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Blow-up of radially symmetric solutions of a

non-local problem modelling Ohmic heating ∗

Dimitrios E. Tzanetis

Abstract

We consider a non-local initial boundary-value problem for the equa-
tion

ut = ∆u+ λf(u)/
(∫

Ω

f(u) dx
)2

, x ∈ Ω ⊂ R2, t > 0,

where u represents a temperature and f is a positive and decreasing func-
tion. It is shown that for the radially symmetric case, if

∫∞
0
f(s) ds <∞

then there exists a critical value λ∗ > 0 such that for λ > λ∗ there is no
stationary solution and u blows up, whereas for λ < λ∗ there exists at
least one stationary solution. Moreover, for the Dirichlet problem with
−s f ′(s) < f(s) there exists a unique stationary solution which is asymp-
totically stable. For the Robin problem, if λ < λ∗ then there are at least
two solutions, while if λ = λ∗ at least one solution. Stability and blow-up
of these solutions are examined in this article.

1 Introduction

In this work we study the radially symmetric solutions to the non-local initial
boundary-value problem

ut = ∆u+
λf(u)

(
∫

Ω
f(u) dx)2

, x ∈ Ω, t > 0 , (1.1a)

B(u) :=
∂u

∂n
+ β(x)u = 0 , t > 0 , x ∈ ∂Ω , (1.1b)

u(x, 0) = u0(x) , x ∈ Ω ,

where u = u(x, t), Ω is a bounded domain of R2, λ is a positive parameter,
∂Ω and β(x) are sufficiently smooth. The function f is continuous, positive and
decreasing,

f(s) > 0 , f ′(s) < 0 , s ≥ 0 . (1.2)
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Figure 1: A long and thin cylindrical conductor

We also study, in Section 3, the case of f being the Heaviside function (which is
neither continuous nor always positive). The equation (1.1a) arises by reducing
the system of two equations

ut = ∇ · (k(u)∇u) + σ(u) |∇φ|2 (1.3a)
∇ · (σ(u)∇φ) = 0 , (1.3b)

to a simple, but still realistic equation. More precisely, (1.3a) is a parabolic
equation while (1.3b) is an elliptic, u represents the temperature produced by an
electric current flowing through a conductor, φ = φ(x, t) is the electric potential,
k(u) is the thermal conductivity and σ(u) is the electrical conductivity. Problem
(1.3) models many physical situations especially in thermistors [1, 2, 3, 12], fuse
wires, electric arcs and fluorescent lights. The conductivity σ may be either
decreasing or increasing in u depending upon the nature of the conductor. Here
we consider materials having constant thermal conductivity, e.g. k(u) = 1, and
decreasing electrical conductivity, the latter allowing a thermal runaway to take
place [18, 19].

Some questions concerning the steady problem to (1.3) were investigated by
Cimatti [8, 9, 10], see also [3]. A similar problem to (1.3) with radial sym-
metry, Robin boundary conditions of the form un + βu = 0 and conductivity
σ(u) = exp(−f(u)/ε), ε� 1 was discussed by Fowler et al. [12]. Some numeri-
cal results are also given for small β. See also Howison [14] for how the steady
problem to (1.3) may be reduced to one nonlinear o.d.e. and Laplace’s equation.
Carrillo [6], has looked at the bifurcation diagram of the non-local elliptic prob-
lem with decreasing nonlinearity and Dirichlet boundary conditions, in Ω ⊂ RN ,
See [5] for a similar study where Ω is a unit ball in RN . For an extended study
of the structure of solutions of the non-local elliptic problem see [20].

The two-dimensional mathematical problem for the single equation can be
derived by considering a long and thin cylindrical conductor D, (x, y, z) ∈ D ⊂
R

3, of length L, R � L where R is the radius of the cross-section Ω of D, see
Figure 1.

The curved surface of D is electrically insulated, i.e. φn = 0, and u = 0
or more generally un + βu = 0 for β ∈ [0,∞], (β = 0 gives un = 0 while
β = ∞ gives u = 0). Also φ(x, y, 0, t) = 0, φ(x, y, L, t) = V at the ends of the
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conductor, thus V is the potential difference. Here the temperature u is taken
to be initially independent of z (u = 0 is likely to be of practical interest). Also
the z-derivatives of u are neglected, so the model gives z-independence of u for
t > 0. Moreover we stress that the model is most definitely only supposed to
apply in the bulk of the device. Thus taking the thermal conductivity to be
constant, and neglecting the end effects, problem (1.3) can then be reduced, as
in [18], to a single non-local equation

ut = ∆u+ λσ(u)/(
∫

Ω

σ(u) dx)2, (1.4)

where λ = I2/|Ω|2 ≥ 0, I is the electric current which we suppose to be constant
and |Ω| is the measure of Ω. On the other hand, by assuming the voltage V
to be constant, φx = V/L, problem (1.3) takes the more standard semi-linear
parabolic form:

ut = ∆u+ λσ(u) , x ∈ Ω, where λ = V 2/L2 ≥ 0. (1.5)

Finally, taking the more general case of a conductor connected in series with a
resistance R0 under a constant voltage E, then (1.3) gives, on using

E = I R0 + V =
[
I +R0 |Ω|

∫
Ω

σ(u) dx
]
V ,

the non-local equation

ut = ∆u+ λσ(u)/
[
a+ b

∫
Ω

σ(u) dx
]2
, x ∈ Ω , t > 0, a, b > 0. (1.6)

For the derivation of equations (1.3)-(1.6), as well as a complete study of the
one-dimensional model for a decreasing ρ(u), (the electrical resistivity σ(u) =
1/ρ(u) is increasing), see [18, 19]. In [18, 19] it was shown that for

∫∞
0
f(s) ds <

∞ there is some critical value λ∗ such that for λ > λ∗ there is no steady state
and u blows up globally, for λ = λ∗, and f(s) = exp(−s), again there is no
steady state and u exists globally in time but is unbounded. Moreover, for
λ < λ∗, as well as for any λ > 0 provided now that

∫∞
0
f(s) ds = ∞, where a

unique steady state exists, this steady state is globally asymptotically stable.
A global existence and divergence result for the solution of (1.7) (see below),
when f(s) = e−s, is also proved in [16].

Chafee [7] considered a related model ut = uxx−g(u)+λf(u)/(
∫ 1

−1
f(u) dx)2.

It was found that there is a λ∗ such that for λ < λ∗ there is a homogeneous
steady state which is globally asymptotically stable. There are conditions under
which the homogeneous steady state is unstable and there are then two stable
inhomogeneous steady states. Other works concerning the blow-up in non-local
parabolic problems are [4, 22, 23].

Finally we wish to study problem (1.1), which comes from (1.4) by setting
σ(u) = f(u), in the radially symmetric case. Therefore we take Ω to be the
unit ball and the initial data are taken to be radially symmetric and decreasing,
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(u(x, 0) = u0(r) and u′0(r) < 0 , r = |x|). Thus our problem, in case of Dirichlet
boundary conditions (β(x) =∞), takes the form:

ut = urr +
ur
r

+
λf(u)

4π2(
∫ 1

0
f(u) r dr)2

, 0 < r < 1 , t > 0 , (1.7a)

u(1, t) = ur(0, t) = 0 , t > 0 , (1.7b)
u(r, 0) = u0(r) , 0 < r < 1 . (1.7c)

We also consider Neumann or Robin boundary conditions:

ur(1, t) + βu(1, t) = 0 , β ∈ [0,∞). (1.8)

Note that ur(0, t) = 0 is a consequence of boundedness of solutions rather than
a specific constraint upon them.

We note that any solution of (1.1) with u0 > 0 is positive, moreover if u0(x) =
u0(r) and Ω is a ball, then u(x, t) = u(r, t) is radially symmetric and satisfies
(1.7) with the proper boundary conditions ((1.7b) or (1.8)). Furthermore if
u′0(r) < 0 then ur(r, t) < 0, 0 < r < 1, 0 < t < T , i.e. u is radially decreasing.
The same properties hold for the steady solutions of problem (1.1), see Gidas
et al., [13].

The non-local problem under consideration belongs to the class where the
maximum principle holds (due to (1.2)) and comparison with suitable upper and
lower solutions is used to prove stabilization or blow-up. In the contrary when
f(s) is an increasing function, maximum principle does not hold. Nevertheless
for f(s) = es, stabilization and blow-up can be studied by using a Lyapunov
functional, [5, 11].

The present work is organized as follows. In Section 2 the existence and
uniqueness of solutions to (1.1) in Ω ⊂ RN is discussed. In Sections 3, 4, some
particular functions, the Heaviside and the exponential are studied, while in
Section 5 a general decreasing function is considered. In each of these cases, the
critical value λ∗ is estimated.

In the rest of this article we mainly follow the ideas and techniques which
have been used in the one-dimensional case [18, 19], but have to be modified
because of the extra technical difficulties encountered in this two-dimensional
problem.

2 Existence, uniqueness and monotonicity

Problem (1.1) in Ω ⊂ RN N ≥ 1, for a measurable and bounded u0(x), can be
written in a Green’ s integral formulation:

u(x, t) = λ

∫ t

0

∫
Ω

g(x, y, t− s) f(u(y, s))
(
∫

Ω
f(u(y, s)) dy)2

dy ds+
∫

Ω

g(x, y, t)u0(y) dy .

(2.1)
Setting now vn instead of u on the left-hand side and vn−1 instead of u on the
right-hand side for n ≥ 1 and taking v0 ≡ 0, we find on passing to the limit
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and following on standard Picard - iteration - type arguments, that if λ > 0,
f(s) ≥ c > 0 and Lipschitz for s ∈ (a, b), where a < min{0, inf u0} ≤ u ≤
max{0, supu0} < b , then there exists a unique solution u to (1.1) and (2.1).
Moreover the solution continues to exist as long as it remains less than or equal
to b ; this implies that it can only cease to exist due to blow-up.

On the other hand, if we restrict our attention to a decreasing f , positive
and Lipschitz, then we have a sort of comparison. In particular u is called a
strict upper solution to (1.1) in Ω ⊂ RN , N ≥ 1, if it satisfies

ut(x, t) > ∆u+
λf(u)

(
∫

Ω
f(u) dx)2

, in Ω , t > 0 , (2.2a)

B(u) > B(u) = 0 on ∂Ω , t > 0 , (2.2b)
u0(x) > u0(x) , in Ω , (2.2c)

while if u satisfies the reversed inequalities of (2.2) it is called a strict lower
solution. Now if we set v = u− u then there exists T > 0 such that

vt > ∆v +
λf ′(s)

(
∫

Ω
f(u) dx)2

v , x ∈ Ω , 0 < t < T ,

v > 0 at t = 0 in Ω and B(v) > 0 , on ∂Ω , 0 < t < T ,

(2.3)

which implies, by the maximum principle, that v > 0 at t = T . Moreover, if
(2.2) holds with ≥, then (2.3) also holds with ≥ in the place of >. As long as
u , u exist and u ≥ u, with f Lipschitz, we can apply iteration schemes similar
to those of Sattinger [21], to show that there exists a unique solution u to (1.1)
such that u ≤ u ≤ u. If now f is increasing then some of the above results can
be adapted by using a pair of upper-lower solutions; see [18].

3 The Heaviside function

We consider now f(s) to be the Heaviside function (decreasing), f(s) = H(1−s),
then f(s) = 1 for s < 1, and f(s) = 0 for s ≥ 1 , which is neither strictly positive
nor Lipschitz continuous. Thus problem (1.7) becomes,

ut = ∆ru+ λH(1− u)/4π2
(∫ 1

0

H(1− u)r dr
)2

, 0 < r < 1 , t > 0 , (3.1a)

u(1, t) = ur(0, t) = 0 , t > 0 , u(r, 0) = u0(r) , 0 < r < 1 , (3.1b)

where (∆r = ∂2/∂r2 + 1
r∂/∂r). In particular equation (3.1a) can be written:

ut = ∆ru , where u ≥ 1 , and

ut = ∆ru+ λ/m2(t) , where u < 1 ,

writing m(t) the measure of the subset of the unit ball B(0, 1) where u < 1. The
existence and uniqueness of a “weak” (classical a.e.) solution to (3.1) is obtained



6 Blow-up of radially symmetric solutions EJDE–2002/11

by using an approximating regularized version of this problem, see [15] and the
references therein. Hence, taking into account this remark, in the following we
can use comparison arguments in the classical sense. We take u0(r) ≤ 1, and
for simplicity u′0(r) ≤ 0 and bounded below. With such initial data v = 1 is an
upper solution to problem (3.1), hence u ≤ 1. Thus either u < 1 for 0 < r < 1
whereupon (3.1a) becomes

ut = ∆ru+ λ/π2, 0 < r < 1 , t > 0, (3.2)

or there exists an or some s = s(t), 0 < s(t) < 1, such that

ut = ∆ru+ λ/π2(1− s2)2, 0 ≤ u < 1, s < r < 1 , t > 0 , (3.3a)
u = 1 , ur = 0, 0 ≤ r ≤ s , t > 0 , (3.3b)

where π(1 − s2(t)) = m(t). Note that u is continuous and ur ≤ 0, the latter
follows by using the maximum principle. The corresponding steady state to
(3.2) is

∆rw + λ/π2 = 0 , 0 < r < 1 , w′(0) = w(1) = 0 , (3.4)

which for λ < 4π2, has a solution w(r) = λ
4π2 (1 − r2). Also a steady state for

(3.3) satisfies:

∆rw +
λ

π2(1− S2)2
= 0 , S < r < 1 , 0 ≤ w < 1 , (3.5a)

w(r) = 1 , w′(r) = 0 , 0 ≤ r ≤ S for 0 ≤ S < 1 , w(1) = 0 . (3.5b)

Equations (3.5a), (3.5b) give a one-parameter family of steady states of the
form:

w(r;S) =
λ̂(S)(1 + 2S2 ln r − r2)

4π2(1− S2)2
=

1 + 2S2 ln r − r2

1 + 2S2 lnS − S2
, S < r < 1, (3.6)

where λ = λ̂(S) =
4π2(1− S2)2

1 + 2S2 lnS − S2
.

It is easily seen that λ̂(S) is strictly increasing, λ̂(1−) = 8π2 and λ̂(0+) = 4π2.
If we note by ‖w′‖ = sup |w′|, then ‖w′‖ = −w′(1) and the following hold:
for 0 < λ < 4π2 = λ̂(0+) there exists a unique steady state w(r) = λ

4π2 (1 −
r2) , for 4π2 ≤ λ̂(S) < 8π2, S ∈ [0, 1), there exists a one-parameter family of
steady states given by (3.6), whereas for λ ≥ λ̂(1−) = 8π2 there is no steady
solution. Hence we get the diagram of Figure 2.

We wish now to study the stability of the steady solutions for λ < 8π2 =
λ̂(1−). Therefore we construct an upper solution v (lower solution v) to problem
(3.1), decreasing (increasing) in time, of a form similar to the steady state, i.e.
w(r; s(t)). Namely for λ < 4π2 we take,

v(r, t) = 1 , vr(r, t) = 0 for 0 ≤ r ≤ s(t) , and (3.7a)

v(r, t) = w(r; s(t)) =
λ̂(s)

4π2(1− s2)2

(
1 + 2s2 ln r − r2

)
=

1 + 2s2 ln r − r2

1 + 2s2 ln s− s2
,

(3.7b)
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Figure 2: Response diagram for (3.4), (3.5), f(s) = H(1− s).

s(t) < r < 1 , 0 ≤ t < t1 where s = s(t) ∈ (0, 1) , s(0) = s0. For any
initial data u0(r) ≤ 1, we choose s0 so that u0(r) ≤ 1 for 0 ≤ r ≤ s0 and
u0(r) ≤ w(r; s0), 0 < s0 < r < 1, i.e. v(r, 0) = w(r; s0) ≥ u0(r). Then we have,

E(v) := vt −∆rv − λH(1− v)/4π2
(∫ 1

0

H(1− v)r dr
)2

=


0 , 0 ≤ r ≤ s(t) ,

vt +
λ(s)− λ
π2(1− s2)2

≥ 0 , s(t) ≤ r ≤ 1 ,

provided that s(t) satisfies:

0 < −ṡ = h(s) ≡ (λ(s)− λ)(1 + 2s2 ln s− s2)
4π2(1− s2)2(1− s)

,

giving ṡ(t) < 0 , λ̇ = λ
′
(s)ṡ < 0 for λ(s) > λ and s(t1) = 0, for t1 <∞.

Hence v(0, t1) = 1, and w(r; s(t))→ 1− r2 as t→ t1−. Again for t ≥ t1 we
can take

v(r, t) = a(t)(1− r2) , a1 = a(t1) = 1 , for t ≥ t1 , (3.8a)
vr(0, t) = v(1, t) = 0 , t ≥ t1 , (3.8b)

giving

E(v) = ȧ(1− r2) + 4a− λ

π2
≥ ȧ+ 4(a− λ

4π2
) = 0 ,

on taking ȧ = −4(a− λ
4π2 ) < 0, λ

4π2 < a < 1, since ȧ(t) < 0. Then

a(t) =
λ

4π2
+ (1− λ

4π2
)e4(t1−t) → λ

4π2
as t→∞ .
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Hence v is an upper solution to u-problem which exists for all time, in particular
u ≤ v and v → w = λ

4π2 (1 − r2) as t → ∞. On the other hand for v(r, t) we
take

v(r, t) = b(t)(1− r2) , 0 < r < 1 , t > 0 ,

b(0) = 0 , where 0 ≤ b ≤ min{1, λ/4π2} .
(3.9)

Then we have,

E(v) = ḃ(t)(1− r2) + 4b− λ

4π2
≤ ḃ(t) + 4b− λ

4π2
= 0 ,

on taking ḃ(t) + 4b− λ
4π2 = 0, since ḃ(t) > 0, giving b(t) = λ

4π2 (1− e−4t)→ λ
4π2

as t → ∞. Thus for 0 < λ < 4π2 we have that v(r, t) ≤ u ≤ v(r, t), v(r, t),
v(r, t) → w(r) = λ

4π2 (1 − r2) as t → ∞ uniformly in r, which implies that u is
bounded for all time and u(r, t)→ w(r) as t→∞ (w is the unique steady state
for λ < 4π2). Hence w, is globally asymptotically stable solution [18, 19, 21].
Moreover, if 4π2 ≤ λ < 8π2, then we can proceed in a similar way. In fact, we
construct an upper solution decreasing in time as (3.7), then E(v) ≥ 0, provided
that

0 < −ṡ = h(s) ≡ (λ(s)− λ)(1 + 2s2 ln s− s2)
4π2(1− s2)2(1− s)

,

giving now ṡ(t) < 0 for λ(s) > λ and s→ S0+ , λ(s)→ λ = λ(S0), as t→∞.
Also we construct a lower solution v increasing in time, having a similar form to
that as in the proof of the blow-up (see below), in particular like (3.9) followed
by a complementary version of (3.7). But now ṡ(t) > 0 , λ̇ = λ′(s)ṡ > 0
for t > t1 , s(t1) = 0 and s(t) → S0− , λ(s) → λ = λ(S0), as t → ∞.
Hence v ≤ u ≤ v, u exists for all time and u→ w(r;S0) the unique solution for
4π2 ≤ λ = λ(S0) < 8π2, which is globally asymptotically stable.

We show now that the solution u, “blows up” (it ceases to be less than 1 in
[0, 1), we recall that u ≤ 1 in (0, 1) as long as u0(r) ≤ 1 ) in the sense that it
becomes 1 in [0, 1) in finite time, for λ > 8π2. Therefore we get a lower solution
v(r, t) of the form: v(r, t) = b(t)(1 − r2) , 0 < r < 1 , 0 ≤ t ≤ t1, which
satisfies (3.9) (note that u0(r) ≤ 1 ), b(t1) = 1 , u(r, t1) ≥ v(r, t1) = 1 − r2,
provided that u still exists (u ≤ 1 ) up to t1. Also we take v(r, t) to satisfy:

v(r, t) = 1 , vr(r, t) = 0 for 0 ≤ r ≤ s(t) , t > t1 , and

v(r, t) =
1 + 2s2 ln r − r2

1 + 2s2 ln s− s2
, s(t) < r < 1 , t > t1 ,

b(t1) = 1, s(t1) = 0, v(r, t1) = 1− r2. Then we have,

E(v) =

 0 , 0 ≤ r ≤ s(t) , t ≥ t1 ,

vt +
λ− λ

π2(1− s2)2
≤ 0 , s(t) ≤ r ≤ 1 , t > t1 ,

provided that s(t) satisfies

0 < ṡ = −h(s) ≡ (λ− λ(s))(1 + 2s2 ln s− s2)
4π2(1− s2)2(1− s)

,
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for λ(s) < 8π2 < λ. This implies that λ̇ = λ′(s)ṡ > 0, and s(t) → 1− ,
λ(s) → 8π2−, as t → T ∗ < ∞. Hence v becomes 1 in [0, 1) at T ∗ and a form
of “ blow-up” (u→ 1 in [0, 1) as t→ t∗−, t∗ ≤ T ∗) has been established for u,
with derivative ur(1, t) becoming unbounded as t→ t∗−.

For the critical value λ = 8π2, again we construct an upper solution v but
now increasing in time; indeed E(v) ≥ 0, provided that s(t) satisfies

0 < ṡ = −h(s) ≡ (8π2 − λ(s))(1 + 2s2 ln s− s2)
4π2(1− s2)2(1− s)

.

For 4π2 < λ(s) < 8π2, we get s → 1 as t → ∞, which implies that u exists for
all time but becomes 1 in [0, 1) as t→∞.

4 The exponential function

4.1 Stationary solutions

We now consider f(s) = e−s, so f(s) > 0, f ′(s) < 0 for s ≥ 0 and
∫∞

0
f(s) ds =

1. The corresponding steady problem to (1.7) for f(s) = e−s is

w′′(r) +
1
r
w′(r) + µe−w(r) = 0 , 0 < r < 1 , w(1) = w′(0) = 0, (4.1)

where
µ =

λ

4π2(
∫ 1

0
e−w(r)r dr)2

. (4.2)

The solution of (4.1) is

w(r) = 2 ln[α(1− r2) + r2] , µ = 8α(α− 1) , (4.3)

where α > 1, M = sup ‖w‖ = w(0) = 2 lnα. The parameter λ is given by

λ = 4π2µ
(∫ 1

0

e−wr dr
)2

= 8
(
1− 1

α

)
π2 = 8π2

(
1− e−M/2

)
< 8π2 , (4.4)

so α = λ∗

λ∗−λ , λ = λ(M) → 8π2 = λ∗ as M → ∞, or equivalently as α → ∞,
and λ′(M) > 0. For each M there is a corresponding unique solution w(r)(this
follows from a shooting argument). Finally from the above we get the diagram
of Figure 3.

If λ→ λ∗−, which implies that α→∞, then the solution w(r) = 2 ln[α(1−
r2) + r2)]→∞, for every compact subset of [0, 1). We see below that this also
holds for a general decreasing f .

4.2 Stability for λ < λ∗

To study the stability, we use upper solutions which are decreasing in time
and lower solutions which are increasing in time to problem (1.7) with f(s) =
exp(−s).
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M

λ=8π 2λ*

Figure 3: Response diagram for (4.1), f(s) = exp(−s).

We first note that v(r, t) = w(r;µ(t)) = 2 ln[α(t)(1 − r2) + r2] is an upper
solution, provided that

α̇+ 2
λ∗ − λ
λ∗

α− 2 = 0 , α(0) = α0 (4.5)

and α0 is sufficiently large. Hence for λ ∈ (0, λ∗) the solution of (4.5) is

α(t) =
λ∗

λ∗ − λ
+
[
α0 −

λ∗

λ∗ − λ
]

exp
(
− 2

λ∗ − λ
λ∗

t
)
, (4.6)

and α̇(t) < 0 for α0 >
λ∗

λ∗−λ . Furthermore we require v(r, 0) = 2 ln[α0(1− r2) +
r2] ≥ u0(r). It is sufficient to choose

α0 = max{ λ∗

λ∗ − λ
, sup

r

exp(u0(r)/2)− r2

1− r2
} .

Also B(v) ≥ B(u) on ∂Ω, in fact it is v(1, t) = u(1, t) = 0. The calculations
are like these of the one-dimensional case [18, 19]; we find an upper solution
v decreasing in time, v ≥ u and v(r, t) → 2 ln[A(1 − r2) + r2] = w(r;λ) as
t→∞ , α(t)→ A = λ∗

λ∗−λ as t→∞ (see (4.6)).
In a similar way we construct a lower solution z(r, t) increasing in time.

Again z(r, t) = 2 ln[α(t)(1 − r2) + r2] is a lower solution provided that α(t)
satisfies (4.5) and α0 − λ∗

λ∗−λ < 0, α(t) is of the form of (4.6). Also we require

z(r, 0) ≤ u0(r). It is sufficient to choose α0 = min{ λ∗

λ∗−λ , infr
exp(u0(r)/2)−r2

1−r2 }.
But on ∂Ω z(r, t) = u(r, t) = 0, which finally implies that z ≤ u. Hence for
0 < λ < λ∗ = 8π2 we find an upper solution v and a lower solution z such that
z ≤ u ≤ v with v(r, t)→ w+ , z(r, t)→ w−, as t→∞. Thus the solution u is
global and u(r, t)→ w(r;λ) = 2 ln

[
λ∗

λ∗−λ (1− r2) + r2
]

as t→∞, where w(r;λ)



EJDE–2002/11 Dimitrios E. Tzanetis 11

is the unique steady state. The above procedure holds for any (admissible) initial
data u0(r), from which it follows that the solution w is globally asymptotically
stable.

4.3 Blow-up for λ > λ∗

To prove that the solution u(r, t) blows up for λ > λ∗ = 8π2, we construct a
lower solution which blows up. Again we take as a lower solution a function
with a similar form to the steady state w(r) : z(r, t) = w(r;µ(t)) = 2 ln[α(t)(1−
r2)+ r2]. We first note that if α(t) satisfies (4.5) and α0 <

λ∗

λ∗−λ , then α̇(t) > 0,
moreover z(r, t) is an unbounded lower solution to (1.7) and z(r, t)→∞ as t→
∞ for any r ∈ [0, 1). This implies that u(r, t) is unbounded, more precisely
lim supt→t∗ ‖u(·, t)‖ → ∞ , t∗ ≤ ∞. To prove that t∗ <∞ we take a modified
comparison function, Z(r, t) = p ln[α(t)(1− r2) + r2]. We show that Z(r, t) is a
lower solution to (1.7) and blows up for a certain value of p. Thus we have

E(Z) := Zt −∆rZ − λe−Z/4π2(
∫ 1

0

e−Zr dr)2

≤ p

(α− βr2)

{
α̇(1− r2)(α− βr2) (4.7)

−4(α− βr2)2−p[ λ
λ∗

2(p− 1)2

p k2
− 1
]
α2
}

where β(t) = α(t) − 1, α̇(t) > 0, 0 < p < 2, k > 1 and α − 1 ≥ α/k. The last
condition is satisfied for t ≥ t1, for some t1 since the use of the lower solution z
above guarantees unboundedness of u and allows Z to be large for t ≥ t1. For
λ > λ∗ and 1 < p < 2, we have λ/λ∗ > 1, 2(p− 1)2/p < 1, while 2(p−1)2

p → 1 as
p→ 2−, so we can choose p ∈ (1, 2):

λ

λ∗
2(p− 1)2

p
> 1 . (4.8)

Now for a fixed λ > λ∗ we can choose suitable p and k so that both (4.8) and
the following hold:

λ

λ∗
2(p− 1)2

p
> k2 > 1 or Λ =

λ

λ∗
2(p− 1)2

pk2
> 1 . (4.9)

The inequalities (4.7), (4.9) imply

E(Z) ≤ p(1− r2)
(α− βr2)

[
α̇− 4(α− βr2)1−p(Λ− 1)a2

]
≤ 2

[
ȧ− 4(Λ− 1)α3−p] = 0 ,

by taking α(t) to satisfy,

α̇− 4(Λ− 1)α3−p = 0 , α(0) = α0 > 0 . (4.10)
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We also require Z(r, 0) ≤ u0(r), for which it is sufficient to take

α0 ≤ inf
r

exp(u0(r)/p)− r2

1− r2
, 1 < p < 2 ,

and Z(1, t) = u(1, t) = 0 holds on ∂Ω. Hence Z(r, t), is a lower solution to (1.7)
i.e. Z(r, t) ≤ u(r, t) and Z(r, t) is increasing in time since α̇(t) > 0. Furthermore
from (4.10) we obtain,

4(Λ− 1)(t− t1) =
∫ α(t)

α(t1)

sp−3 ds <

∫ ∞
α1

sp−3 ds =
αp−2

1

2− p
<∞ , (4.11)

where α1 = α(t1) = k/(k − 1) < α(t), since we have used that α − 1 > α/k.
The relation (4.11) implies that α(t) blows up at

T ∗ = t1 +
αp−2

1

4(Λ− 1)(2− p)
<∞

and, since Z(r, t) is a lower solution for u, this means that u blows up at t∗ ≤
T ∗ < ∞. This completes the proof of the blow-up of u. In the next section,
for general decreasing functions, we shall show that this blow-up is global, this
means that u(r, t)→∞ as t→ t∗− for every r ∈ [0, 1).

5 General decreasing functions

5.1 Stationary Solutions

We consider an arbitrary decreasing function f satisfying (1.2). Again we may
use comparison techniques due to the monotonicity of f as in Section 2. We
follow the same procedure as in the previous section; see also [5, 6]. For the
moment we suppose that

∫∞
0
f(s) ds <∞ , unless otherwise stated. The corre-

sponding steady problem of (1.7) is

w′′(r) +
1
r
w′(r) + µf(w(r)) = 0 , 0 < r < 1 , (5.1a)

w(1) = w′(0) = 0 , (5.1b)

where λ = 4π2µ(
∫ 1

0
f(w)r dr)2. Multiplying (5.1a) by r and integrating,

λ =
4π2

µ
(w′(1))2 . (5.2)

Again multiplying (5.1a) by w′ and integrating as before we get

(w′(1))2

2
+
∫ 1

0

(w′(r))2

r
dr − µ

∫ M

0

f(s) ds = 0 , (5.3)
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which implies (w′(r))2

µ < 2
∫M

0
f(s) ds. By rescaling the problem we may assume

that ∫ ∞
0

f(s) ds = 1, (5.4)

then from (5.2) and (5.3) we get

λ < 8π2

∫ M

0

f(s) ds < 8π2 and
(w′(r))2

µ
< 2 .

Lemma 5.1 For the Dirichlet problem (5.1), if (5.4) holds, then (w′(1))2

µ → 2
as µ→∞.

Proof: We consider the auxiliary problem:

z′′(r) + µg(z(r)) = 0 , 1− δ < r < 1, (5.5a)
z(r) = sup

r
z(r) = M , z′(r) = 0 , 0 ≤ r ≤ 1− δ , z(1) = 0 , (5.5b)

where 0 < g(s) < f(s), and z, zr, are continuous at 1 − δ. Multiplying (5.5a)
by z′ and integrating we obtain

(z′(r))2 = 2µ
∫ M

z(r)

g(s) ds = 2µ[G(z)−G(M)] , (5.6)

where G(z) =
∫∞
z
g(s) ds. Then∫ M

0

[G(z)−G(M)]−1/2 dz = δ
√

2µ , (5.7)

since z′(r) < 0, and (z′(1))2 = 2µ[G(0)−G(M)] = 2µ
∫M

0
g(s) ds. We prove now

that the solution to problem (5.5) is a lower solution to problem (5.1). Indeed
z′′(r) + 1

r z
′ + µf(z) = µf(z) > 0 in 0 ≤ r ≤ 1 − δ. Also taking into account

(5.5)-(5.7),

z′′(r) +
1
r
z′ + µf(z)

=
z′

r
+ µ(f(z)− g(z)) >

z′(r)
1− δ

+ µ(f(z)− g(z)) (5.8)

= −
√

2µ [G(z)−G(M)]1/2

1− δ
+ µ(f(z)− g(z)) , in 1− δ < r < 1 .

Now choosing µ large enough such that

µ ≥ µ0 = sup
z∈(0,M)

2[G(z)−G(M)]
(1− δ)2 [f(z)− g(z)]2

, (5.9)

and δ < 1, relations (5.8), (5.9) give

z′′(r) +
1
r
z′ + µf(z) > µ(f(z)− g(z))− µ(f(z)− g(z)) = 0 .
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In addition z′(0) = z(1) = w′(0) = w(1) = 0, hence z is a lower solution to
w-problem. This implies

z(r) ≤ w(r) and w′(1) ≤ z′(1) < 0 , (5.10)

(if the latter inequality were w′(1) > z′(1) it would give z(r) > w(r) for some
r, which would be a contradiction).
Now taking:

(a) g, such that 0 < g(s) < f(s) and 1− ε < G(0) =
∫∞

0
g(s) ds ≤ 1

(b) M such that [G(0)−G(M)] > 1− 2ε, ε > 0, from the definition of G,

(c) µ to satisfy (5.9).

Note that G′(z) = −g(z) < 0, G(z) is decreasing and G(0) ≤ 1); from (5.3),
(5.6) and (5.10) we obtain

2 >
(w′(1))2

µ
≥ (z′(1))2

µ
= 2[G(0)−G(M)] > 2(1− 2ε) .

This relation holds for every ε > 0, as far as µ� 1, hence this proves the lemma.
�

Proposition 5.2 If (5.4) holds then λ < λ∗ = 8π2 and λ→ 8π2− as M →∞
(λ→ λ∗

∫∞
0
f(s) ds = λ∗ as M →∞).

Proof: The first relation is obtained by (5.3), (5.4). For the second, using
(5.2) and Lemma 5.1 we obtain,

λ = 4π2 (w′(1))2

µ
→ 8π2 as µ→∞ (or equivalently as M →∞).

�

Also from Lemma 5.1 and relation (5.3) we deduce that

lim
µ→∞

2
µ

∫ 1

0

(w′(r))2

r
dr = 0 and[ ∫ 1

0

(w′(r))2

r
dr
]
/(w′(1))2 =

[4π2

λ

∫ M

0

f(s) ds− 1/2
]
→ 0 as µ→∞ .

Now we assume that ∫ ∞
0

f(s) ds =∞ (5.11)

holds instead of (5.4), so we have the following statement.

Proposition 5.3 Let (5.11) hold and w is the solution to problem (5.1) then
(w′(1))2/µ→∞ as µ→∞ and λ(M)→∞ as M →∞.
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Proof: Again the solution z(r) to problem (5.5) is a lower solution to w-
problem, provided that (5.9) holds. Thus we have z(r) ≤ w(r) which implies
that w′(1) ≤ z′(1) < 0, or (w′(1))2 ≥ (z′(1))2, but now from (5.6) at r = 1 we
get,

(w′(1))2

µ
≥ (z′(1))2

µ
= 2

∫ M

0

g(s) ds→∞ as M →∞ ,

provided that we take g such that 0 < g(s) = γf(s) < f(s), for 0 < γ < 1, then∫∞
0
g(s) ds =∞. �

We now obtain a uniqueness result for the steady problem.

Proposition 5.4 Let f , satisfy

−sf ′(s) < f(s) , s > 0 , (5.12)

then problem (5.1) has a unique solution.

Proof: From (5.2) we get λ(µ) = 4π2 (w′(1))2

µ = 4π2(W ′(1))2 by writing w(r) =
νW (r), ν =

√
µ. Then (5.1) gives W ′ν(0) = Wν(1) = W ′(0) = W (1) = 0 and

W ′′ +
W ′

r
+ νf(w) = 0 or W ′′ν +

W ′ν
r

+ ν2f ′(w)Wν = −f(w)− f ′(w)w .

If (5.12) holds, then using maximum principle and Hopf’s boundary lemma, we
get that Wν(r) > 0 and W ′ν(1) < 0 or d

dν (W ′(1))2 > 0, since also W ′(1) < 0 .
Then λ′(µ) = 2π2

ν
d
dν (W ′(1))2 > 0 which implies uniqueness. �

Remark: Proposition 5.4 is also true for a general domain Ω. The relation
(5.12) implies (5.11).

Finally we obtain the response diagram of Figure 4.

5.2 Stability where a unique steady state exists

We follow the same procedure as in the previous section, we seek for a decreasing
(increasing)-in-time upper (lower) solution to problem (1.7). We first look for
an upper solution of a form similar to the steady state: v(r, t) = w(r;µ(t)) = w,
where w is a steady state. Then

E(v) = wµ µ̇+ [4π2µ I2(w)− λ]f(w)/4π2I2(w) , (5.13)

where I(w) =
∫ 1

0
f(w)r dr and −∆rw = µf(w) (∆r = ∂2/∂r2 + 1

r∂/∂r). Also
wµ = ∂w

∂µ > 0, w(r;µ(t)) is increasing with respect to µ, by using the maximum
principle. Taking now any λ > 0, so that w(x;λ) is the unique stationary
solution, we can choose µ(0) such that w(r;µ(0)) = v(r, 0) ≥ u0(r) ; this can
be done since u0(r), u′0(r) are bounded. Furthermore, since a unique steady
state exists (see Proposition 5.4 ) for these values of λ, there exists a µ such



16 Blow-up of radially symmetric solutions EJDE–2002/11

Μ

λ
Figure 4: Response diagram for the Dirichlet problem,

∫∞
0
f(s) ds =∞.

that λ = 4π2µI2(w), M = w(0;µ) = w(0), where w(r) = w(r;µ) is the unique
steady state of problem (5.1), and as long as µ > µ then w > w and λ = λ(t) =
4π2µ(t)I2(w) > λ. As before w(r;µ) is an upper solution, decreasing in time,
which tends to the stationary solution w provided that

0 < −µ̇ = h(µ) ≡
(
λ(t)− λ

)
I−2(w) inf

r
{f(w)
wµ
}, (5.14)

and µ(0) > µ (note that f(s) is bounded away from zero and wµ is also finite).
Hence u = u(r, t) ≤ v(r, t) = w(r;µ(t)) and µ̇ < 0 which implies that vt =
wµ µ̇ < 0. In a similar way we can construct a lower solution z(r, t) = w(r;µ(t))
which is increasing in time and tends to the steady state w. Finally we obtain,
z(r, t) = w(r;µ(t)) ≤ u(r, t) ≤ v(r, t) = w(r;µ(t)), and µ(t) → µ+ , µ(t) →
µ− , v(r, t) → w+ , z(r, t) → w−, as t → ∞. This implies that u(·, t) → w(·)
uniformly as t→∞, and that w is globally asymptotically stable.

For the case of λ ≥ λ∗ and
∫∞

0
f(s) ds = 1, there is no steady solution to

(5.1), then λ = λ(t) = 4π2µ(t)I2(w) < λ for every µ > 0. Taking the above
lower solution z(r, t) we obtain that µ(t) → ∞ (µ̇ > 0) and u(r, t) ≥ z(r, t) =
w(r;µ(t)) → ∞ as t → ∞ (note that wµ > 0 and µ(t) → ∞ as t → ∞ then
z → ∞ as t → ∞). In particular supr u(r, t) → ∞ as t → t∗ ≤ ∞, hence u is
unbounded.

5.3 Blow-up for λ > λ∗

We can now prove that the solution u to problem (1.7) blows up in finite time
if λ > λ∗ = 8π2. To prove this we use similar methods to those in the previous
sections, (or see [15, 18, 19]). We look for a lower solution z(r, t) to the u-
problem which itself blows up. We try to find a lower solution with a similar
form to the steady state. We take into account the form of blow-up in the
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one-dimensional case, therefore we consider z(r, t) to satisfy:

z(r, t) = M(t) = sup
r
z(r, t) , zr(r, t) = 0 , 0 ≤ r ≤ 1− δ(t) , t > 0 , (5.15a)

zrr + µ(t)g(z) = 0 , 1− δ(t) ≤ r ≤ 1 , z(1, t) = 0 , t > 0 , (5.15b)

where 0 < g(s) = γf(s) < f(s), 0 < γ < 1, and z, zr are continuous at 1− δ(t).
Multiplying (5.15b) by zr, and integrating in (1− δ, r) we obtain

z2
r

2
+ µ(t)

∫ z

M

g(s) ds = 0 , (5.16)

which gives

z2
r = 2µ(t) [G(z)−G(M)] and

z2
r

µ
< 2 , (5.17)

on writingG(z) =
∫∞
z
g(s) ds (thenG′(z) = −g(z) andG(0) = γ)). The relation

(5.17) implies

δ
√

2µ =
∫ M

0

[G(s)−G(M)]−1/2
ds . (5.18)

Again integrating (5.17) we obtain

(1− r)
√

2µ =
∫ z

0

[G(s)−G(M)]−1/2
ds . (5.19)

On the other hand, we can get∫ 1

0

g(z)r dr =
∫ 1−δ

0

g(z)r dr +
∫ 1

1−δ
g(z)r dr ≤ g(M)

(1− δ)2

2
− 1
µ
zr(1, t)

= g(M)
(1− δ)2

2
+
√

2
µ

(∫ M

0

g(s) ds
)1/2

∼ g(M)/2 +
√

2γ/µ for δ � 1�M and 1� µ ,

by using (5.17) at r = 1,
∫M

0
g(s) ds ∼ γ, 1− δ ∼ 1, for δ � 1�M . Finally we

get ∫ 1

0

g(z)r dr .
g(M)

2
(α+ 1) , δ � 1�M , (5.20a)

on taking √
2γ/µ = αg(M)/2, (5.20b)

where α is a suitable chosen constant; in particular choose α > 1/[(λ/8π2)1/2−
1] for λ > λ∗ = 8π2. Such an α gives Λ = 1

3 [λ/π2(1 + α)2 − 8
α2 ] > 0.

Lemma 5.5 M f(M)→ 0 as M →∞.

For the proof of this lemma, see [19].

Lemma 5.6 δ → 0 as µ→∞.
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Proof: From the previous lemma we have that f(M) → 0 and g(M) → 0 as
M →∞ and for fixed α, (5.20) implies that µ→∞ as M →∞ . For 0 < s < M ,
we have, (M − s)g(M) ≤ G(s)−G(M) ≤ (M − s)g(s) and (5.18), (5.20) give:

δ ≤ αg(M)
4
√
γ

∫ M

0

[(M − s)g(M)]−1/2 ds =
αg1/2(M)

4
√
γ

∫ M

0

(M − s)−1/2 ds

=
α

2
√
γ

[g(M)M ]1/2, for δ � 1�M .

The above relation implies, 0 < δ → 0 since g(M)M < f(M)M → 0, as
M →∞. �

Proposition 5.7 The solution z, to (5.15) is a lower solution to the u-problem;
moreover the solution u blows up in finite time.

Proof: For 0 < r < 1− δ(t),

E(z) = Ṁ − λf(M)/4π2
(∫ 1

0

f(z)r dr
)2

= Ṁ − λg(M)/γ

4π2(
∫ 1

0
g(z)r/γ dr)2

. Ṁ − λγ/π2(α+ 1)2g(M) ≤ Ṁ − γΛ/g(M) = 0 , (5.21)

on choosing Ṁ−γΛ/g(M) = 0, where Λ is taken as 3Λ = (λ/π2(α+1)2)−8/α2 <
(λ/π2(α+ 1)2). Hence E(z) . 0 for M � 1.

For the interval 1− δ < r < 1, we first differentiate (5.19) with respect to t
and get

zt = (1− r) µ̇√
2µ

[G(z)−G(M)]1/2

+
1
2
g(M)Ṁ [G(z)−G(M)]1/2

∫ z

0

[G(s)−G(M)]−3/2 ds

= A+B.

For A we have:

A = (1− r) µ̇√
2µ

[G(z)−G(M)]1/2

≤ −g
′(M)Ṁ
g(M)

[g(z)(M − z)]1/2
∫ z

0

[G(s)−G(M)]1/2 ds

≤ −g′(M)Ṁg1/2(z)M
2g3/2(M)

≤ γΛg(z)
g2(M)

for M � 1 ,

provided that

Ṁ ≤ − γΛg1/2(z)
Mg′(M)g1/2(M)

which certainly holds if 0 ≤ Ṁ ≤ −γΛ/Mg′(M) since g′(s) ≤ 0 so g(z)/g(M) ≥
1 for z ≤M .
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For B we have:

B =
1
2
g(M)Ṁ [G(z)−G(M)]1/2

∫ z

0

[G(s)−G(M)]−3/2 ds ≤ Ṁg1/2(z)
g1/2(M)

≤ γΛg(z)
g2(M)

for M � 1 ,

provided that Ṁ ≤ γΛg1/2(z)
g3/2(M)

, which holds if 0 ≤ Ṁ ≤ γΛ
g(M) , since g(z)/g(M) ≥

1 for z ≤M .
Also, on using (5.17), we have the estimate,

−zr
r
≤

4
√
γ

α
(g(M)M)1/2 g(z)

g2(M)
. γΛ

g(z)
g2(M)

since g(M)M → 0 for M � 1 .

Thus for 1 − δ < r < 1 if 0 ≤ Ṁ = min{γΛ/g(M) ,−γΛ/Mg′(M)} and using
the previous estimate we obtain,

E(z) = A+B − zr
r

+ µg(z)− λf(z)/4π2(
∫ 1

0

f(z)r dr)2

=
2γΛg(z)
g2(M)

− zr
r

+ µg(z)− λg(z)/γ

4π2(
∫ 1

0
g(z)r/γ dr)2

. 2γΛ
g(z)
g2(M)

+ γΛ
g(z)
g2(M)

+ µg(z)− λγg(z)
π2(a+ 1)2g2(M)

=
[
3γΛ + 8γ/α2 − γλ/π2(a+ 1)2

] g(z)
g2(M)

= (3γΛ− 3γΛ) = 0 ,

for M � 1. Also z(1, t) = u(1, t) = zr(0, t) = ur(0, t) = 0 on the boundary and
taking z(r, 0) ≥ u0(r), the function z(r, t) is a lower solution to the u-problem,
hence u(r, t) ≥ z(r, t), for M , large enough (after some time at which u, is
sufficiently large).

Now we show that u blows up. Indeed

Ṁ = min{Λγ/g(M),−Λγ/Mg′(M)}

which implies

Λγ
dt

dM
= max{g(M) ,−Mg′(M)} ≤ g(M)−Mg′(M) or

Λγt ≤
∫ M

(g(s)− sg′(s)) ds

= −Mg(M) +
∫ M

g(s) ds <
∫ M

f(s) ds <∞ ,

since Mg(M)→ 0 as M →∞, and (5.4) holds. Hence, z, blows up at T ∗ <∞,
and u, must also blows up at some t∗ ≤ T ∗ < ∞. This completes the proof of
the proposition. �
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As in the one-dimensional case [18, 19], the blow-up is global, i.e. u(r, t)→∞
as t → t∗− for all r ∈ [0, 1). Since f(u) is bounded, then u blows up only by
having

∫ 1

0
f(u)r dr → 0 as t→ t∗−. Indeed,

Ṁ ≤ λf(0)

4π2(
∫ 1

0
f(u)r dr)2

= h(t) ,

giving

M(t)−M(0) ≤
∫ t

0

h(s) ds→∞ as t→ t∗ .

This implies
∫ 1

0
f(u)rdr → 0 as t → t∗, but then u blows up globally and

ur(1, t)→∞ as t→ t∗−.

5.4 The Robin Problem

We consider again u to satisfy (1.7a), (1.7c) but now we take boundary condi-
tions of Robin type,

ur(1, t) + βu(1, t) = 0 , t > 0 , β > 0 . (5.22)

The corresponding steady problem is

w′′ +
1
r
w′ + µf(w) = 0 , 0 < r < 1 , (5.23a)

w′(1) + βw(1) = 0 , β > 0 , w′(0) = 0 . (5.23b)

Multiplying again by w′ and integrating we obtain

(w′(1))2

2
+
∫ 1

0

(w′(r))2

r
dr − µ

∫ M

m

f(s) ds = 0 , (5.24)

where 0 < m = w(1) < M = maxw = w(0) , (m = minw, by using the
maximum principle). We also consider the auxiliary problem,

z(r) = sup
r
z(r) = N , z′(r) = 0 0 ≤ r ≤ 1− δ ,

z′′(r) + µg(z(r)) = 0 , 1− δ < r < 1 ,
z′(1− δ) = 0 z′(1) + βz(1) = 0 ,

(5.25)

where 0 < g(s) < f(s), and z, zr, are continuous at 1− δ.
The following result is similar to the one of Lemma 5.1.

Lemma 5.8 Let (5.4) hold, then the solution to (5.25) is a lower solution to
the Robin problem (5.23); moreover (w′(1))2

µ → 0 as µ→∞.
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Figure 5: Possible non-local response diagrams for the Robin problem.

Proof: As in the proof of Lemma 5.1 we again have (z′(r))2 = 2µ[G(z) −
G(N)], and z′(r) < 0, where G(z) =

∫∞
z
g(s) ds. This implies

δ =
1

2µ

∫ N

z(1)

[G(s)−G(N)]−1/2 ds <
1

2µ

∫ N

0

[G(s)−G(N)]−1/2 ds .

Taking µ ≥ µ0, where

µ0 = sup
z∈(0,N)

2[G(z)−G(N)]
(1− δ)2[f(z)− g(z)]2

,

z is a lower solution to problem (5.23), z(r) < w(r) and N ≤ M . Note that
N → ∞, and M → ∞, as µ → ∞. Moreover z′′(r) < 0 in (1 − δ, 1), then
0 < −z′(r) < −z′(1), z(r) < z(1)[1 + β(1 − r)], and for r = 1 − δ, N <
z(1)(1 + βδ) < w(1)(1 + βδ) = m(1 + βδ), which implies that m → ∞ as
N →∞. Since

∫∞
0
f(s) ds <∞,

∫M(µ)

m(µ)
f(s) ds→ 0 as µ→∞. From (5.24) we

get (w′(1))2

µ → 0 as µ→∞ and 1
µ

∫ 1

0
(w′(r))2

r dr → 0 as µ→∞. �

Now multiplying by r, (5.23a) gives, (
∫ 1

0
f(w)r dr)2 = (w′(1))2

µ2 and λ =

4π2 (w′(1))2

µ . From Lemma 5.8 we obtain that λ(M) → 0 as M → ∞ and from

(5.24) that (w′(1))2

µ < 2
∫M

0
f(s) ds → 2 as M → ∞. Hence λ(M) < 8π2 which

means that there exists a 0 < λ∗ ≤ 8π2 such that for 0 < λ < λ∗ problem (5.23)
has at least two solutions whereas it has no solutions for λ > λ∗. Thus we have
the diagrams of Figure 5.

5.5 Stability

We consider, as in the Dirichlet problem, an upper solution v(r, t) = w(r;µ(t))
which is decreasing in time and a lower solution z(r, t) = w(r;µ(t)) which is
increasing in time, to the u-problem. More precisely we have E(v) ≥ 0, and
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E(z) ≤ 0 provided that

0 < −µ̇ = h(µ) ≡ [4π2µ I2(w)− λ] inf
(0,1)
{f(w)
wµ
}/I2(w) ,

0 < µ̇ = h(µ) ≡ [λ− 4π2µ I2(w)] inf
(0,1)
{f(w)
wµ
}/I2(w) ,

respectively, with µ(0), and µ(0) chosen so that w(r;µ(0)) > u0(r), w(r;µ(0)) <
u0(r), and λ = λ(µ) = 4π2µ(

∫ 1

0
f(w)r dr)2 = 4π2µI2(w), where w(r;µ) is the

steady solution. To each µ corresponds a unique M but to each λ ∈ (0, λ∗)
corresponds more than one M and hence many solutions w(r;λ), see Figure 5.
Following the same procedure as in the one-dimensional case we know that the
quantity Φ(µ̂, λ) = 4π2µ̂I2(w) − λ = λ̂(µ̂) − λ, is either greater than, or equal
to, or less than zero, as this is the key term for the construction of upper and
lower solutions.

Thus if we consider the left response diagram of Figure 5, then Φ(µ, λ) =
λ − λ > 0, if µ1 < µ < µ2, Φ(µ, λ) = λ − λ < 0 if µ < µ1 or µ > µ2 and
Φ(µ, λ) = 0 if µ = µ1 or µ = µ2.

For λ = λ∗, Φ(µ, λ) < 0, hence z1(r, t) → w∗ as t → ∞, provided that
w1(r;µ(0)) < w∗ and z2(r, t) → ∞ as t → ∞ provided now that w2(r;µ(0)) >
w∗. This means that w∗ is unstable. More precisely it is unstable from above and
stable from below. For λ > λ∗ again Φ(µ, λ) < 0, z(r, t) → ∞ as t → t∗ ≤ ∞,
hence u is unbounded for any initial data; this also holds even for λ < λ∗

provided that the initial data are greater than the largest steady state. The
above procedure can also be applied to the rest of the response diagrams of
Figure 5.

5.6 Blow-up of unbounded solutions

We consider now the unbounded solutions appearing for λ > λ∗ or for λ ≤ λ∗

but with initial conditions larger than the greatest steady state. Following the
same method as in the one-dimensional case [19], if u fails to blow-up, then for
any given k, there must be a tk > 0 such that u ≥ k, for tk ≥ t (this is due to the
use of the lower solutions, note that m = minw(r) = w(1) → ∞ as M → ∞).
Then we consider the problem,

vt = ∆rv + λfk(v)/4π2(
∫ 1

0

fk(v)r dr)2 , 0 < r < 1 , t > 0

v(1, t) = vr(0, t) = 0 , t ≥ tk
v(r, tk) = 0 , 0 < r < 1 ,

where fk(s) = f(s + k). Thus it can easily seen that v + k is a lower solution
to the u-problem, hence u ≥ v + k for t ≥ tk. But from the Dirichlet problem
(see Proposition 5.2, we have that if λ > λ∗

∫∞
0
fk(s) ds = λ∗

∫∞
0
f(s+ k) ds =

λ∗
∫∞
k
f(S) dS, then v blows up at finite time. Hence choosing k sufficiently
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Figure 6: Stability and blow-up of solutions for the Robin problem.

large so that the previous inequality holds, we get that u blows up. This blow-
up is global.

Finally, carrying over the analysis similar to the Dirichlet problem and the
one-dimensional case [18, 19], we obtain Figure 6. We use the notation: (→ · ←),
for stable stationary solutions, (← · →) for unstable, and the double arrows
(→→) for solutions u which blow up. If we lie in the region where Φ(µ(t), t) > 0
then the arrows point downwards while where Φ(µ(t), t) < 0 the arrows point
upwards.

Any solution which corresponds to a point of the curves of this type (→ · ←)
is stable while all others are unstable. More precisely this (→ · →), is stable
from one side and unstable from the other whereas this (← · →), is unstable
from both sides.

For the Neumann problem (the boundary conditions are ur(0, t) = ur(1, t) =
0) there is no positive steady state for any λ > 0. Concerning the solution
u(r, t), this behaves as in the one-dimensional case [18, 19]; if

∫∞
0
f(s) ds < ∞

then u, blows up globally at t∗ = 2π2

λ

∫∞
0
f(s) ds < ∞ for u(0, t) = 0, whereas

if
∫∞

0
f(s) ds = ∞, then blow-up does not occur but the solution tend to ∞,

uniformly as t→∞,

6 Discussion

In the present work we have studied the non-local, two-dimensional, radially
symmetric problem of the form:

ut = ∆ru+ λf(u)/4π2
(∫ 1

0

f(u)r dr
)2

where f(u) > 0, f ′(u) < 0, u, represents the temperature which is produced in
a conductor having fixed electric current I, i.e. λ = I2/π2. The function f rep-
resents electrical conductivity (f(u) = σ(u)), in contrast to the one-dimensional
model where it represents electrical resistivity (f(u) = ρ(u) = 1/σ(u)). This
work extends the results of the one-dimensional problem, and the methods used
are similar to the one-dimensional case and are based on comparison techniques.



24 Blow-up of radially symmetric solutions EJDE–2002/11

We find similar behaviour in both problems, and it is rather like that of
the standard reaction-diffusion model, ut = ∆u + λf(u), f(u) > 0, f ′(u) > 0,
f ′′(u) > 0, see [17] and the references therein. More precisely, for the Dirichlet
problem, if

∫∞
0
f(s) ds < ∞ we find a critical value λ∗ such that for λ > λ∗

there is no steady state and u, blows up globally. Also in case we have a unique
steady solution, this solution is asymptotically stable.

For the Robin problem, provided that
∫∞

0
f(s) ds < ∞, again there exists

a critical value λ∗ ≤ λ∗D (λ∗D refers to the Dirichlet problem). If 0 < λ < λ∗

then there exists at least one stationary solution and no solution for λ > λ∗.
Concerning the stability, the minimal solution is stable, the next greater one is
unstable, the next stable and so on. On the other hand, if λ > λ∗ then u blows
up; u also blows up for λ ∈ (0, λ∗) and for sufficiently large initial data . The
solution(s) at λ = λ∗ is(are) unstable.
For the Neumann problem there is no steady state and the solution u blows
up in finite time if

∫∞
0
f(s) ds < ∞, whereas u → ∞ uniformly as t → ∞ if∫∞

0
f(s) ds =∞.
It is an interesting question whether or not a similar behaviour occurs for

asymmetric problems for dimensions greater than or equal to two.
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