤C0

(
eβt‖φu − ψu‖1 + η(δ)

∫ 0

t

eβ(t−τ)‖x∗τ (φu, ·)− x∗τ (ψu, ·)‖1dτ

+ η(δ)
∫ t

−∞
e−β(t−τ)‖x∗τ (φu, ·)− x∗τ (ψu, ·)‖dτ

)
.

Our proof relies upon the estimate

‖x∗t (φu, ·)− x∗t (ψu, ·)‖1 ≤ Ceβ0t‖φu − ψu‖1,

which is valid for some β0, C > 0 and for all t ≤ 0 and ‖φu‖1, ‖ψu‖1 ≤ δ
2C0

.
In this case, x∗t (φ

u, ·) must be Lipschitz in φu with respect to the constant
C. We verify the estimate by first defining the weighted norm ‖xt(φu, ·)‖1,β0 =
sup−∞<t≤0e

−β0t‖xt(φu, ·)‖1 on S(φ, δ). If β0 ∈ (β−1, β), β0 > 0, it immediately
follows that ‖xt(φu, ·)‖1,β0 ≤ δ. Also,

e−β0t‖xt(φu, ·)− xt(ψu, ·)‖1

≤C0

[
e(β−β0)t‖φu − ψu‖1 + η(δ)

∫ 0

t

e(β−β0)(t−τ)e−β0τ‖x∗τ (φu, ·)− x∗τ (ψu, ·)‖1dτ

+ η(δ)
∫ t

−∞
e−(β+β0)(t−τ)‖x∗τ (φu, ·)− x∗τ (ψu, ·)‖1dτ

]
≤C0

[
e(β−β0)t‖φu − ψu‖1 + η(δ)‖x∗t (φu, ·)− x∗t (φu, ·)‖1,β0

∫ 0

t

e(β−β0)(t−τ)dτ

+ η(δ)‖x∗t (φu, ·)− x∗t (ψu, ·)‖1,β0

∫ t

−∞
e−(β+β0)(t−τ)dτ

]
≤C0

[
e(β−β0)t‖φu − ψu‖1 + η(δ)

( 1
β − β0

− 1
)
‖x∗t (φu, ·)− x∗t (ψu, ·)‖1,β0
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+ η(δ)
1

β + β0
‖x∗t (φu, ·)− x∗t (ψu, ·)‖1,β0

]
≤C0‖φu − ψu‖1 + C0η(δ)

[ 1
β − β0

− 1 +
1

β + β0

]
‖x∗t (φu, ·)− x∗t (ψu, ·)‖1,β0 .

But now ‖xt(φt(φu, ·)− xt(φu, ·)‖1 ≤ Ceβ0t‖φu − ψu‖1, where

C =
C0

1− C0η(δ)
[

1
β−β0

− 1 + 1
β+β0

] ,
and thus Wu(0, Nδ(0)) defines a Lipschitz graph.

It remains to prove that Wu(0, Nδ(0)) defines a smooth graph over the do-
main U ∩ Nδ(0). From Lemma 3.1, we know that Dφg is continuous, so that
the proof follows from the estimate

‖x∗t (ψu + h, ·)− x∗t (ψu, ·)− x∗t (φu + h, ·) + x∗t (φ
u, ·)‖1

=‖T (t)(ψu + h− ψu − φu − h+ φu)

+
∫ 0

t

T (t− τ)Xu
0 [f((x∗τ (ψu + h, ·))− f(x∗τ (ψu, ·))] dτ

−
∫ 0

t

T (t− τ)Xu
0 [f(x∗τ (φu + h, ·))− f(x∗τ (ψu, ·)] dτ

+
∫ t

−∞
d[K(t, τ)s][f(x∗τ (ψu + h, ·))− f(x∗τ (ψu, ·))]

−
∫ t

−∞
d[K(t, τ)s][f(x∗τ (φu + h, ·))− f(x∗τ (φu, ·))]‖1

=‖
∫ 0

t

T (t− τ)Xu
0Dφf(x∗τ (ψu, ·))hτdτ −

∫ 0

t

T (t− τ)Xu
0Dφf(x∗τ (φu, ·))hτdτ

≤‖
∫ 0

t

T (t− τ)Xu
0 (Dφf(x∗τ (φu, ·))−Dφf(x∗τ (φu, ·)))hτdτ‖1

+ ‖
∫ t

−∞

d[K(t, τ)s]
dτ

(Dφf(x∗τ (ψu, ·))−Dφf(x∗τ (φu, ·)))hτdτ‖1 + o(h)

≤C1‖
∫ 0

t

eβ(t−τ)(Dφf(x∗τ (ψu, ·))−Dφf(x∗τ (φu, ·)))hτdτ‖1

+ C2‖
∫ t

−∞
e−β(t−τ)(Dφf(x∗τ (ψu, ·))−Dφf(x∗τ (φu, ·)))hτdτ‖1 + o(h)

≤C1‖ sup
t≤0
‖(Dφf(x∗t (ψ

u, ·))−Dφf(x∗t (φ
u, ·))ht‖1

∫ 0

t

eβ(t−τ)dτ‖1

+ C2‖ sup
t≤0
‖(Dφf(x∗t (ψ

u, ·))−Dφf(x∗t (φ
u, ·)))ht‖1

∫ t

−∞
e−β(t−τ)dτ‖1 + o(h)

=o(h),

since the Fréchet derivative Dφf is continuous. Thus x∗t (φ
u, ·) varies smoothly
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in φu, and Wu(0, Nδ(0)) defines a smooth graph. The proof of Theorem 3.3 is
now complete. �

The set Wu(0, Nδ(0)) defines a smooth graph over U . Thus, a typical solu-
tion xt(φ, ·) will have a saddle structure near the origin. More precisely, xt(φ, ·)
will approach 0 along a path nearby W s(0, Nδ(0)) before asymptotically tend-
ing to the smooth set Wu(0, Nδ(0)). In this sense any solution which does not
decay to 0 becomes more well-behaved as t increases. Here we have defined
W s(0) = {φ ∈ W 1,∞([−r∗, 0]) : limt→∞xt(φ, ·) = 0}, but have made no claims
about the structure or smoothness properties of W s(0). In general, it is to be
expected that the dynamics on W s(0) will be considerably more complicated
than the dynamics on Wu(0).
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