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EXISTENCE OF SOLUTIONS FOR ONE-DIMENSIONAL WAVE
EQUATIONS WITH NONLOCAL CONDITIONS

SERGEI A. BEILIN

Abstract. In this article we study an initial and boundary-value problem

with a nonlocal integral condition for a one-dimensional wave equation. We

prove existence and uniqueness of classical solution and find its Fourier repre-
sentation. The basis used consists of a system of eigenfunctions and adjoint

functions.

1. Introduction

Certain problems of modern physics and technology can be effectively described
in terms of nonlocal problems for partial differential equations. These nonlocal
conditions arise mainly when the data on the boundary cannot be measured directly.

The first paper, devoted to second-order partial differential equations with non-
local integral conditions goes back to Cannon [4]. Later, the problems with non-
local integral conditions for parabolic equations were investigated by Kamynin [10],
Ionkin [9], Yurchuk [18], Bouziani [2]; problems for elliptic equations with operator
nonlocal conditions were considered by Mikhailov and Guschin [7], Scubachevski
[17], Paneiah [13].

Then, Gordeziani and Avalishvili [5], Bouziani [3] devoted a few papers to non-
local problems for hyperbolic equations. Pulkina [14, 15] studied the nonlocal
analogue to classical Goursat problem.

In this paper we investigate the nonlocal analogue to classical mixed problem,
which involves initial, boundary and nonlocal integral conditions. In the rectangular
domain D = {(x, t) : 0 < x < l, 0 < t < T}, we consider the equation

LU ≡ Utt − Uxx = F (x, t) (1.1)

with initial data
U(x, 0) = Φ(x), Ut(x, 0) = Ψ(x), (1.2)

Dirichlet boundary condition
U(0, t) = 0 (1.3)

and the nonlocal condition ∫ l

0

U(x, t) dx = 0, (1.4)
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where Φ(x), Ψ(x) are given, Φ(x) ∈ C[0, l] ∩ C2(0, l), Ψ(x) ∈ C[0, l] ∩ C1(0, l) and
satisfy the compatibility conditions

Φ(0) = 0, Ψ(0) = 0,
∫ l

0

Φ(x) dx =
∫ l

0

Ψ(x) dx = 0.

Note that we do not lose generality by assuming that (1.3) and (1.4) are homo-
geneous. Indeed, if U(0, t) = m(t) and

∫ l
0
U(x, t) dx = n(t), we introduce a new

unknown function v(x, t) = U(x, t)−W (x, t), where

W (x, t) = (1− 2x
l

)m(t) +
2x
l2
n(t).

Then (1.1) is converted into the similar equation

vtt − vxx = g(x, t), g(x, t) = F (x, t)− LW,

while the Dirichlet and integral conditions are now homogeneous.
The presence of integral conditions complicates the application of standard tech-

niques. Therefore, we first reduce (1.1)-(1.4) to an equivalent problem.

Lemma 1.1. Problem (1.1)-(1.4) is equivalent to (1.1)-(1.3) and

Ux(0, t)− Ux(l, t) =
∫ l

0

F (x, t) dx. (1.5)

Proof. Let U(x, t) is a solution of (1.1)-(1.4). Integrating (1.1) with respect to x
over (0, l), and taking in account (1.4), we obtain

Ux(0, t)− Ux(l, t) =
∫ l

0

F (x, t) dx.

Let now U(x, t) be a solution of (1.1)-(1.3), (1.5). We need only to show that∫ l
0
U(x, t) dx = 0. For this end we integrate again (1.1) and obtain

d2

dt2

∫ l

0

U(x, t) dx = 0.

By virtue of the compatibility conditions,∫ l

0

U(x, 0) dx = 0,
∫ l

0

Ut(x, 0) dx = 0 .

Then
∫ l

0
U(x, t) dx = 0 is a unique solution to homogeneous Cauchy problem. �

Introduce a new unknown function u(x, t) = U(x, t) − w(x, t), where w(x, t) =
−x

2

2l

∫ l
0
F (x, t) dx. Then (1.1)-(1.3), (1.5) is transformed now into

utt − uxx = g(x, t), (1.6)

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), (1.7)

u(0, t) = 0, (1.8)

ux(0, t) = ux(l, t), (1.9)
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where

g(x, t) = F (x, t) +
x2

2l

∫ l

0

Ftt(x, t) dx−
1
l

∫ l

0

F (x, t) dx,

ϕ(x) = Φ(x) +
x2

2l

∫ l

0

F (x, 0) dx,

ψ(x) = Ψ(x) +
x2

2l

∫ l

0

Ft(x, 0) dx.

2. Uniqueness

Theorem 2.1. There exists at most one solution to (1.6)-(1.9).
Proof. Let u1(x, t), u2(x, t) be two different solutions of (1.6)-(1.9). Then u(x, t) =
u1(x, t)− u2(x, t) is a nontrivial solution to the homogeneous problem

utt − uxx = 0,

u(x, 0) = 0, ut(x, 0) = 0,

u(0, t) = 0, ux(0, t) = ux(l, t).

As u ∈ C1(D̄) ∩ C2(D), then u(x, t) takes on certain value for x = l. Let u(l, t) =
µ(t). Consider mixed problem for the equation utt − uxx = 0 with homogeneous
initial data and the boundary conditions

u(0, t) = 0, u(l, t) = µ(t).

Note, that µ(t) is required to satisfy the compatibility conditions µ(0) = 0 and
µ′(0) = 0.

For all conditions to be homogeneous, we let ũ = u − x
l µ(t). Then, taking in

account the compatibility conditions for µ(t), we obtain

ũtt − ũxx =
x

l
µ′′(t),

ũ(x, 0) = 0, ũt(x, 0) = 0,

ũ(0, t) = 0, ũ(l, t) = 0.

It is well known that there exists unique solution ũ(x, t) to this problem [1], hence
u(x, t) assumes the form

u(x, t) =
2l
π2

∞∑
k=1

(−1)k

k2

(∫ t

0

µ′′(τ) sin
kπ(t− τ)

l
dτ

)
sin

kπx

l
+
x

l
µ(t).

Now we find that

ux(0, t) =
2
π

∞∑
k=1

(−1)k

k

∫ t

0

µ′′(τ) sin
kπ(t− τ)

l
dτ +

1
l
µ(t),

ux(l, t) =
2
π

∞∑
k=1

1
k

∫ t

0

µ′′(τ) sin
kπ(t− τ)

l
dτ +

1
l
µ(t)

and consider

ux(l, t)− ux(0, t) =
4
π

∫ t

0

µ′′(τ)
∞∑
m=1

1
2m− 1

sin
(2m− 1)π(t− τ)

l
dτ.
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As in [6]
∞∑
m=1

sin (2m− 1)x
2m− 1

=
{
π/4, if 0 < x < π

−π/4, if π < x < 2π .

Then by (1.9) we can write

0 = |ux(l, t)− ux(0, t)| =
∫ t

0

µ′′(τ) dτ.

Taking into account the compatibility conditions µ(0) = µ′(0) = 0, we easily obtain
µ(t) ≡ 0. Now from the uniqueness theorem [1], we obtain u(x, t) ≡ 0. �

3. Existence

Obviously, the solution to the problem (1.6)-(1.9), if it exists, is a sum of solutions
to the following two problems:
Problem H

utt − uxx = 0,

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x),

u(0, t) = 0, ux(0, t) = ux(l, t)

Problem NH

utt − uxx = g(x, t),

u(x, 0) = ut(x, 0) = 0, u(0, t) = 0, ux(0, t) = ux(l, t).

First consider problemH and use separation of variables. Let u(x, t) = X(x)T (t).
Substituting in the equation utt − uxx = 0 and taking into account (1.8), (1.9), we
obtain

X ′′(x) + λX(x) = 0, X(0) = 0, X ′(0) = X ′(l). (3.1)
Note that problem (3.1) is not self-adjoint: The adjoint problem is

Y ′′(x) + λ̄Y (x) = 0, Y ′(l) = 0, Y (l) = Y (0). (3.2)

The eigenvalues and eigenfunctions of problem (3.1) are

λk = (
2πk
l

)2, k = 1, 2, . . . (3.3)

X0 = x, Xk = sin
2πkx
l

(3.4)

respectively. Note, that for k > 0 the functions (3.4) are not orthonormal with X0.
To construct a basis in L2, we complete (3.4) by using adjoint functions.

Following M. Keldysh [11], we define an adjoint function X̃k, corresponding
eigenvalue λk from (3.3), as a solution to the boundary-valued problem

X̃ ′′k (x) + λkX̃k(x) = −2
√
λkXk(x), X̃k(0) = 0, X̃ ′k(0) = X̃ ′k(l). (3.5)

We obtain

X̃k(x) = x cos
2πkx
l

, k = 1, 2, . . .

Rewrite now a system of eigenvalue and adjoint functions of (3.1) as

X0 = x, X2k−1(x) = x cos
2πkx
l

, X2k(x) = sin
2πkx
l

. (3.6)



EJDE–2001/76 WAVE EQUATION WITH A NONLOCAL CONDITION 5

In a similar way we find the system of eigenvalue and adjoint functions (3.2):

Y0(x) =
2
l2
, Y2k−1(x) =

4
l2

cos
2πkx
l

, Y2k(x) =
4(l − x)

l2
sin

2πkx
l

, (3.7)

where for every λk with k > 0, X2k(x), Y2k(x) are eigenvalue functions, X2k−1(x),
Y2k−1(x) are adjoint functions of the problems (3.1) and (3.2) respectively. Direct
calculations show that (3.6) and (3.7) form a biorthogonal system for x ∈ (0, l):

(Xi, Yj) =
∫ l

0

Xi(x)Yj(x) dx = δij .

As it was shown in [8] the system (3.6) is complete and forms a basis in L2(0, l).
Hence, an arbitrary function f(x) ∈ L2(0, l) may be expanded as

f(x) = A0X0(x) +
∞∑
k=1

(A2kX2k(x) +A2k−1X2k−1(x)),

where

Ai =
∫ l

0

f(x)Yi(x) dx. (3.8)

Returning to the separation variables technique, for T (t) we obtain

Tk(t) = ak sin
2πkt
l

+ bk cos
2πkt
l
.

We assume now that a solution to H is of the form

u(x, t) = A0X0 +
∞∑
k=1

(
(A2kX2k +A2k−1X2k−1)Tk −

lt

2πk
A2k−1X2kT

′
k

)
. (3.9)

Substitute Tk(t) and rewrite the coefficients. Then

u(x, t) =C0X0 +
∞∑
k=1

(X2k(C2k sin
2πkt
l

+D2k cos
2πkt
l

)

+X2k−1(C2k−1 sin
2πkt
l

+D2k−1 cos
2πkt
l

)

− tX2k(C2k−1 cos
2πkt
l
−D2k−1 sin

2πkt
l

)).

(3.10)

The initial data (1.7) give us the following two equalities

ϕ(x) = C0X0 +
∞∑
k=1

(D2kX2k +D2k−1X2k−1),

ψ(x) =
∞∑
k=1

(
(
2πk
l
C2k − C2k−1)X2k +

2πk
l
C2k−1X2k−1

)
,

and the coefficients can be found via formula (3.8).
Assume a solution to the problem NH is of the form

u(x, t) = V0(t)X0(x) +
∞∑
k=1

(V2k(t)X2k(x) + V2k−1(t)X2k−1(x)) , (3.11)
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where Vi(t) are unknown coefficients satisfying the initial conditions Vi(0) = V ′i (0) =
0. Substitute (3.11) into the equation utt − uxx = g(x, t), where g(x, t) has been
expanded as a biorthogonal series:

g(x, t) = g0(t)X0(x) +
∞∑
k=1

(g2k(t)X2k(x) + g2k−1(t)X2k−1(x)),

with coefficients

gi(t) =
∫ l

0

g(x, t)Yi(x) dx, i = 0, 1, . . .

We obtain

V ′′0 (t)x+
∞∑
k=1

(
V ′′2k(t) +

4π2k2

l2
V2k(t)

)
sin

2πkx
l

+
∞∑
k=1

(
V ′′2k−1(t) +

4π2k2

l2
V2k−1(t)

)
x cos

2πkx
l

+
∞∑
k=1

V2k−1(t)
4πk
l

sin
2πkx
l

= g0(t)X0(x) +
∞∑
k=1

(g2k(t)X2k(x) + g2k−1(t)X2k−1(x)).

Thus we have a Cauchy problem for the system of ordinary differential equations

V ′′0 (t) = g0(t)

V ′′2k +
4πk
l

(
πk

l
V2k(t) + V2k−1(t)) = g2k(t)

V ′′2k−1(t) +
4π2k2

l2
V2k−1(t) = g2k−1(t)

with initial data

V0(0) = V ′0(0) = 0, V2k(0) = V ′2k(0) = 0, V2k−1(0) = V ′2k−1(0) = 0,

which has a unique solution

V0(t) =
∫ t

0

(t− τ)g0(τ) dτ,

V2k−1(t) =
1
kπ

∫ t

0

g2k−1(τ) sin
kπ(t− τ)

l
dτ,

V2k(t) =
1
kπ

∫ t

0

(g2k(τ)− 4πkV2k−1(τ)) sin
kπ(t− τ)

l
dτ.

Theorem 3.1. Let:
(1) g(x, t) ∈ C2(D), gx(x, t) ∈ C[0, l] for all t ∈ (0, T ), |g(x, t)| ≤ P, (x, t) ∈ D
(2) ϕ ∈ C[0, l] ∩ C2(0, l), ψ ∈ C[0, l], ϕ(0) = 0, ϕ′(0) = ϕ′(l), ψ(0) = 0.

Then there exists the solution to (1.6)–(1.9),

u(x, t) ∈ C(D̄) ∩ C1(D̄ \ {t = T}) ∩ C2(D)

which has the form of a sum of (3.9) and (3.11).
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Series Proof. It is sufficient to prove uniform convergence of the series (3.9)
and (3.11) and the series, obtained with formal differentiation. Let |ϕ′(x)| ≤ M1,
|ϕ′′(x)| ≤M2, |ψ(x)| ≤ N , |ψ′(x)| ≤ N1, |gx| ≤ P1, |gxx| ≤ P2.

Integrating Ci, Di, Vi by parts and taking in account the abovementioned as-
sumptions, we obtain:

|D2k| ≤
1
k2

l(lM2 + 2M1)
π2

, |D2k−1| ≤
1
k2

M2l

π2
,

|C2k| ≤
1
k2

l(N1 + 2N)
2π2

, |C2k−1| ≤
1
k2

N1l

π2
,

|V2k| ≤
1
k2

4T 2(2p1 + P2l)
π2

, |V2k−1| ≤
1
k2

2TP1

π2
,

and hence the series (3.9) and (3.11) and the series, obtained with formal differen-
tiation, converge uniformly. �
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