# Existence of solutions for a variational unilateral system * 

Marcondes R. Clark \& Osmundo A. Lima


#### Abstract

In this work the authors study the existence of weak solutions of the nonlinear unilateral mixed problem associated to the inequalities $$
\begin{gathered} u_{t t}-M\left(|\nabla u|^{2}\right) \Delta u+\theta \geq f, \\ \theta_{t}-\Delta \theta+u_{t} \geq g, \end{gathered}
$$


where $f, g, M$ are given real-valued functions with $M$ positive.

## 1 Introduction

Let $\Omega$ be a bounded and open set of $\mathbb{R}^{n}$, with smooth boundary $\Gamma=\partial \Omega$, and let $T$ be a positive real number. Let $\mathbb{Q}=\Omega \times] 0, T[$ be the cylinder with lateral boundary $\Sigma=\Gamma \times] 0, T[$.

We study the variational nonlinear system

$$
\begin{gather*}
u_{t t}-M\left(|\nabla u|^{2}\right) \Delta u+\theta \geq f \quad \text { in } \quad Q,  \tag{1.1}\\
\theta_{t}-\Delta \theta+u_{t} \geq g \quad \text { in } \quad Q,  \tag{1.2}\\
u=\theta=0 \quad \text { in } \quad \Sigma  \tag{1.3}\\
u(0)=u_{0}, \quad u^{\prime}(0)=u_{1}, \quad \theta(0)=\theta_{0} . \tag{1.4}
\end{gather*}
$$

The above system with $M(s)=m_{0}+m_{1} s$ ( $m_{0}$ and $m_{1}$ positive constants) and $\theta=0$ is a nonlinear perturbation of the canonical Kirchhof model

$$
\begin{equation*}
u_{t t}-\left(m_{0}+m_{1} \int_{\Omega} \mid \nabla u^{2} d x\right) \Delta u=f \tag{1.5}
\end{equation*}
$$

This model describes small vibrations of a stretched string when only the transverse component of the tension is considered, see for example, Arosio \& Spagnolo [1], Pohozaev [12].

[^0]Several authors have studied (1.5). For $\Omega$ bounded, we can cite: D'ancona \& Spagnolo [5], Medeiros \& Milla Miranda [9], Hosoya \& Yamada [7], Lions [8], Medeiros [10], and Matos [9]. For $\Omega$ unbounded, we can cite Bisiguin [2], Clark \& Lima [4], and Matos [9]. The system (1.1)-(1.4) was studied also in the case when (1.1) and (1.2) are equations, see for example [3].

In the present work we show the existence of a weak solution for the variational nonlinear system (1.1)-(1.4), under appropriate assumptions on $M, f$ and $g$. We employ Galerkin's approximation method and the penalization method used by Frota \& Lar'kin [6].

## 2 Notation and main result

We represent the Sobolev space of order $m$ on $\Omega$ by

$$
W^{m, p}(\Omega)=\left\{u \in L^{p}(\Omega) ; D^{\alpha} u \in L^{p}(\Omega), \forall|\alpha| \leq m\right\}
$$

and its associated norm by

$$
\|u\|_{m, p}=\left(\sum_{|\alpha| \leq m}\left|D^{\alpha} u\right|_{L^{p}(\Omega)}^{p}\right)^{1 / p}, \quad u \in W^{m, p}(\Omega), \quad 1 \leq p<\infty .
$$

When $p=2$, we have the usual Sobolev space $H^{m}(\Omega)$. Let $D(\Omega)$ be the space of the test functions on $\Omega$, and let $W_{0}^{m, p}(\Omega)$ be the closure of $D(\Omega)$ in $W^{m, p}(\Omega)$. When $p=2$, we have $W_{0}^{2, p}(\Omega)=H_{0}^{m}(\Omega)$. The dual space of $W_{0}^{m, p}(\Omega)$ is denoted by $W^{-m, p^{\prime}}(\Omega)$, with $p^{\prime}$ such that $\frac{1}{p}+\frac{1}{p^{\prime}}=1$. For the rest of this paper we use the symbol $(\cdot, \cdot)$ to indicate the inner product in $L^{2}(\Omega)$, and $((\cdot, \cdot))$ to indicate the inner product in $H_{0}^{1}(\Omega)$.

Let $\mathbb{K}=\left\{\psi \in W_{0}^{2,4}(\Omega) ;|\Delta \psi| \leq 1\right.$ and $\psi \geq 0$ a. e. in $\left.\Omega\right\}$. Then we have the following proposition whose proof can be found in [6]
Proposition 2.1 The set $\mathbb{K}$ is a closed and connected in $W_{0}^{2,4}(\Omega)$.
Definition Let $V$ be a Banach space and $V^{\prime}$ its dual. An operator $\beta$ from $V$ to $V^{\prime}$ is called hemicontinous if the function

$$
\lambda \rightarrow\langle\beta(u+\lambda v), w\rangle
$$

is continuous for all $\lambda \in \mathbb{R}$. The operator $\beta$ is called monotone if

$$
\langle\beta(u)-\beta(v), u-v\rangle \geq 0, \quad \forall u, v \in V .
$$

We consider the penalization operator $\beta: W_{0}^{2,4}(\Omega) \rightarrow W^{-2,4 / 3}(\Omega)$ such that $\beta(z)=\beta_{1}(z)+\beta_{2}(z), z \in W_{0}^{2,4}(\Omega)$, where $\beta_{1}(z)$ and $\beta_{2}(z)$ are defined by

$$
\begin{gathered}
\left\langle\beta_{1}(z), v\right\rangle=-\int_{\Omega} z^{-}(x) v(x) d x \\
\left\langle\beta_{2}(z), v\right\rangle=-\int_{\Omega}\left(1-|\Delta z(x)|^{2}\right)^{-} \Delta z(x) \Delta v(x) d x
\end{gathered}
$$

for all $v$ in $W_{0}^{2,4}(\Omega)$.

Proposition 2.2 The operator $\beta$ defined above satisfies the following coditions:
i) $\beta$ is monotone and hemicontinous
ii) $\beta$ is bounded; this is, $\beta(S)$ is bounded in $W^{2,4 / 3}(\Omega)$ for all bounded set $S$ in $W_{0}^{2,4}(\Omega)$.
iii) $\beta(u)=0$ if only if $u$ belongs to $\mathbb{K}$.

The proof of this proposition can be found in [6].
In this article, we assume the following hypotheses:
A1) $M \in C^{1}[0, \infty), M(s) \geq 0$ for $s \geq 0$, and $\int_{0}^{\infty} M(s) d s=\infty$
A2) $f, g$ belong to $H^{1}\left(0, T ; L^{2}(\Omega)\right.$.
The main result of this paper is stated as follows.
Theorem 2.3 Assume A1) and A2). For $u_{0} \in H_{0}^{1}(\Omega) \cap H^{2}(\Omega), u_{1}, \theta_{0}$ in the interior of $\mathbb{K}$, there exist functions $u, \theta: \mathbb{Q} \rightarrow \mathbb{R}$ such that

$$
\begin{gather*}
u \in L^{\infty}\left(0, T ; H_{0}^{1}(\Omega) \cap H^{2}(\Omega)\right)  \tag{2.1}\\
u^{\prime} \in L^{1}\left(0, T ; W_{0}^{2,4}(\Omega)\right) \text { and } u^{\prime}(t) \in \mathbb{K} \text { a.e. in }[0, T]  \tag{2.2}\\
u^{\prime \prime} \in L^{\infty}\left(0, T ; L^{2}(\Omega)\right)  \tag{2.3}\\
\theta \in L^{\infty}\left(0, T ; H_{0}^{1}(\Omega)\right) \text { and } \theta(t) \in \mathbb{K} \text { a.e. in }[0, T] . \tag{2.4}
\end{gather*}
$$

Also

$$
\begin{gather*}
\left(u^{\prime \prime}(t)-M\left(\|u(t)\|^{2}\right) \Delta u(t)+\theta(t)-f(t), v-u^{\prime}(t) \geq 0, \forall v \in \mathbb{K} \text { a.e. in }[0, T]\right. \\
\left(\theta^{\prime}(t)-\Delta \theta(t)+u^{\prime}(t)-g(t), v-\theta(t)\right) \geq 0 \forall v \in \mathbb{K} \quad \text { a.e. in }[0, T]  \tag{2.5}\\
u(0)=u_{0}, u^{\prime}(0)=u_{1}, \theta(0)=\theta_{0} . \tag{2.6}
\end{gather*}
$$

To obtain the solution $\{u, \theta\}$ of problem (2.1)-(2.4) in Theorem 2.3, we consider the following associated penalized problem. For $0<\varepsilon<1$, consider

$$
\begin{gather*}
u_{\varepsilon}^{\prime \prime}(t)-M\left(\left\|u_{\varepsilon}(t)\right\|^{2}\right) \Delta u_{\varepsilon}(t)+\theta_{\varepsilon}(t)+\frac{1}{\varepsilon} \beta\left(u_{\varepsilon}^{\prime}(t)\right)=f(t) \text { in } Q  \tag{2.8}\\
\theta_{\varepsilon}^{\prime}(t)-\Delta \theta_{\varepsilon}(t)+u_{\varepsilon}^{\prime}+\frac{1}{\varepsilon} \beta\left(\theta_{\varepsilon}(t)\right)=g(t) \text { in } Q  \tag{2.9}\\
u_{\varepsilon}(0)=u_{0 \varepsilon}, u_{\varepsilon}^{\prime}(0)=u_{1 \varepsilon}, \theta_{\varepsilon}(0)=\theta_{0 \varepsilon} \text { in } \Omega \tag{2.10}
\end{gather*}
$$

Here $\beta$ is a penalization operator, $M, f$, and $g$ are as above. The solution $\left\{u_{\varepsilon}, \theta_{\varepsilon}\right\}$ of the penalized problem (2.8)-(2.10) are guaranteed by the following theorem.

Theorem 2.4 Suppose the hypotheses of the Theorem 2.3 hold, and for $0<\varepsilon<1$, then there exist functions $\left\{u_{\varepsilon}, \theta_{\varepsilon}\right\}$ such that

$$
\begin{gather*}
u_{\varepsilon}, \theta_{\varepsilon} \in L^{\infty}\left(0, T ; H_{0}^{1}(\Omega) \cap H^{2}(\Omega)\right)  \tag{2.11}\\
u_{\varepsilon}^{\prime} \in L^{4}\left(0, T ; W_{0}^{2,4}(\Omega)\right)  \tag{2.12}\\
u_{\varepsilon}^{\prime \prime} \in L^{\infty}\left(0, T ; L^{2}(\Omega)\right)  \tag{2.13}\\
\theta_{\varepsilon} \in L^{4}\left(0, T ; W_{0}^{2,4}(\Omega)\right)  \tag{2.14}\\
\left(u_{\varepsilon}^{\prime \prime}(t), v\right)+M\left(\left\|u_{\varepsilon}(t)\right\|^{2}\right)\left(\left(u_{\varepsilon}(t), v\right)\right)+\left(\theta_{\varepsilon}(t), v\right)+\frac{1}{\varepsilon}\left\langle\beta\left(u_{\varepsilon}^{\prime}(t)\right), v\right\rangle \\
=(f(t), v) \text { a.e. in }[0, T] \text { for all } v \in W_{0}^{2,4}(\Omega),  \tag{2.15}\\
\left(\theta_{\varepsilon}^{\prime}(t), v\right)+\left(\left(\theta_{\varepsilon}(t), v\right)\right)+\left(u_{\varepsilon}^{\prime}(t), v\right)+\frac{1}{\varepsilon}\left\langle\beta\left(\theta_{\varepsilon}(t)\right), v\right\rangle \\
=(g(t), v) \text { a.e. in }[0, T] \text { for all } v \in W_{0}^{2,4}(\Omega),  \tag{2.16}\\
u_{\varepsilon}(0)=u_{0 \varepsilon}, u_{\varepsilon}^{\prime}(0)=u_{1 \varepsilon}, \theta_{\varepsilon}(0)=\theta_{0 \varepsilon} . \tag{2.17}
\end{gather*}
$$

Proof We will use Galerkin's method and a compactness argument.
First step (Approximated system) Let $w_{1}, \ldots, w_{m}, \ldots$ be an orthonormal base of $W_{0}^{2,4}(\Omega)$ consisting of eigenfunctions of the Laplacian operator. Let $V_{m}=\left[w_{1}, \ldots, w_{m}\right]$ the subspace of $W_{0}^{2,4}(\Omega)$, generated by the first $m$ vectors $w_{j}$. We look for a pair of functions

$$
u_{\varepsilon m}(t)=\sum_{j=1}^{m} g_{j m}(t) w_{j}, \quad \theta_{\varepsilon m}(t)=\sum_{j=1}^{m} h_{j m}(t) w_{j} \quad \text { in } \quad V_{m}
$$

with $g_{j m} \in C^{2}([0, T])$ and $h_{j m} \in C^{1}([0, T])$, for all $j=1, \ldots, m$. Which are solutions of the following system of ordinary differential equations

$$
\begin{align*}
&\left(u_{\varepsilon m}^{\prime \prime}(t), w_{j}\right)+ M\left(\left\|u_{\varepsilon m}(t)\right\|^{2}\right)\left(\left(u_{\varepsilon m}(t), w_{j}\right)\right)+\left(\theta_{\varepsilon m}(t), w_{j}\right)+ \\
& \frac{1}{\varepsilon}\left\langle\beta\left(u_{\varepsilon m}^{\prime}(t)\right), w_{j}\right\rangle=\left(f(t), w_{j}\right),  \tag{2.18}\\
&\left(\theta_{\varepsilon m}^{\prime}(t), w_{j}\right)+\left(\left(\theta_{\varepsilon m}(t), w_{j}\right)\right)+\left(u_{\varepsilon m}^{\prime}(t), w_{j}\right)+ \\
& \frac{1}{\varepsilon}\left\langle\beta\left(\theta_{\varepsilon m}(t)\right), w_{j}\right\rangle=\left(g(t), w_{j}\right), \tag{2.19}
\end{align*}
$$

for $j=1, \ldots, m$, with the initial conditions: $u_{\varepsilon m}(0)=u_{0 \varepsilon m}, u_{\varepsilon m}^{\prime}(0)=u_{1 \varepsilon m}$, $\theta_{\varepsilon m}(0)=\theta_{0 \varepsilon m}$, where

$$
\begin{gather*}
u_{0 \varepsilon m}=\sum_{j=1}^{m}\left(u_{0 \varepsilon}, w_{j}\right) w_{j} \rightarrow u_{0} \text { strongly in } H_{0}^{1}(\Omega) \cap H^{2}(\Omega), \\
u_{1 \varepsilon m}=\sum_{j=1}^{m}\left(u_{1 \varepsilon}, w_{j}\right) w_{j} \rightarrow u_{1} \text { strongly in } H_{0}^{1}(\Omega)  \tag{2.20}\\
\theta_{0 \varepsilon m}=\sum_{j=1}^{m}\left(\theta_{0 \varepsilon}, w_{j}\right) w_{j} \rightarrow \theta_{0} \text { strongly in } W_{0}^{2,4}(\Omega) .
\end{gather*}
$$

The system (2.18)-(2.20) contains $2 m$ unknowns functions $g_{j m}(t), h_{j m}(t)$; $j=1,2, \ldots, m$. By Caratheodory's Theorem it follows that (2.18)-(2.20) has a local solution $\left\{u_{\varepsilon m}(t), \theta_{\varepsilon m}(t)\right\}$ on $\left[0, t_{m}[\right.$. In order to extend these local solution to the interval $[0, T$ [ and to take the limit in $m$, we must obtain some a priori estimates.
Estimate (i) Note that finite linear combinations of the $w_{j}$ are dense in $W_{0}^{2,4}(\Omega)$, then we can take $w \in W_{0}^{2,4}(\Omega)$ in (2.18) and (2.19) instead of $w_{j}$. Taking $w=2 u_{\varepsilon m}^{\prime}(t)$ in (2.18) and $w=2 \theta_{\varepsilon m}(t)$ in (2.19) we obtain

$$
\begin{gather*}
\frac{d}{d t}\left|u_{\varepsilon m}^{\prime}(t)\right|^{2}+\frac{d}{d t} \widehat{M}\left(\left\|u_{\varepsilon m}(t)\right\|^{2}\right)+\frac{2}{\varepsilon}\left\langle\beta\left(u_{\varepsilon m}^{\prime}(t)\right), u_{\varepsilon m}^{\prime}(t)\right\rangle \\
=2\left(f(t), u_{\varepsilon m}^{\prime}(t)\right)-2\left(\theta_{\varepsilon m}(t), u_{\varepsilon m}^{\prime}(t)\right),  \tag{2.21}\\
\frac{d}{d t}\left|\theta_{\varepsilon m}(t)\right|^{2}+\left\|\theta_{\varepsilon m}(t)\right\|^{2}+\frac{2}{\varepsilon}\left\langle\beta\left(\theta_{\varepsilon m}(t)\right), \theta_{\varepsilon m}(t)\right\rangle \\
=-2\left(u_{\varepsilon m}^{\prime}(t), \theta_{\varepsilon m}(t)\right)+2\left\langle g(t), \theta_{\varepsilon m}(t)\right\rangle, \tag{2.22}
\end{gather*}
$$

where $\widehat{M}(\lambda)=\int_{0}^{\lambda} M(s) d s$. Adding (2.21) and (2.22), and integrating from 0 to $t \leq t_{m}$ we have

$$
\begin{array}{r}
\left|u_{\varepsilon m}^{\prime}(t)\right|^{2}+\left|\theta_{\varepsilon m}(t)\right|^{2}+\int_{0}^{\left\|u_{\varepsilon m}(t)\right\|^{2}} M(s) d s+\int_{0}^{t}\left\|\theta_{\varepsilon m}(s)\right\|^{2} d s+ \\
\frac{2}{\varepsilon} \int_{0}^{t}\left\langle\beta\left(u_{\varepsilon m}^{\prime}(s)\right), u_{\varepsilon m}^{\prime}(s)\right\rangle d s+\frac{2}{\varepsilon} \int_{0}^{t}\left\langle\beta\left(\theta_{\varepsilon m}(s)\right), \theta_{\varepsilon m}(s)\right\rangle d s \leq  \tag{2.23}\\
\int_{0}^{T}|f(t)|^{2} d s+3 \int_{0}^{t}\left|u_{\varepsilon m}^{\prime}(s)\right|^{2} d s+3 \int_{0}^{t}\left|\theta_{\varepsilon m}(s)\right|^{2} d s+ \\
\int_{0}^{T}|g(t)|^{2} d t+\left|\theta_{0 \varepsilon m}\right|^{2}+\left|u_{1 \varepsilon m}\right|^{2}
\end{array}
$$

From (2.20) and hypothesis (A2) there exists a positive constant $C$, independently of $\varepsilon>0$ and $m$ such that

$$
\begin{array}{r}
\left|u_{\varepsilon m}^{\prime}(t)\right|^{2}+\left|\theta_{\varepsilon m}(t)\right|^{2}+\int_{0}^{\left\|u_{\varepsilon m}(t)\right\|^{2}} M(s) d s+\int_{0}^{t}\left\|\theta_{\varepsilon m}(s)\right\|^{2} d s+ \\
\frac{2}{\varepsilon}\left[\int_{0}^{t}\left\langle\beta\left(u_{\varepsilon m}^{\prime}(s)\right), u_{\varepsilon m}^{\prime}(s)\right\rangle d s+\int_{0}^{t}\left\langle\beta\left(\theta_{\varepsilon m}(s)\right), \theta_{\varepsilon m}(s)\right\rangle d s\right] \leq  \tag{2.24}\\
C+3 \int_{0}^{t}\left|u_{\varepsilon m}^{\prime}(s)\right|^{2} d s+3 \int_{0}^{t}\left|\theta_{\varepsilon m}(s)\right|^{2} d s .
\end{array}
$$

Next we analyze the sign of the term $\int_{0}^{t}\left\langle\beta\left(u_{\varepsilon m}^{\prime}(s)\right), u_{\varepsilon m}^{\prime}(s)\right\rangle d s$. Note that $-u_{\varepsilon m}^{\prime}(t) \leq u_{\varepsilon m}^{\prime}(t)^{-}$. Then, by the definition of $\beta$, we have

$$
\begin{aligned}
\left\langle\beta\left(u_{\varepsilon m}^{\prime}(t)\right), u_{\varepsilon m}^{\prime}(t)\right\rangle= & \left\langle\beta_{1}\left(u_{\varepsilon m}^{\prime}(t)\right), u_{\varepsilon m}^{\prime}(t)\right\rangle+\left\langle\beta_{2}\left(u_{\varepsilon m}^{\prime}(t)\right), u_{\varepsilon m}^{\prime}(t)\right\rangle \\
= & -\int_{\Omega}\left(u_{\varepsilon m}^{\prime}(x, t)\right)^{-} u_{\varepsilon m}^{\prime}(x, t) d x+ \\
& \int_{\Omega}\left(1-\left|\Delta u_{\varepsilon m}^{\prime}(t)\right|^{2}\right)^{-}\left(\Delta u_{\varepsilon m}^{\prime}(t)\right)^{2} d x \geq 0 .
\end{aligned}
$$

Similarly, we have,

$$
\left\langle\beta\left(\theta_{\varepsilon m}(t)\right), \theta_{\varepsilon m}(t)\right\rangle \geq 0
$$

Because $M(s) \geq 0$ for all $s$, from (2.24) and Gronwall's inequality it follows that

$$
\left|u_{\varepsilon m}^{\prime}(t)\right|^{2}+\left|\theta_{\varepsilon m}(t)\right|^{2} \leq C_{1}, \quad \forall \varepsilon, m, \forall t \in\left[0, t_{m}[.\right.
$$

Returning to (2.24), we obtain

$$
\begin{array}{r}
\left|u_{\varepsilon m}^{\prime}(t)\right|^{2}+\left|\theta_{\varepsilon m}(t)\right|^{2}+\int_{0}^{\left\|u_{\varepsilon m}(t)\right\|^{2}} M(s) d s+\int_{0}^{t}\left\|\theta_{\varepsilon m}(s)\right\|^{2} d s+ \\
\frac{2}{\varepsilon}\left[\int_{0}^{t}\left\langle\beta\left(u_{\varepsilon m}^{\prime}(s)\right), u_{\varepsilon m}^{\prime}(s)\right\rangle d s+\int_{0}^{t}\left\langle\beta\left(\theta_{\varepsilon m}(s)\right), \theta_{\varepsilon m}(s)\right\rangle d s\right] \leq C+3 C_{1} T . \tag{2.25}
\end{array}
$$

Since $\int_{0}^{\infty} M(s) d s=\infty$, by (2.25) we can find $C_{1}$ such that

$$
\left\|u_{\varepsilon m}(t)\right\|^{2} \leq C_{1}, \quad \forall \varepsilon, m, \forall t \in\left[0, t_{m}[.\right.
$$

Thus there exists, other constant $C=C(T)$ independently of $\varepsilon, m$ and $t \in\left[0, t_{m}[\right.$ such that

$$
\begin{array}{r}
\left|u_{\varepsilon m}^{\prime}(t)\right|^{2}+\left|\theta_{\varepsilon m}(t)\right|^{2}+\left\|u_{\varepsilon m}(t)\right\|^{2}+\int_{0}^{t}\left\|\theta_{\varepsilon m}(s)\right\|^{2} d s+  \tag{2.26}\\
\frac{2}{\varepsilon} \int_{0}^{t}\left\langle\beta\left(u_{\varepsilon m}^{\prime}(s)\right), u_{\varepsilon m}^{\prime}(s)\right\rangle d s+\frac{2}{\varepsilon} \int_{0}^{t}\left\langle\beta\left(\theta_{\varepsilon m}(s)\right), \theta_{\varepsilon m}(s)\right\rangle d s \leq C
\end{array}
$$

Estimate (ii) We will obtain a bound for $\left|u_{\varepsilon m}^{\prime \prime}(0)\right|$. For this, we note that $u_{1}$ being in the interior of $\mathbb{K}$ and $u_{1 \varepsilon m} \rightarrow u_{1}$ imply that $u_{1 \varepsilon m}$ is in the interior of $\mathbb{K}$, for $m$ large. Therefore, $\left|\Delta u_{1 \varepsilon m}\right| \leq 1$ and $u_{1 \varepsilon m} \geq 0$ a. e. in $\Omega$. Also we have $\left(u_{1 \varepsilon m}\right)^{-}=0$ and $\left(1-\left|\Delta u_{1 \varepsilon m}\right|^{2}\right)^{-}=0$ a. e. in $\Omega$. Thus

$$
\begin{equation*}
\left\langle\beta\left(u_{1 \varepsilon m}\right), u_{\varepsilon m}^{\prime \prime}(0)\right\rangle=0 \tag{2.27}
\end{equation*}
$$

Taking $t=0$ and $v=u_{\varepsilon m}^{\prime \prime}(0)$ in (2.14), and observing (2.27), we obtain

$$
\left|u_{\varepsilon m}^{\prime \prime}(0)\right|^{2}+M\left(\left\|u_{0 \varepsilon m}\right\|^{2}\right)\left(\left(u_{0 \varepsilon m}, u_{\varepsilon m}^{\prime \prime}(0)\right)\right)+\left(\theta_{\varepsilon m}, u_{\varepsilon m}^{\prime \prime}(0)\right)=\left(f(0), u_{\varepsilon m}^{\prime \prime}(0)\right)
$$

which implies

$$
\left|u_{\varepsilon m}^{\prime \prime}(0)\right|^{2} \leq|f(0)|\left\|u _ { \varepsilon m } ^ { \prime \prime } ( 0 ) | + M ( \| u _ { 0 \varepsilon m } \| ^ { 2 } ) | \Delta u _ { 0 \varepsilon m } | | u _ { \varepsilon m } ^ { \prime \prime } ( 0 ) \left|+\left|\theta_{0 \varepsilon m} \| u_{\varepsilon m}^{\prime \prime}(0)\right| .\right.\right.
$$

From $u_{0 \varepsilon m} \rightarrow u_{0}$ in $H_{0}^{1}(\Omega) \cap H^{2}(\Omega), \theta_{0 \varepsilon m} \rightarrow \theta_{0}$ in $H_{0}^{1}(\Omega), M \in C^{1}[0, \infty)$, and $f \in H^{1}\left(0, T ; L^{2}(\Omega)\right.$, we obtain

$$
\begin{equation*}
\left|u_{\varepsilon m}^{\prime \prime}(0)\right| \leq C, \tag{2.28}
\end{equation*}
$$

with $C$ independent of $\varepsilon, m$, and $t \in[0, T[$.
Estimate (iii) We obtain estimates for $\left|\Delta u_{\varepsilon m}^{\prime}(t)\right|,\left|\Delta \theta_{\varepsilon m}(t)\right|, \int_{0}^{t}\left|u_{\varepsilon m}^{\prime}(s)\right|^{3} d s$, and $\int_{0}^{t}\left|\theta_{\varepsilon m}^{\prime}(s)\right|^{3} d s$. For this, we need the following lemma whose proof can be found in [6].

Lemma 2.5 Let $h: \Omega \rightarrow \mathbb{R}$ be an arbitrary function. Then

$$
h^{4}-1 \leq 2\left(1-h^{2}\right)^{-} h^{2} .
$$

By this lemma, we have

$$
\left(\Delta u_{\varepsilon m}^{\prime}\right)^{4}-1 \leq 2\left[1-\left(\Delta u_{\varepsilon m}^{\prime}\right)^{2}\right]^{-}\left(\Delta u_{\varepsilon m}^{\prime}\right)^{2} .
$$

Therefore,

$$
\begin{aligned}
\left\|\Delta u_{\varepsilon m}^{\prime}\right\|_{L^{4}(Q)}^{4} & =\int_{0}^{T} \int_{\Omega}\left|\Delta u_{\varepsilon m}^{\prime}(x, t)\right|^{4} d x d t \\
& \leq 2 \int_{0}^{T} \int_{\Omega}\left(1-\Delta\left|u_{\varepsilon m}^{\prime}(x, t)\right|^{2}\right)^{-}\left(\Delta u_{\varepsilon m}^{\prime}(x, t)\right)^{2} d x d t+\operatorname{meas}(Q) \\
& =2 \int_{0}^{T}\left\langle\beta_{2}\left(\Delta u_{\varepsilon m}^{\prime}(t)\right), u_{\varepsilon m}^{\prime}(t)\right\rangle d x d t+\operatorname{meas}(Q) \\
& \leq 2 \int_{0}^{T}\left(\beta\left(u_{\varepsilon m}^{\prime}(t)\right), u_{\varepsilon m}^{\prime}(t)\right) d t+\operatorname{meas}(Q)
\end{aligned}
$$

Using (2.26), we obtain

$$
\begin{equation*}
\left\|\Delta u_{\varepsilon m}^{\prime}\right\|_{L^{4}(Q)}^{4} \leq C \varepsilon+\operatorname{meas}(Q)<C+\operatorname{meas}(Q) \tag{2.29}
\end{equation*}
$$

with $C$ independent of $\varepsilon, m$ and $t \in[0, T[$. Analogously, using the Lemma 2.5 with $h=\Delta \theta_{\varepsilon m}$ and (2.26), we obtain

$$
\begin{equation*}
\left\|\Delta \theta_{\varepsilon m}\right\|_{L^{4}(Q)}^{4} \leq C+\operatorname{meas}(Q) \tag{2.30}
\end{equation*}
$$

On the other hand, from (2.18) and (2.19), we obtain

$$
\begin{array}{r}
\left.\frac{1}{\varepsilon}\left\langle\beta\left(u_{\varepsilon m}^{\prime}(t)\right), v\right\rangle+\frac{1}{\varepsilon}\left\langle\beta\left(\theta_{\varepsilon m}(t)\right), v\right\rangle \leq C(|f(t)|)+|g(t)|\right)\|v\|+ \\
\left.M\left(\left\|u_{\varepsilon m}(t)\right\|^{2}\right)\left\|u_{\varepsilon m}(t)\right\| \cdot\|v\|+C\left(\left|\theta_{\varepsilon m}(t)\right|\right)+\left|u_{\varepsilon m}^{\prime}(t)\right|\right) \leq \\
\left|f ( t ) \left\|v \left|+\left|g(t)\left\|v\left|+M\left(\left\|u_{\varepsilon m}(t)\right\|^{2}\right)\left\|u_{\varepsilon m}(t)\right\| \cdot\|v\|\right| u_{\varepsilon m}^{\prime \prime}(t)\right\| v\right|+\left|\theta_{\varepsilon m}(t) \| v\right|+\right.\right.\right. \\
\left|\theta _ { \varepsilon m } ^ { \prime } ( t ) \left\|v \left|+\left\|\theta_{\varepsilon m}(t)\right\| \cdot\|v\|+\left|u_{\varepsilon m}^{\prime}(t) \| v\right| \leq\right.\right.\right. \\
C\left\{|f(t)|+|g(t)|+\left|u_{\varepsilon m}^{\prime \prime}(t)\right|+\left|\theta_{\varepsilon m}(t)\right|+\left|\theta_{\varepsilon m}^{\prime}(t)\right|+\left|u_{\varepsilon m}^{\prime}(t)\right|\right\}\|v\|+ \\
\left(M\left(\left\|u_{\varepsilon m}(t)\right\|^{2}\right)\left\|u_{\varepsilon m}(t)\right\|+\left\|\theta_{\varepsilon m}(t)\right\|\right)\|v\| .
\end{array}
$$

Since $f, g \in C^{0}\left([0, T] ; L^{2}(\Omega)\right)$, from the inequality above we obtain

$$
\begin{align*}
& \frac{1}{\varepsilon}\left|\left\langle\beta\left(u_{\varepsilon m}^{\prime}(t)\right), v\right\rangle\right| \leq C_{1}\|v\| \quad \forall v \in W_{0}^{2,4}(\Omega),  \tag{2.31}\\
& \frac{1}{\varepsilon}\left|\left\langle\beta\left(\theta_{\varepsilon m}(t)\right), v\right\rangle\right| \leq C_{1}\|v\| \quad \forall v \in W_{0}^{2,4}(\Omega), \tag{2.32}
\end{align*}
$$

independent of $\varepsilon, m$ and $t \in[0, T]$; this is,

$$
\begin{align*}
\left\|\beta\left(u_{\varepsilon m}^{\prime}\right)\right\|_{L^{\infty}\left(0, T ; W^{2,4 / 3}(\Omega)\right)} \leq C_{1}  \tag{2.33}\\
\left\|\beta\left(\theta_{\varepsilon m}\right)\right\|_{L^{\infty}\left(0, T ; W^{2,4 / 3}(\Omega)\right)} \leq C_{1} \tag{2.34}
\end{align*}
$$

To estimate $\left|\Delta u_{\varepsilon m}(t)\right|$, we note that

$$
\begin{aligned}
\left|\Delta u_{\varepsilon m}(t)\right|^{2} & =\left|\Delta u_{0 \varepsilon m}\right|^{2}+\int_{0}^{t} \frac{d}{d s}\left|\Delta u_{\varepsilon m}(s)\right|^{2} d s \\
& =\left|\Delta u_{0 \varepsilon m}\right|^{2}+2 C \int_{0}^{t}\left|\Delta u_{\varepsilon m}(s)\right|\left\|\Delta u_{\varepsilon m}^{\prime}(s)\right\| \\
& \leq\left|\Delta u_{0 \varepsilon m}\right|^{2}+C \int_{0}^{t}\left(\left|\Delta u_{\varepsilon m}(s)\right|^{2}+\left\|\Delta u_{\varepsilon m}^{\prime}(s)\right\|^{2}\right) d s
\end{aligned}
$$

where $C$ is the constant of the embedding from $H_{0}^{1}(\Omega)$ into $L^{2}(\Omega)$. From (2.20), (2.29) and Gronwall's inequality, we obtain

$$
\begin{equation*}
\left|\Delta u_{\varepsilon m}(t)\right|^{2}<C, \tag{2.35}
\end{equation*}
$$

where $C$ is a constant independent of $\varepsilon, m$ and $t \in[0, T[$.
Next, we obtain an estimate for $\int_{0}^{t}\left\|\Delta u_{\varepsilon m}^{\prime}(s)\right\|^{3} d s$. Let $C$ represent various positives constants of the embedding in the sequence

$$
W_{0}^{2,4}(\Omega) \hookrightarrow H_{0}^{2}(\Omega) \hookrightarrow H_{0}^{1}(\Omega)
$$

Observing that $W_{H^{2}(\Omega)} \leq C|\Delta w|$ we obtain

$$
\begin{equation*}
\int_{0}^{t}\left\|u_{\varepsilon m}^{\prime}(s)\right\|^{3} d s \leq C \int_{0}^{t}\left\|u_{\varepsilon m}^{\prime}(s)\right\|_{H^{2}(\Omega)}^{3} d s \leq C \int_{0}^{t}\left|\Delta u_{\varepsilon m}^{\prime}(s)\right|^{3} d s \tag{2.36}
\end{equation*}
$$

independently of $\varepsilon$ and $m$. It follows from Höder's inequality that

$$
\int_{0}^{t}\left|\Delta u_{\varepsilon m}^{\prime}(s)\right|^{3} d s \leq\left(\int_{0}^{T} 1^{1} d s\right)^{1 / 4}\left(\int_{0}^{t}\left\|\Delta u_{\varepsilon m}^{\prime}(s)\right\|^{4} d s\right)^{3 / 4}
$$

and substituting in (2.36) and observing (2.29), we obtain

$$
\begin{equation*}
\int_{0}^{t}\left\|u_{\varepsilon m}^{\prime}(s)\right\|^{3} d s \leq C \tag{2.37}
\end{equation*}
$$

independent of $\varepsilon, m$ and $t \in[0, T[$.
Estimate (iv) We will obtain the estimative for $\left|u_{\varepsilon m}^{\prime \prime}(t)\right|$. Let us consider the functions

$$
\begin{gathered}
\Psi_{h}(t)=\frac{1}{h}\left[u_{\varepsilon m}(t+h)-u_{\varepsilon m}(t)\right] \\
M_{h}(t)=\frac{1}{h}\left[M\left(\left\|u_{\varepsilon m}(t+h)\right\|^{2}\right)-M\left(\left\|u_{\varepsilon m}(t)\right\|^{2}\right)\right] \\
f_{h}(t)=\frac{1}{h}[f(t+h)-f(t)]
\end{gathered}
$$

Setting $w=2 \Psi_{h}^{\prime}(t)$ in (1.14), we obtain

$$
\begin{array}{r}
2\left(u_{\varepsilon m}^{\prime \prime}(t), \Psi_{h}^{\prime}(t)\right)+2 M\left(\left\|u_{\varepsilon m}(t)\right\|^{2}\right)\left(\left(u_{\varepsilon m}(t), \Psi_{h}^{\prime}(t)\right)\right)+ \\
\left.\frac{2}{\varepsilon}\left\langle\beta\left(u_{\varepsilon m}^{\prime}(t)\right), \Psi_{h}^{\prime}(t)\right)\right\rangle=2\left(f(t), \Psi_{h}^{\prime}(t)\right) \tag{2.38}
\end{array}
$$

Substituting $t$ by $t+h \in[0, T]$ in (2.18) and taking $w=2 \Psi_{h}^{\prime}(t)$, we set

$$
\begin{array}{r}
2\left(u_{\varepsilon m}^{\prime \prime}(t+h), \Psi_{h}^{\prime}(t)\right)+2 M\left(\left\|u_{\varepsilon m}(t+h)\right\|^{2}\right)\left(\left(u_{\varepsilon m}(t+h), \Psi_{h}^{\prime}(t)\right)\right)+ \\
\left.\frac{2}{\varepsilon}\left\langle\beta\left(u_{\varepsilon m}^{\prime}(t+h)\right), \Psi_{h}^{\prime}(t)\right)\right\rangle=2\left(f(t+h), \Psi_{h}^{\prime}(t)\right) \tag{2.39}
\end{array}
$$

Now, from (2.38) and (2.39) it follows, for $h \neq 0$, that

$$
\begin{array}{r}
2\left(\frac{u_{\varepsilon m}^{\prime \prime}(t+h)-u_{\varepsilon m}^{\prime \prime}(t)}{h}, \Psi_{h}^{\prime}(t)\right)+\frac{2}{h} M\left(\left\|u_{\varepsilon m}(t+h)\right\|^{2}\right)\left(\left(u_{\varepsilon m}(t+h), \Psi_{h}^{\prime}(t)\right)\right)- \\
\frac{2}{h} M\left(\left\|u_{\varepsilon m}(t)\right\|^{2}\right)\left(\left(u_{\varepsilon m}(t), \Psi_{h}^{\prime}(t)\right)\right)+\frac{2}{h \varepsilon}\left\langle\beta\left(u_{\varepsilon m}^{\prime}(t+h)\right)-\beta\left(u_{\varepsilon m}^{\prime}(t)\right), \Psi_{h}^{\prime}(t)\right\rangle= \\
2\left(\frac{f(t+h)-f(t)}{h}, \Psi_{h}^{\prime}(t)\right)
\end{array}
$$

which implies

$$
\begin{array}{r}
\frac{d}{d t}\left|\Psi_{h}^{\prime}(t)\right|^{2}+\frac{2}{h} M\left(\left\|u_{\varepsilon m}(t+h)\right\|^{2}\right)\left(u_{\varepsilon m}(t+h), \Psi_{h}^{\prime}(t)\right)- \\
\frac{2}{h} M\left(\left\|u_{\varepsilon m}(t)\right\|^{2}\right)\left(\left(u_{\varepsilon m}(t), \Psi_{h}^{\prime}(t)\right)\right)+  \tag{2.40}\\
\frac{2}{h \varepsilon}\left\langle\beta\left(u_{\varepsilon m}^{\prime}(t+h)\right)-\beta\left(u_{\varepsilon m}^{\prime}(t)\right), \Psi_{h}^{\prime}(t)\right\rangle=2\left(f_{h}(t), \Psi_{h}^{\prime}(t)\right) .
\end{array}
$$

Nothing that

$$
\begin{array}{r}
\frac{2}{h} M\left(\left\|u_{\varepsilon m}(t+h)\right\|^{2}\right)\left(\left(u_{\varepsilon m}(t+h), \Psi_{h}^{\prime}(t)\right)\right)-\frac{2}{h} M\left(\left\|u_{\varepsilon m}(t)\right\|^{2}\right)\left(\left(u_{\varepsilon m}(t), \Psi_{h}^{\prime}(t)\right)\right)= \\
2 M\left(\left\|u_{\varepsilon m}(t+h)\right\|^{2}\right)\left(\left(\Psi_{h}(t), \Psi_{h}^{\prime}(t)\right)\right)+\frac{2 M\left(\left\|u_{\varepsilon m}(t+h)\right\|^{2}\right)}{h}\left(\left(u_{\varepsilon m}(t), \Psi_{h}^{\prime}(t)\right)\right)- \\
\frac{2 M\left(\left\|u_{\varepsilon m}(t)\right\|^{2}\right)}{h}\left(\left(u_{\varepsilon m}(t), \Psi_{h}^{\prime}(t)\right)\right)= \\
M\left(\left\|u_{\varepsilon m}(t+h)\right\|^{2}\right) \frac{d}{d t}\left(\left\|\Psi_{h}(t)\right\|^{2}\right)+2 M_{h}(t)\left(\left(u_{\varepsilon m}(t), \Psi_{h}^{\prime}(t)\right)\right)
\end{array}
$$

From (2.40) it follows that

$$
\begin{array}{r}
\frac{d}{d t}\left|\Psi_{h}^{\prime}(t)\right|^{2}+M\left(\left\|u_{\varepsilon m}(t+h)\right\|^{2}\right) \frac{d}{d t}\left(\left\|\Psi_{h}(t)\right\|^{2}\right)+ \\
\frac{2}{h^{2} \varepsilon}\left\langle\beta\left(u_{\varepsilon m}^{\prime}(t+h)\right)-\beta\left(u_{\varepsilon m}^{\prime}(t)\right), u_{\varepsilon m}^{\prime}(t+h)-u_{\varepsilon m}^{\prime}(t)\right\rangle= \\
-2 M_{h}(t)\left(\left(u_{\varepsilon m}(t), \Psi_{h}^{\prime}(t)\right)\right)+2\left(f_{h}(t), \Psi_{h}^{\prime}(t)\right) .
\end{array}
$$

By the monotonicity of the operator $\beta$, we obtain

$$
\begin{align*}
& \frac{d}{d t}\left|\Psi_{h}^{\prime}(t)\right|^{2}+M\left(\left\|u_{\varepsilon m}(t+h)\right\|^{2}\right) \frac{d}{d t}\left(\left\|\Psi_{h}(t)\right\|^{2}\right)  \tag{2.41}\\
\leq & 2\left|M_{h}(t)\left(\Delta u_{\varepsilon m}(t), \Psi_{h}^{\prime}(t)\right)\right|+2\left|\left(f_{h}(t), \Psi_{h}^{\prime}(t)\right)\right| .
\end{align*}
$$

Integrating (2.41) in $t$ we have

$$
\begin{array}{r}
\left|\Psi_{h}^{\prime}(t)\right|^{2}+\int_{0}^{t} M\left(\left\|u_{\varepsilon m}(s+h)\right\|^{2}\right) \frac{d}{d s}\left(\left\|\Psi_{h}(s)\right\|^{2}\right) d s \leq \\
\left|\Psi_{h}^{\prime}(0)\right|^{2}+2 \int_{0}^{t}\left|M_{h}(s)\left(\Delta u_{\varepsilon m}(s), \Psi_{h}^{\prime}(s)\right)\right| d s+2 \int_{0}^{t}\left|\left(f_{h}(s), \Psi_{h}^{\prime}(s)\right)\right| d s
\end{array}
$$

Taking the limit as $h \rightarrow 0$, it follows

$$
\begin{array}{r}
\left|u_{\varepsilon m}^{\prime \prime}(t)\right|^{2}+\int_{0}^{t} M\left(\left\|u_{\varepsilon m}(s)\right\|^{2}\right) \frac{d}{d s}\left\|u_{\varepsilon m}^{\prime}(s)\right\|^{2} d s \leq \\
\left|u_{\varepsilon m}^{\prime \prime}(0)\right|^{2}+2 \int_{0}^{t}\left[M^{\prime}\left(\left\|u_{\varepsilon m}(s)\right\|^{2}\right) \frac{d}{d s}\left\|u_{\varepsilon m}(s)\right\|^{2}\right]\left|\Delta u_{\varepsilon m}(s), u_{\varepsilon m}^{\prime \prime}(s)\right| d s+  \tag{2.42}\\
2 \int_{0}^{t}\left|\left(f^{\prime}(s), u_{\varepsilon m}^{\prime \prime}(s)\right)\right| d s .
\end{array}
$$

Using Assumption (A2) and (2.28), we obtain, from (2.42),

$$
\begin{array}{r}
\left|u_{\varepsilon m}^{\prime \prime}(t)\right|^{2}+\int_{0}^{t} M\left(\left\|u_{\varepsilon m}(s)\right\|^{2}\right) \frac{d}{d s}\left\|u_{\varepsilon m}^{\prime}(s)\right\|^{2} d s \leq \\
C+4 \int_{0}^{t}\left|M^{\prime}\left(\left\|u_{\varepsilon m}(s)\right\|^{2}\right)\right|\left\|u_{\varepsilon m}^{\prime}(s)\right\|\left\|u_{\varepsilon m}(s)\right\|\left\|\Delta u_{\varepsilon m}(s)\right\|\left\|u_{\varepsilon m}^{\prime \prime}(s)\right\| d s+  \tag{2.43}\\
\int_{0}^{t}\left|u_{\varepsilon m}^{\prime \prime}(s)\right|^{2} d s .
\end{array}
$$

From (2.26), (2.35) and (2.37) it follows that there exists a positive constant $C$ such that

$$
\begin{equation*}
\left\|u_{\varepsilon m}(t)\right\|^{2}+\left|\Delta u_{\varepsilon m}(t)\right|^{2}+\int_{0}^{t}\left\|u_{\varepsilon m}^{\prime}(s)\right\|^{2} d s \leq C, \quad \forall \varepsilon, m, t \tag{2.44}
\end{equation*}
$$

Since $M \in C^{1}([0, \infty))$, we also obtain from (2.44),

$$
\begin{equation*}
\left|M^{\prime}\left(\left\|u_{\varepsilon m}(s)\right\|^{2}\right)\right| \leq C, \quad \forall \varepsilon, m, t \tag{2.45}
\end{equation*}
$$

On the other hand, using integration by parts, we get

$$
\begin{array}{r}
\int_{0}^{t} M\left(\left\|u_{\varepsilon m}(s)\right\|^{2}\right) \frac{d}{d s}\left\|u_{\varepsilon m}^{\prime}(s)\right\|^{2} d s= \\
M\left(\left\|u_{\varepsilon m}(s)\right\|^{2}\right)\left\|u_{\varepsilon m}^{\prime}(s)\right\|^{2}-M\left(\left\|u_{0 \varepsilon m}(s)\right\|^{2}\right)\left\|u_{1 \varepsilon m}(s)\right\|^{2}- \\
\int_{0}^{t} M^{\prime}\left(\left\|u_{\varepsilon m}(s)\right\|^{2}\right) \frac{d}{d s}\left\|u_{\varepsilon m}^{\prime}(s)\right\|^{2}\left\|u_{\varepsilon m}^{\prime}(s)\right\|^{2} d s .
\end{array}
$$

Estimates (2.37), (2.44), and (2.45) together imply

$$
-\int M^{\prime}\left(\left\|u_{\varepsilon m}(s)\right\|^{2}\right) \frac{d}{d s}\left\|u_{\varepsilon m}(s)\right\|^{2}\left\|u_{\varepsilon m}^{\prime}(s)\right\|^{2} d s \geq-C \int_{0}^{t}\left\|u_{\varepsilon m}^{\prime}(s)\right\|^{3} \geq-C
$$

independently of $\varepsilon, m$, and $t$. Therefore,

$$
\begin{equation*}
\int_{0}^{t} M\left(\left\|u_{\varepsilon m}(s)\right\|^{2}\right) \frac{d}{d s}\left\|u_{\varepsilon m}^{\prime}(s)\right\|^{2} d s \geq M\left(\left\|u_{\varepsilon m}(t)\right\|^{2}\right)\left\|u_{\varepsilon m}^{\prime}(t)\right\|^{2}-C \tag{2.46}
\end{equation*}
$$

independently of $\varepsilon, m$ and $t$. Here, $C$ denote various positive constants. Making use of inequalities (2.44)-(2.46) in (2.43) we obtain

$$
\begin{equation*}
\left|u_{\varepsilon m}^{\prime \prime}(t)\right|^{2}+M\left(\left\|u_{\varepsilon m}(t)\right\|^{2}\right)\left\|u_{\varepsilon m}^{\prime}(s)\right\|^{2} \leq C+C \int_{0}^{t}\left|u_{\varepsilon m}^{\prime \prime}(s)\right|^{2} d s \tag{2.47}
\end{equation*}
$$

independently of $\varepsilon, m$, and $t$. From (2.47) and using Gronwall's inequality, we have

$$
\begin{equation*}
\left|u_{\varepsilon m}^{\prime \prime}(t)\right|^{2} \leq C \tag{2.48}
\end{equation*}
$$

independently of $\varepsilon, m$ and $t$.
Passage to the limit By estimates (2.26) and (2.35) we obtain

$$
\begin{gathered}
\left(u_{\varepsilon m}\right) \quad \text { is bounded in } L^{\infty}\left(0, T ; H_{0}^{1}(\Omega) \cap H^{2}(\Omega)\right), \\
\left(u_{\varepsilon m}^{\prime}\right) \quad \text { is bounded in } \quad L^{\infty}\left(0, T ; L^{2}(\Omega)\right), \\
\left(\theta_{\varepsilon m}\right) \quad \text { is bounded in } \quad L^{\infty}\left(0, T ; L^{2}(\Omega)\right) .
\end{gathered}
$$

Therefore, we can get subsequences, if necessary, denoted by $\left(u_{\varepsilon m}\right)$ and $\left(\theta_{\varepsilon m}\right)$, such that

$$
\begin{gather*}
u_{\varepsilon m} \rightarrow u_{\varepsilon} \quad \text { weak star in } \quad L^{\infty}\left(0, T ; H_{0}^{1}(\Omega) \cap H^{2}(\Omega)\right),  \tag{2.49}\\
u_{\varepsilon m}^{\prime} \rightarrow u_{\varepsilon}^{\prime} \quad \text { weak star in } \quad L^{\infty}\left(0, T ; L^{2}(\Omega)\right),  \tag{2.50}\\
\theta_{\varepsilon m} \rightarrow \theta_{\varepsilon} \quad \text { weak star in } \quad L^{\infty}\left(0, T ; L^{2}(\Omega)\right) . \tag{2.51}
\end{gather*}
$$

Similarly by (2.48), we obtain

$$
\begin{equation*}
u_{\varepsilon m}^{\prime \prime} \rightarrow u_{\varepsilon}^{\prime \prime} \quad \text { weak star in } \quad L^{\infty}\left(0, T ; L^{2}(\Omega)\right) \tag{2.52}
\end{equation*}
$$

Also, by (2.33) and (2.34), there exist functions $\mathcal{X}_{\varepsilon}, \phi_{\varepsilon} \in L^{4 / 3}\left(0, T ; W^{2,4 / 3}(\Omega)\right)$ such that

$$
\begin{align*}
& \beta\left(u_{\varepsilon m}^{\prime}\right) \rightarrow \mathcal{X}_{\varepsilon} \quad \text { in } \quad L^{4 / 3}\left(0, T ; W^{2,4 / 3}(\Omega)\right),  \tag{2.53}\\
& \beta\left(\theta_{\varepsilon m}\right) \rightarrow \phi_{\varepsilon} \quad \text { in } \quad L^{4 / 3}\left(0, T ; W^{2,4 / 3}(\Omega)\right) . \tag{2.54}
\end{align*}
$$

It follows from the embeding $W_{0}^{2,4}(\Omega)$ into $L^{4}(\Omega)$ and of (2.29) that

$$
\left|u_{\varepsilon m}^{\prime}\right|_{L^{4}\left(0, T ; W_{0}^{2,4}(\Omega)\right)}^{4} \leq C\left\|\Delta u_{\varepsilon m}^{\prime}\right\|_{L^{4}(\Omega)}^{4} \leq K
$$

Therefore, there exists a subsequence of $\left(u_{\varepsilon m}\right)$ such that

$$
\begin{equation*}
u_{\varepsilon m}^{\prime} \rightarrow u_{\varepsilon}^{\prime} \quad \text { weak star in } \quad L^{4}\left(0, T ; W_{0}^{2,4}(\Omega)\right) \tag{2.55}
\end{equation*}
$$

Analogously, by (2.30) we obtain

$$
\begin{equation*}
\theta_{\varepsilon m} \rightarrow \theta_{\varepsilon} \quad \text { weak star in } \quad L^{4}\left(0, T ; W_{0}^{2,4}(\Omega)\right) . \tag{2.56}
\end{equation*}
$$

Being the embedding from $H_{0}^{1}(\Omega) \cap H^{2}(\Omega)$ into $H_{0}^{1}(\Omega)$ compact, we can set a subsequence, again denoted by $\left(u_{\varepsilon m}\right)$, such that:

$$
\begin{equation*}
u_{\varepsilon m} \rightarrow u_{\varepsilon} \quad \text { strong in } \quad L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right) . \tag{2.57}
\end{equation*}
$$

By assumption (A1) we obtain

$$
\begin{equation*}
M\left(\left\|u_{\varepsilon m}(t)\right\|^{2}\right) \rightarrow M\left(\left\|u_{\varepsilon}(t)\right\|^{2}\right) \tag{2.58}
\end{equation*}
$$

From the compactness of the embedding $H_{0}^{1}(\Omega) \hookrightarrow L^{2}(\Omega)$ we obtain

$$
\begin{equation*}
u_{\varepsilon m}^{\prime} \rightarrow u_{\varepsilon}^{\prime} \quad \text { strong in } \quad L^{2}\left(0, T ; L^{2}(\Omega)\right) . \tag{2.59}
\end{equation*}
$$

Then taking limit in the system (2.18)-(2.20), when $m \rightarrow \infty$, with $w=v \varphi(t)$, $v \in W_{0}^{2,4}(\Omega), \varphi(t) \in \mathcal{D}(0, T)$ instead of $w_{j}$, and using the fact that $\beta$ is monotone and hemicontinous operator, we obtain that $\left\{u_{\varepsilon}, \theta_{\varepsilon}\right\}$ is a weak solution of the system (2.18)-(2.20).

The initial conditions (2.19) can be obtained by observing the convergence above and the definition of weak solution; this is,

$$
\begin{aligned}
& u_{\varepsilon}^{\prime}(0)=\lim _{m \rightarrow \infty} u_{0 \varepsilon m}=\lim _{m \rightarrow \infty} \sum_{j=1}^{m}\left(u_{0 \varepsilon}, w_{j}\right) w_{j}=u_{0} \\
& u_{\varepsilon}^{\prime}(0)=\lim u_{1 \varepsilon m}=\lim _{m \rightarrow \infty} \sum_{j=1}^{m}\left(u_{1 \varepsilon}, w_{j}\right) w_{j}=u_{1} \\
& \phi_{\varepsilon}(0)=\lim _{m \rightarrow \infty} \theta_{0 \varepsilon m}=\lim _{m \rightarrow \infty} \sum_{j=1}^{m}\left(\theta_{0 \varepsilon}, w_{j}\right) w_{j}=\theta_{0}
\end{aligned}
$$

This concludes the proof of Theorem 2.4

## 3 Main Result

In this section, we will prove the Theorem 2.3. By Theorem 2.4, there exists functions $u_{\varepsilon}, \theta_{\varepsilon}: \mathbb{Q} \rightarrow \mathbb{R}$ such that

$$
\begin{gathered}
u_{\varepsilon} \in L^{\infty}\left(0, T ; H_{0}^{1}(\Omega) \cap H^{2}(\Omega)\right), \\
u_{\varepsilon}^{\prime}, \theta_{\varepsilon} \in L^{4}\left(0, T ; W_{0}^{2,4}(\Omega)\right), \\
u_{\varepsilon}^{\prime \prime} \in L^{\infty}\left(0, T ; L^{2}(\Omega)\right), \\
\theta_{\varepsilon} \in L^{\infty}\left(0, T ; L^{2}(\Omega)\right),
\end{gathered}
$$

satisfying the system

$$
\begin{aligned}
& \left(u_{\varepsilon}^{\prime \prime}(t), w\right)+M\left[\left\|u_{\varepsilon}(t)\right\|^{2}\right]\left(\left(u_{\varepsilon}(t), w\right)\right)+\frac{1}{\varepsilon}\left\langle\beta\left(u_{\varepsilon}^{\prime}(t), w\right)\right\rangle=(g(t), w), \\
& \left(\theta_{\varepsilon}(t), w\right)+\left(\left(\theta_{\varepsilon}(t), w\right)\right)+\left(u_{\varepsilon}^{\prime}(t), w\right)+\frac{1}{\varepsilon}\left\langle\beta\left(\theta_{\varepsilon}(t), w\right)\right\rangle=(g(t), w),
\end{aligned}
$$

a.e. in $[0, T]$, for all $w \in W_{0}^{2,4}(\Omega) . u_{\varepsilon}(0)=u_{0} ; u_{\varepsilon}^{\prime}(0)=u_{1}$, and $\theta_{\varepsilon}(0)=\theta_{0}$.

Being the estimates (2.26), (2.29), (2.30), (2.33), (2.34), (2.32) and (2.44) independently of $\varepsilon, m$ and $t$ we obtain by Uniform Boundedness Theorem that there exists a positive constant $C$ such that

$$
\begin{aligned}
&\left|u_{\varepsilon}^{\prime}(t)\right|^{2}+\left|\theta_{\varepsilon}(t)\right|^{2}+\left\|u_{\varepsilon}(t)\right\|^{2}+\int_{0}^{T}\left\|\theta_{\varepsilon}(t)\right\|^{2} d s+ \\
&\left.\frac{2}{\varepsilon} \int_{0}^{T}\left\langle\beta\left(u_{\varepsilon}^{\prime}(s), u_{\varepsilon}^{\prime}(s)\right)\right\rangle d s+\frac{2}{\varepsilon} \int_{0}^{T}\left\langle\beta\left(\theta_{\varepsilon}(s)\right), \theta_{\varepsilon}(s)\right)\right\rangle d s \leq \\
& C\left\|\Delta u_{\varepsilon}^{\prime}\right\|_{L^{4}(Q)}^{4} \leq C
\end{aligned}
$$

and

$$
\begin{gathered}
\left\|\Delta \theta_{\varepsilon}\right\|_{L^{4}(Q)}^{4} \leq C, \quad\left\|\beta\left(u_{\varepsilon}^{\prime}\right)\right\|_{L^{\frac{4}{3}}\left(0, T ; W^{2,4 / 3}(\Omega)\right)} \leq C \\
\left\|\beta\left(\theta_{\varepsilon}\right)\right\|_{L^{4 / 3}\left(0, T ; W^{2,4 / 3}(\Omega)\right)} \leq C, \quad\left|\Delta u_{\varepsilon}(t)\right|^{2} \leq C, \quad\left|u_{\varepsilon}^{\prime \prime}(t)\right|^{2} \leq C .
\end{gathered}
$$

Consequently, we can find a subnet, which we still represent by $\left(u_{\varepsilon}\right),\left(\theta_{\varepsilon}\right)$ such that

$$
\begin{aligned}
& u_{\varepsilon} \rightarrow u \quad \text { weak star in } \quad L^{\infty}\left(0, T ; H_{0}^{1}(\Omega) \cap H^{2}(\Omega)\right), \\
& u_{\varepsilon}^{\prime} \rightarrow u^{\prime} \quad \text { weak star in } \quad L^{\infty}\left(0, T ; L^{2}(\Omega)\right), \\
& u_{\varepsilon}^{\prime \prime} \rightarrow u^{\prime \prime} \quad \text { weak star in } \quad L^{\infty}\left(0, T ; L^{2}(\Omega)\right), \\
& \beta\left(u_{\varepsilon}^{\prime}\right) \rightarrow \beta\left(u^{\prime}\right) \quad \text { weak in } \quad L^{4 / 3}\left(0, T ; W^{-2, \frac{4}{3}}(\Omega)\right), \\
& \beta\left(\theta_{\varepsilon}\right) \rightarrow \beta(\theta) \quad \text { weak in } \quad L^{4 / 3}\left(0, T ; W^{-2, \frac{4}{3}}(\Omega)\right), \\
& u_{\varepsilon}^{\prime} \rightarrow u^{\prime} \quad \text { weak in } \quad L^{4}\left(0, T ; W_{0}^{2,4}(\Omega)\right), \\
& \theta_{\varepsilon} \rightarrow \theta \quad \text { weak in } \quad L^{4}\left(0, T ; W_{0}^{2,4}(\Omega)\right) .
\end{aligned}
$$

By the compactness theorem of Aubin-Lions [8], we obtain

$$
\begin{array}{crr}
u_{\varepsilon} \rightarrow u & \text { strongly } & L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right) \\
u_{\varepsilon}^{\prime} \rightarrow u^{\prime} & \text { strongly } & L^{2}\left(0, T ; L^{2}(\Omega)\right) \tag{3.2}
\end{array}
$$

We observe that

$$
\begin{gathered}
\left(u_{\varepsilon}^{\prime \prime}(t), v(t)\right)+M\left(\left\|u_{\varepsilon}(t)\right\|^{2}\right)\left(\left(u_{\varepsilon}(t), v(t)\right)\right)+\left(\theta_{\varepsilon}(t), v(t)\right)+ \\
\frac{1}{\varepsilon}\left\langle\beta\left(u_{\varepsilon}^{\prime}(t)\right), v(t)\right\rangle=(f(t), v(t)) \\
\left(\theta_{\varepsilon}^{\prime}(t), v(t)\right)+\left(\left(\theta_{\varepsilon}(t), v(t)\right)\right)+\left(u_{\varepsilon}^{\prime}(t), v(t)\right)+\frac{1}{\varepsilon}\left\langle\beta\left(\theta_{\varepsilon}(t)\right), v(t)\right\rangle=(g(t), v(t))
\end{gathered}
$$

is true for all $v \in L^{4}\left(0, T ; W_{0}^{2,4}(\Omega)\right)$.
On the other hand, being $u_{\varepsilon}^{\prime}, \theta_{\varepsilon} \in L^{4}\left(0, T ; W_{0}^{2,4}(\Omega)\right)$ implies

$$
\begin{gathered}
\left(u_{\varepsilon}^{\prime \prime}(t), u_{\varepsilon}^{\prime}(t)\right)+M\left(\left\|u_{\varepsilon}(t)\right\|^{2}\right)\left(\left(u_{\varepsilon}(t), u_{\varepsilon}^{\prime}(t)\right)\right)+\left(\theta_{\varepsilon}(t), u_{\varepsilon}^{\prime}(t)\right)+ \\
\frac{1}{\varepsilon}\left\langle\beta\left(u_{\varepsilon}^{\prime}(t)\right), u_{\varepsilon}^{\prime}(t)\right\rangle=\left(f(t), u_{\varepsilon}^{\prime}(t)\right) \\
\left(\theta_{\varepsilon}^{\prime}(t), \theta_{\varepsilon}(t)\right)+\left(\left(\theta_{\varepsilon}(t), \theta_{\varepsilon}(t)\right)\right)+\left(u_{\varepsilon}^{\prime}(t), \theta_{\varepsilon}(t)\right)+\frac{1}{\varepsilon}\left\langle\beta\left(\theta_{\varepsilon}(t)\right), \theta_{\varepsilon}(t)\right\rangle=\left(g(t), \theta_{\varepsilon}(t)\right) .
\end{gathered}
$$

Subtracting the equations of the system above, we obtain

$$
\begin{align*}
& \left(u_{\varepsilon}^{\prime \prime}(t), v(t)-u_{\varepsilon}^{\prime}(t)\right)+M\left(\left\|u_{\varepsilon}(t)\right\|^{2}\right)\left(\left(u_{\varepsilon}(t), v(t)-u_{\varepsilon}(t)\right)\right)+  \tag{3.3}\\
& \quad\left(\theta_{\varepsilon}(t), v-u_{\varepsilon}^{\prime}(t)\right)+\frac{1}{\varepsilon}\left\langle\beta\left(u_{\varepsilon}^{\prime}(t)\right), v(t)-u_{\varepsilon}^{\prime}(t)\right\rangle=\left(f(t), v(t)-u_{\varepsilon}^{\prime}(t)\right) \\
& \quad\left(\theta_{\varepsilon}^{\prime}(t), v(t)-\theta_{\varepsilon}(t)\right)+\left(\left(\theta_{\varepsilon}(t), v(t)-\theta_{\varepsilon}(t)\right)\right)+ \\
& \left(u_{\varepsilon}^{\prime}(t), v(t)-\theta_{\varepsilon}(t)\right)+\frac{1}{\varepsilon}\left\langle\beta\left(\theta_{\varepsilon}(t)\right), v(t)-\theta_{\varepsilon}(t)\right\rangle=\left(g(t), v(t)-\theta_{\varepsilon}(t)\right) \tag{3.4}
\end{align*}
$$

for all $v \in W_{0}^{2,4}(\Omega)$.
Let us consider $v(t) \in K$ a. e. in $[0, T]$. Then we obtain $\beta(v(t))=0$ and being $\beta$ a monotone operator, we have

$$
\begin{aligned}
& \left\langle\beta\left(u_{\varepsilon}^{\prime}(t)\right)-\beta(v(t)), v(t)-u_{\varepsilon}^{\prime}(t)\right\rangle \leq 0, \\
& \left\langle\beta\left(\theta_{\varepsilon}(t)\right)-\beta(v(t)), v(t)-\theta_{\varepsilon}(t)\right\rangle \leq 0 .
\end{aligned}
$$

Therefore,

$$
\begin{align*}
\int_{0}^{T}\left(u_{\varepsilon}^{\prime \prime}(t)-\right. & \left.M\left(\left\|u_{\varepsilon}(t)\right\|^{2}\right) \Delta u_{\varepsilon}(t)+\theta_{\varepsilon}(t)-f(t), v(t)-u_{\varepsilon}^{\prime}(t)\right) d t \geq 0  \tag{3.5}\\
& \int_{0}^{T}\left(\theta_{\varepsilon}(t)-\Delta \theta_{\varepsilon}+u_{\varepsilon}^{\prime}-g(t), v(t)-\theta_{\varepsilon}(t)\right) d t \geq 0 \tag{3.6}
\end{align*}
$$

for all $v \in L^{4}\left(0, T ; W_{0}^{2,4}(\Omega)\right)$ with $v(t) \in K$ a.e. in $[0, T]$. Now, taking the limit in (3.6) and (3.7), when $\varepsilon \rightarrow 0$ and using (3.1)-(3.3) and observing that $\Delta u_{\varepsilon} \rightarrow \Delta u$ weak in $L^{2}\left(0, T ; L^{2}(\Omega)\right)$ it follows that $u, \theta$ satisfy (1.5) and (1.6) in Theorem 2.3.

To conclude the proof of the existence of a solution, we show that $u^{\prime}(t), \theta(t) \in \mathbb{K}$ a.e. in $[0, T]$. In fact, by (2.33) and (2.34) we have

$$
\begin{aligned}
\left\|\beta\left(u_{\varepsilon}^{\prime}\right)\right\|_{L^{\infty}\left(0, T ; W^{2, \frac{4}{3}}(\Omega)\right)} \leq C \varepsilon \\
\left\|\beta\left(\theta_{\varepsilon}\right)\right\|_{L^{\infty}\left(0, T ; W^{2, \frac{4}{3}}(\Omega)\right)} \leq C \varepsilon .
\end{aligned}
$$

Therefore, as $\varepsilon \rightarrow 0, \beta\left(u_{\varepsilon}^{\prime}\right) \rightarrow 0$ and $\beta\left(\theta_{\varepsilon}\right) \rightarrow 0$ strong $L^{\infty}\left(0, T ; W^{2, \frac{4}{3}}(\Omega)\right)$.
On the other hand we have $\beta\left(u_{\varepsilon}^{\prime}\right) \rightarrow \beta\left(u^{\prime}\right)$ and $\beta\left(\theta_{\varepsilon}\right) \rightarrow \beta(\theta)$ weak in $L^{4 / 3}\left(0, T ; W^{2,4 / 3}(\Omega)\right)$. Then, $\beta\left(u^{\prime}(t)\right)=\beta(\theta(t))=0$ in $L^{\infty}\left(0, T ; W^{2,4 / 3}(\Omega)\right)$. Therefore, $u^{\prime}(t), \theta(t) \in \mathbb{K}$ a.e. in $[0, T]$.

The initial conditions (1.7) can be verified easily. This concludes the proof of Theorem 2.3.

## 4 Uniqueness

For proving uniqueness of solutions in Theorem 2.3, we consider the restriction

$$
u_{0} \in H_{0}^{1}(\Omega) \cap H^{2}(\Omega), \quad u_{0}(x) \geq 0 \text { a. e. in } \Omega, \quad \text { and }\left\|u_{0}\right\|>0 .
$$

Consequently $\|u(t)\|>0$, for all $t \in[0, T]$. In fact, if there exists $t_{0} \in[0, T]$ such that $\left\|u_{0}\right\|=0$, then

$$
\int_{\Omega}\left|u\left(x, t_{0}\right)\right|^{2} d x \leq C\left\|u\left(t_{0}\right)\right\|^{2}=0
$$

where $C$ is the constant of the embedding $H_{0}^{1}(\Omega) \hookrightarrow L^{2}(\Omega)$. Therefore, $u\left(x, t_{0}\right)=0$, a.e. in $\Omega$.

Since $u^{\prime}(t) \in K$ a.e. in $[0, T]$, we have $u^{\prime}(t) \geq 0$ a.e. in $\Omega$. This implies that

$$
\begin{equation*}
u(x, t) \geq u(x, 0)=u_{0}(x) \quad \text { in } \Omega \text { a.e. in }[0, T] . \tag{4.1}
\end{equation*}
$$

Being $\left\|u_{0}\right\|>0$, there exists $\Omega^{\prime} \subset \Omega$ with $\left\|\Omega^{\prime}\right\|>0$ such that that $u_{0}(x)>0$. By (3.1) it follows that $u\left(x, t_{0}\right)>0$ in $\Omega$. This is a contradiction.

Theorem 4.1 Under the hypotheses of Theorem 2.3, if
i) $M(\lambda)>0$ for all $\lambda>0$, and $M(0)=0$.
ii) $u_{0} \in H_{0}^{1}(\Omega) \cap H^{2}(\Omega), u_{0}(x) \geq 0$ a.e. in $\Omega$, and $\left\|u_{0}\right\|>0$,

Then the solution $\{u, \theta\}$ of Theorem 2.3 is unique.

Proof. From (i) and (ii) it follows that

$$
m_{0}=\min \left\{M\left(\|u(t)\|^{2}\right) ; t \in[0, T]\right\}>0
$$

Suppose we have two pairs of solutions $\{u, \theta\}$ and $\{w, \varphi\}$ satisfying the conditions of Theorem 2.3. Let $\Psi=u-w$ and $\phi=\theta-\varphi$. Thus, $\Psi$ and $\phi$ satisfy

$$
\begin{gathered}
\left(\Psi^{\prime \prime}(t)-M\left(\|u(t)\|^{2}\right) \Delta \Psi(t)+\left\{M\left(\|w(t)\|^{2}\right)-M\left(\|u(t)\|^{2}\right)\right\} \Delta w+\phi(t), \Psi^{\prime}(t)\right) \leq 0 \\
\left(\phi^{\prime}(t)-\Delta \phi(t)+\Psi^{\prime}(t), \phi(t)\right) \leq 0
\end{gathered}
$$

which implies

$$
\begin{array}{r}
\frac{1}{2} \frac{d}{d t}\left\{\left|\Psi^{\prime}(t)\right|^{2}+|\phi(t)|^{2}+\|\phi(t)\|^{2}\right\}+M\left(\|u(t)\|^{2}\right) \frac{1}{2} \frac{d}{d t}\|\Psi(t)\|^{2}+2\left(\phi(t), \Psi^{\prime}(t)\right) \leq \\
\left\{M\left(\|u(t)\|^{2}\right)-M\left(\|w(t)\|^{2}\right)\right\}\left(\Delta w(t), \Psi^{\prime}(t)\right) .
\end{array}
$$

Since

$$
M\left(\|u(t)\|^{2}\right) \frac{d}{d t}\|\Psi(t)\|^{2}=\frac{d}{d t}\left\{M\left(\|u(t)\|^{2}\right)\|\Psi(t)\|^{2}\right\}-\frac{d}{d t}\left[M\left(\|u(t)\|^{2}\right)\right]\|\Psi(t)\|^{2}
$$

we obtain

$$
\begin{array}{r}
\frac{1}{2} \frac{d}{d t}\left\{\left|\Psi^{\prime}(t)\right|^{2}+|\phi(t)|^{2}+\|\phi(t)\|^{2}\right\}+\frac{d}{d t}\left\{M\left(\|u(t)\|^{2}\right)\|\Psi(t)\|^{2}\right\}+2\left(\phi(t), \Psi^{\prime}(t)\right) \leq \\
\left\{M\left(\|u(t)\|^{2}\right)-M\left(\|w(t)\|^{2}\right)\right\}\left(\Delta w(t), \Psi^{\prime}(t)\right)+ \\
M^{\prime}\left(\|u(t)\|^{2}\right)\left(\left(u^{\prime}(t), u(t)\right)\|\Psi(t)\|^{2} .\right.
\end{array}
$$

Now, integrating this inequality form 0 to $t<T$, we obtain

$$
\begin{array}{r}
\frac{1}{2}\left\{\left|\Psi^{\prime}(t)\right|^{2}+|\phi(t)|^{2}+\|\phi(t)\|^{2}\right\}+M\left(\|u(t)\|^{2}\right)\|\Psi(t)\|^{2}+ \\
2 \int_{0}^{t}\left(\phi(t), \Psi^{\prime}(t)\right) d s \leq \\
\int_{0}^{t}\left\{M\left(\|u(s)\|^{2}\right)-M\left(\|w(s)\|^{2}\right)\right\}\left(\Delta w(s), \Psi^{\prime}(s)\right) d s+  \tag{4.2}\\
\int_{o}^{t} M^{\prime}\left(\|u(s)\|^{2}\right)\left(\left(u^{\prime}(s), u(s)\right)\|\Psi(s)\|^{2} d s\right.
\end{array}
$$

Note that $\|u(t)\|$ and $\left\|u^{\prime}(t)\right\| \in L^{\infty}(0, T)$. Then there exists a positive constant $C_{0}$ such that

$$
\|u(t)\| \leq C_{0} \quad \text { and } \quad\left\|u^{\prime}(t)\right\| \leq C_{0} \quad \text { a.e. in }[0, T] .
$$

Since $M \in C^{1}([0, \infty))$, it follows $\left|M^{\prime}(\xi)\right| \leq C_{1}$, for all $\xi \in\left[0, C_{0}\right]$.
Now, by the Mean Value Theorem, for each $s \in[0, T]$, there exists $\xi_{s}$ between $\|u(s)\|^{2}$ and $\|w(s)\|^{2}$ such that

$$
\begin{array}{r}
\left|M\left(\|u(s)\|^{2}\right)-M\left(\|w(s)\|^{2}\right)\right| \leq C_{1}\left|\|u(s)\|^{2}-\|w(s)\|^{2}\right| \leq  \tag{4.3}\\
C_{2}\|u(s)-w(s)\|=C_{2}\|\Psi(s)\| .
\end{array}
$$

Observing that $|\Delta w(s)| \leq C_{3}$, from (4.2) and (4.3) we obtain that

$$
\begin{aligned}
& \left|\Psi^{\prime}(t)\right|^{2}+\|\phi(t)\|^{2}+M\left(\|u(t)\|^{2} \|\right) \Psi(t) \|^{2} \leq \\
& C_{4} \int_{o}^{t}\left\{\left|\Psi^{\prime}(s)\right|^{2}+\|\Psi(s)\|^{2}+\|\phi(s)\|^{2}\right\} d s,
\end{aligned}
$$

which implies

$$
\left|\Psi^{\prime}(t)\right|^{2}+\|\phi(t)\|^{2}+\|\Psi(t)\|^{2} \leq C_{5} \int_{o}^{t}\left\{\left|\Psi^{\prime}(t)\right|^{2}+\|\Psi(t)\|^{2}+\|\phi(s)\|^{2}\right\} d s
$$

where $C_{5}=C_{4} / \min \left\{1, m_{0}\right\}$. From the above inequality and Gronwall inequality if follows that $\|\phi(t)\|=\|\Psi(t)\|=0$, i.e., $\phi$ and $\Psi$ are zero almost everywhere. This completes the proof of uniqueness.

## References

[1] Arosio, A. \& Spagnolo, S.: Global solution of the Cauchy problem for a nonlinear hyperbolic, Nonlinear Partial Differential Equation and their Aplications, College de France Seminar vol. 6 (ed. by H. Brezis and J. L. Lions), Pitman, London, 1984.
[2] Bisiguin, E. : Perturbation of Kirchhoff-Carrier's operator by Lipschitz functions, Proccedings of XXXI Bras. Sem. of Analysis, Rio de Janeiro, 1992.
[3] Clark, M. R. \& Lima, O. A.: On a mixed problem for a coupled nonlinear system, Electronic Journal of Differential Equations, vol. 1997 (1997), no. 06 , pp 1-11.
[4] Clark, M. R. \& Lima, O. A.: Mathematical analysis of the abstract system, to appear in the Nonlinear Analysis, Theory, Methods \& applications.
[5] D'Ancona, P. \& Spagnolo, S. : Nonlinear perturbation of the KirchhoffCarrier equations, Univ. Pisa Lecutures Notes, 1992.
[6] Frota, C. L. \& Larkin, N. A.: On global existence and uniqueness for the unilateral problem associated to the degenerated Kirchoff equation, Nonlinear Analysis, Theory Methods \& Application, vol 28 no. 3, 443-452, Great Britain, 1997.
[7] Hosoya, M. \& Yamada, Y.: On some nonlinear wave equation I - local existence and regularity of solutions, Journal Fac. Sa. Tokyo, Sec. IA, Math. 38(1991), 225-238.
[8] Lions, L.: Qulques mthods des résolutions des problèmes aux limites nonlinears, Dumod, Paris, 1969.
[9] Matos, M. P.: Mathematical analysis of the nonlinear model for the vibrations of a string, Nonlinear Analysis, Theory, Methods \& Applications, vol. 17, no. 12, pp. 1125-1137, 1991.
[10] Medeiros, L. A. \& Milla Miranda, M.: Local solutions for a nonlinear degenerate hyperbolic equation, Nonlinear Analysis 10, 27-40 (1986).
[11] Medeiros, L. A.: On some nonlinear perturbations of Kirchhoff-Carrier's operator, Camp. Appl. Math. 13(3), 1994, 225-233.
[12] Pohozaev, S. I.: On a class of quasilinear hyperbolic equations, Mat. Sbornic 96(138)(1)(1975), 152 - 166 (Mat. Sbornic 25(1)(1975), 145-158, English Translation).

Marcondes R. Clark<br>Federal University of Piauí - CCN - DM<br>Av. Ininga S/N - 64.049-550 - Teresina - PI - Brazil<br>e-mail: mclark@ufpi.br

Osmundo A. Lima
State University of Paraíba-DM
CEP 58.109-095 - Campina Grande - PB- Brazil
e-mail: osmundo@openline.com.br


[^0]:    *Mathematics Subject Classifications: 35L85, 49A29.
    Key words: weak solutions, variational unilateral nonlinear problem, Galerkin method, penalization method.
    © 2001 Southwest Texas State University.
    Submitted November 17, 2000. Published February 21, 2002.
    M. R. Clark was a visiting professor of State University of Piauí

