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ASYMPTOTIC BEHAVIOUR FOR SCHRÖDINGER EQUATIONS
WITH A QUADRATIC NONLINEARITY IN ONE-SPACE

DIMENSION

NAKAO HAYASHI & PAVEL I. NAUMKIN

Abstract. We consider the Cauchy problem for the Schrödinger equation

with a quadratic nonlinearity in one space dimension

iut +
1

2
uxx = t−α|ux|2, u(0, x) = u0(x),

where α ∈ (0, 1). From the heuristic point of view, solutions to this problem

should have a quasilinear character when α ∈ (1/2, 1). We show in this paper
that the solutions do not have a quasilinear character for all α ∈ (0, 1) due to

the special structure of the nonlinear term. We also prove that for α ∈ [1/2, 1)
if the initial data u0 ∈ H3,0 ∩ H2,2 are small, then the solution has a slow
time decay such as t−α/2. For α ∈ (0, 1/2), if we assume that the initial data

u0 are analytic and small, then the same time decay occurs.

1. Introduction

In this paper we consider the Schrödinger equation, with a quadratic derivative
term,

Lu = t−α|ux|2, t, x ∈ R
u(0, x) = u0(x), x ∈ R,

(1.1)

where L = i∂t+ 1
2∂

2
x, and α ∈ (0, 1). The Cauchy problem for Schrödinger equations

with a cubic derivative term was studied in [9]. There the authors considered

Lu = t1−δF (u, ux), t, x ∈ R
u(0, x) = εu0(x), x ∈ R,

(1.2)

where 0 < δ < 1, ε is a sufficiently small constant, and the nonlinear interaction
term F consists of cubic nonlinearities.

F (u, ux) = λ1|u|2u+ iλ2|u|2ux + iλ3u
2ūx + λ4|ux|2u+ λ5ūu

2
x + iλ6|ux|2ux,

where the coefficients λ1, λ6 ∈ R, λ2, λ3, λ4, λ5 ∈ C, λ2 − λ3 ∈ R, λ4 − λ5 ∈ R. In
[9], the authors found a time decay estimate for the solutions of this problem,

‖u(t)‖∞ ≤ C|t|−1/2. (1.3)
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The same result is also true for the case δ > 1. From the heuristic point of view
problem (1.1) corresponds to problem (1.2), when δ = α + 1

2 . Therefore it is
natural to make a conjecture that the solutions of (1.1) also have the decay property
(1.3). However, as we will show in the present paper, due to the special oscillating
structure of the nonlinear term, for α ∈ (0, 1) the asymptotic behavior of solutions
to (1.1) do not obey the estimate (1.3). Our result stated below depends on the
structure of nonlinearity which appears in the identity

(FU(−t)|ux|2)(t, ξ) = (2π)1/2

∫
e−itξη(FU(−t)ux(t, η))(FU(−t)ux)(t, ξ + η)dη.

In the cases of u2
x and ū2

x we have

(FU(−t)u2
x)(t, ξ)

= (2π)1/2e
i
4 tξ

2
∫
e−ity

2
(FU(−t)ux)(t,

ξ

2
− y)(FU(−t)ux)(t,

ξ

2
+ y)dy

and

(FU(−t)ū2)(t, ξ)

= (2π)1/2e
3i
4 tξ

2
∫
eity

2
(FU(−t)ux)(t,

ξ

2
− y)(FU(−t)ux)(t,

ξ

2
+ y)dy,

where U(t) is the linear Schrödinger evolution group

U(t)φ =
1√
2πit

∫
e
i
2t (x−y)2

φ(y)dy = F−1e−
it
2 ξ

2
Fφ,

Fφ ≡ φ̂ = 1√
2π

∫
e−ixξφ(x)dx denotes the Fourier transform of the function φ. The

oscillating function e±ity
2

yields an additional time decay term through integration
by parts. However, the oscillating function e±itξy does not give an additional time
decay uniformly with respect to ξ. This is the main reason why we do not have
estimate (1.3) for solutions of (1.1). In [6] we proved (1.3) for solutions of the
Cauchy problem

Lu = λ(ux)2 + µu2
x, with λ, µ ∈ C.

However, the nonlinearity |ux|2 was out of our scope. In the present paper we
intend to fill up this gap studying the case of quadratic nonlinearity t−α|ux|2.
The methods developed for the nonlinear Schrödinger equations with quadratic
nonlinearities u2

x, |ux|2 and u2
x can be applied also to the study of the large time

asymptotic behavior for other quadratic nonlinear equations, such as Benjamin-
Ono and Korteweg-de Vries equations (in paper [8], mBO equation was reduced
to the cubic nonlinear Schrödinger equation). In paper [2], Cohn used the method
of normal forms of Shatah [11] to study the nonlinear Schrödinger equations with
quadratic nonlinearity u2

x and showed that the solution exists on [0, T ) with T
bounded from below by Cε−6, where ε is the size of the data in some Sobolev norm.
In paper [10] the nonlinearity u2

x was studied by the Hopf-Cole transformation. The
L2-estimate of solutions involving the operator J = x + it∂x plays a crucial role
in the large time asymptotic behavior of solutions. However the nonlinearity N (u)
under consideration does not posses a self-conjugate structure eiωN (u) = N (eiωu)
for all ω ∈ R, therefore we can not use the operator J = x + it∂x directly in
(1.1). To overcome these obstacles we use the method developed in [7] and apply
systematically the operator I = x∂x + 2t∂t.
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We now state our strategy for the proof. If we put v = ux. Then the problem is
written as

Lv = t−α∂x|v|2, t, x ∈ R.
By the identity

∂xJ |v|2 = ∂x(vJ v + itvxv) = vJ ∂xv + 2vxJ v − vJ ∂xv

we have

LJ v = t−αJ ∂x|v|2 = t−α(−|v|2 + vJ ∂xv + 2vxJ v − vJ ∂xv).

Therefore, the operator J acts on this problem also. Thus global existence in time
of small solutions to the problem can be proved for α ∈ (1/2, 1) and the derivative
ux should have the same asymptotic behaviour as the solutions to the corresponding
linear problem (along with time-decay estimate (1.3)). Combining this fact and the
identity (1) we prove the time decay of solutions. Roughly speaking, we show there
exists a constant c and a positive constant γ such that

|u(t,
√
t)− ct−α/2| ≤ Ct−(α/2)−γ .

In the case of α ∈ (0, 1/2) we use the fact that

∂x|u|2 =
1
it

(uJ u− uJ u)

which implies that usual derivative yields an additional time decay, in particular, the
fractional derivative |∂x|β gives us an additional time decay like t−β (see Lemma 2.4
below). However we have the derivative loss on the nonlinear term which requires
us to use some analytic function space.

To state our results we need some notation. We denote the inverse Fourier
transformation by F−1φ = φ̌ = 1√

2π

∫
eixξφ(ξ)dξ. We essentially use the estimates

of the operators J = x+ it∂x = U(t)xU(−t) = itM(t)∂xM(t) and I = x∂x + 2t∂t,
M = e(ix2)/(2t). Note that the relation J ∂x = I+2itL is valid, where L = i∂t+ 1

2∂
2
x

and U(t) = M(t)D(t)FM(t), D(t) is the dilation operator defined by (D(t)ψ)(x) =
(1/
√
it)ψ(x/t). Then since D−1(t) = iD(1/t) we have U(−t) = MF−1D−1(t)M =

iMF−1D(1/t)M .
We denote the usual Lebesgue space Lp = {φ ∈ S′; ‖φ‖p < ∞}, where the

norm ‖φ‖p = (
∫
R
|φ(x)|pdx)1/p if 1 ≤ p <∞ and ‖φ‖∞ = ess.sup {|φ(x)|;x ∈ R} if

p =∞. For simplicity we write ‖ · ‖ = ‖ · ‖2. Weighted Sobolev space is

Hm,k
p =

{
φ ∈ S′ : ‖φ‖m,k,p ≡

∥∥〈x〉k〈i∂x〉mφ∥∥p <∞},
m, k ∈ R, 1 ≤ p ≤ ∞, 〈x〉 =

√
1 + x2. The fractional derivative |∂x|α, α ∈ (0, 1) is

equal to

|∂x|αφ = F−1|ξ|αFφ = C

∫
R

(φ(x+ z)− φ(x))
dz

|z|1+α
.

We denote also for simplicity Hm,k = Hm,k
2 and the norm ‖φ‖m,k = ‖φ‖m,k,2.

Different positive constants are denoted by the same letter C. Denote Φ(x) =∫
e−

i
2 (ξ−x)2 |ξ|α−1dξ.

Now we state the main results of this paper.
Theorem 1.1. Let α ∈ [1/2, 1). We assume that the initial data u0 ∈ H3,0∩ H2,2

and the norm ‖u0‖3,0 + ‖u0‖2,2 is sufficiently small. Then there exists a unique
global solution u of the Cauchy problem (1.1) such that u ∈ C(R;H3,0). Moreover
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there exist unique constant B and functions P,Q such that |ξ|1−αP (ξ) ∈ L∞(R),
|ξ|1−αQ(ξ) ∈ L∞(R) and the following asymptotic statement is valid

u(t, x) = Be
ix2
2t t−

α
2 Φ(

x√
t
) +O(t−

α
2−γ(〈 x√

t
〉α−1 + 〈 x√

t
〉−α)) (1.4)

for all t ≥ 1, uniformly in |x| ≤ t1−ρ, and

u(t, x) = t−αP (
x

t
) + e

ix2
2t

1√
t
Q(
x

t
) +O(t−α−γ + t−

1
2−γ〈x

t
〉−α) (1.5)

for all t ≥ 1, uniformly in |x| ≥ t1−ρ, where ρ, γ > 0 are small.

In the case α ∈ (0, 1/2) we have to assume that the initial data are analytic.
Denote

A0 =
{
φ ∈ L2 : ‖φ‖A0 ≡

∞∑
n=0

1
n!
‖|∂x|

1
2−α(x∂x)nφ‖1,0 <∞

}
.

Theorem 1.2. Let α ∈ (0, 1/2). We assume that the initial data u0 ∈ A and the
norm ‖u0‖A0 is sufficiently small. Then there exists a unique global solution u of
the Cauchy problem (1.1) such that u ∈ C(R;H1,0). Moreover there exist unique
constant B and functions P,Q such that asymptotics (1.4) and (1.5) are valid.

Remark 1.1. In the region |x| = t1−ρ asymptotics (1.4) coincides with (1.5).

In Section 2 we prove some preliminary estimates. In Section 3 we prove Theorem
1.1. Section 4 is devoted to the proof of Theorem 1.2.

2. Preliminaries

First we prove some time decay estimates.

Lemma 2.1. We have the estimate

‖ux‖∞ ≤ Ct−1/2‖FU(−t)ux‖∞ + Ct−
1+β−γ

2 (‖ux‖+ ‖|∂x|
1
2−βJ ∂xu‖),

for all t > 0, where β ∈ (0, 1
2 ], γ ∈ (0, β).

Proof. Denote w = U(−t)ux. Then since U(t) = MDFM , where M = e
ix2
2t ,

Dφ = 1√
it
φ(xt ) is the dilation operator, J = x+ it∂x = U(t)xU(−t), we get

ux = U(t)w = MDFw +MDF(M − 1)w

and by virtue of the Hölder inequality and Sobolev embedding theorem ‖φ‖p ≤
C‖|∂x|

1
2−

1
pφ‖ if 2 ≤ p <∞, we have

‖MDF(M − 1)w‖∞
≤ Ct−1/2‖F(M − 1)w‖∞ ≤ Ct−1/2‖(M − 1)w‖1 ≤ Ct−

1+β−γ
2 ‖|x|β−γw‖1

≤ Ct−
1+β−γ

2 (‖w‖+ ‖xw‖ 1
β

) ≤ Ct−
1+β−γ

2 (‖w‖+ ‖|∂x|
1
2−βxw‖)

≤ Ct−
1+β−γ

2 (‖ux‖+ ‖|∂x|
1
2−βxU(−t)ux‖)

≤ Ct−
1+β−γ

2 (‖ux‖+ ‖|∂x|
1
2−βJ ∂xu‖),

therefore the result of the lemma follows. Lemma 2.1 is proved. �
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Denote

‖φ‖Y = sup
t>0

tα〈t〉1−2γ‖∂tφ‖0,1,∞ + sup
t>0

t−γ‖|ξ| 12−β∂ξφ‖+ sup
t>0
‖φ‖0,1,∞,

where β ∈ (0, 1
2 ], γ > 0 is small. In the next lemma we obtain the asymptotic

representation as ξ → 0 for the integral

I =
∫ t

0

τ−αdτ

∫
e−iτξηφ1(τ, ξ + η)φ2(τ, η)dη

which corresponds to the identity (1).

Lemma 2.2. If φl ∈ Y, l = 1, 2, then we have

I = Γ(1− α)|ξ|α−1(sin(
πα

2
)
∫
φ1(t, η)φ2(t, η)|ξ|α−1dη

+i sign ξ cos(
πα

2
)
∫
φ1(t, η)φ2(t, η)|η|α−1 sign η dη)

+O(t−γ |ξ|α−1‖φ1‖Y‖φ2‖Y).

for all |ξ| ≤ t−µ, t ≥ 1, where µ = 3γ
α2 , γ > 0 is small.

Proof. We write I =
∑4
l=1 Il, where

I1 =
∫ tν/|ξ|

0

τ−αdτ

∫
e−iτξηφ1(t, η)φ2(t, η)dη,

I2 =
∫ t

tν/|ξ|
τ−αdτ

∫
e−iτξηφ1(τ, ξ + η)φ2(τ, η)dη,

I3 =
∫ tν/|ξ|

0

τ−αdτ

∫
e−iτξη(φ1(τ, η)φ2(τ, η)− φ1(t, η)φ2(t, η))dη

I4 =
∫ tν/|ξ|

0

τ−αdτ

∫
e−iτξη(φ1(τ, ξ + η)− φ1(τ, η))φ2(τ, η)dη,

where ν = 2γ/α. If τ |ξ| ≥ 1, we integrate by parts with respect to η to obtain

|
∫
e−iτξηφ1(t, x+ η)φ2(t, η)dη|

≤ 〈τξ〉−1|
∫
e−iτξη∂η(φ1(t, x+ η)φ2(t, η))dη|

≤ C〈τξ〉−1tγ
2∑
l=1

‖φ3−l‖∞ sup
t>0

t−γ‖|ξ| 12−γ∂ξφl‖ ≤ C〈τξ〉−1tγ‖φ1‖Y‖φ2‖Y,

hence changing τ |ξ| = z we obtain

|
∫ ∞
tν/|ξ|

τ−αdτ

∫
e−iτξηφ1(t, x+ η)φ2(t, η)dη|

≤ Ctγ‖φ1‖Y‖φ2‖Y
∫ ∞
tν/|ξ|

〈τξ〉−1τ−αdτ ≤ Ctγ |ξ|α−1‖φ1‖Y‖φ2‖Y
∫ ∞
tν

z−α−1dz

≤ C|ξ|α−1tγ−αν‖φ1‖Y‖φ2‖Y ≤ Ct−γ |ξ|α−1‖φ1‖Y‖φ2‖Y.
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Since ∫ ∞
0

τ−αeiτξηdτ =
∫ ∞

0

τ−α cos(τξη)dτ + i

∫ ∞
0

τ−α sin(τξη)dτ

= Γ(1− α) sin(
πα

2
)|ξη|α−1

+iΓ(1− α) cos(
πα

2
)|ξη|α−1 sign(ξη)

(see [1]), we find

I1 =
∫ ∞

0

τ−αdτ

∫
e−iτξηφ1(t, η)φ2(t, η)dη

−
∫ ∞
tν/|ξ|

τ−αdτ

∫
e−iτξηφ1(t, η)φ2(t, η)dη

= Γ(1− α) sin(
πα

2
)|ξ|α−1

∫
φ1(t, η)φ2(t, η)|η|α−1dη

+iΓ(1− α) cos(
πα

2
)|ξ|α−1

∫
sign(ξη)φ1(t, η)φ2(t, η)|η|α−1dη

+O(t−γ |ξ|α−1‖φ1‖Y‖φ2‖Y).

In the same manner we obtain

|
∫ t

tν/|ξ|
τ−αdτ

∫
e−iτξηφ1(τ, x+ η)φ2(τ, η)dη|

≤ Ctγ‖φ1‖Y‖φ2‖Y
∫ t

tν/|ξ|
〈τξ〉−1τ−αdτ ≤ Ct−γ |ξ|α−1‖φ1‖Y‖φ2‖Y,

hence
|I2| ≤ Ct−γ |ξ|α−1‖φ1‖Y‖φ2‖Y.

To estimate I3 we note that

‖φl(t, ξ)− φl(τ, ξ)‖0,1,∞ = ‖
∫ t

τ

∂τφl(τ, ξ)dτ‖0,1,∞ = O(τ2γ−α‖φl‖Y)

which implies

|I3| = |
∫ tν/|ξ|

0

τ−αdτ

∫
e−iτξη(φ1(τ, η)φ2(τ, η)− φ1(t, η)φ2(t, η))dη|

≤ C‖φ1‖Y‖φ2‖Y|
∫ tν/|ξ|

0

τ2γ−2αdτ | ≤ Ct−γ |ξ|α−1‖φ1‖Y‖φ2‖Y

since µα ≥ γ + ν and |ξ| ≤ t−µ. Now using the estimate

‖〈η〉−1(φ(t, ξ + η)− φ(t, η))‖1 = ‖〈η〉−1

∫ ξ

0

∂yφ(t, y + η)dy‖1

≤ C|ξ|‖|ξ| 12−β∂ξφ‖ ≤ Ctγ |ξ|‖φ‖Y
for all |ξ| ≤ 1, we get

|I4| ≤ C‖φ1‖Y‖φ2‖Y|ξ|
∫ tν/|ξ|

0

τγ−αdτ ≤ Ct−γ |ξ|α−1‖φ1‖Y‖φ2‖Y

since µ(1− γ) ≥ γ + ν and |ξ| ≤ t−µ. Lemma 2.2 is proved. �
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In the next lemma we consider the asymptotic behaviour of the integral

I(t, x) =
∫
e−

it
2 (ξ− xt )2

f(t, ξ)dξ

as t → ∞ uniformly with respect to x ∈ R. Define Φ(x) =
∫
e−

i
2 (ξ−x)2 |ξ|α−1dξ.

Note that
Φ(x) = O(〈x〉−α + 〈x〉α−1)

as |x| → ∞. Let γ be a small positive number and

β = min(1/2, α)− γ, µ = 3γ/α2,

ρ =
5γ

α2(1− α)
, θ =

6γ
α2(1− α)2

, δ = θ + γ.

Lemma 2.3. Let ∂ξf(t, ξ) = O(|ξ|α−2) and f(t, ξ) = t1−αΨ(tξ) + O(t1−α−δ) for
all |ξ| ≤ tθ−1, ∂ξf(t, ξ) = (α−1)B|ξ|α−1ξ−1 +O(t−γ |ξ|α−2) for all tθ−1 ≤ |ξ| ≤ t−µ
and ‖|ξ| 12−βξ∂ξf(t, ξ)‖ ≤ Ctγ , then we have the asymptotic formula

I(t, x) = Bt−
α
2 Φ(xt−

1
2 ) +O(t−

α
2−γ(〈xt− 1

2 〉−α + 〈xt− 1
2 〉α−1))

for all t ≥ 1 uniformly in |x| ≤ t1−ρ and

I(t, x) =
√

2πt−αe−
ix2
2t Ψ̌(

x

t
) +
√
π√
it
f(t,

x

t
) +O(t−α−γ + t−

1
2−γ〈xt−1〉−α)

for all t ≥ 1 uniformly in |x| ≥ t1−ρ.

Proof. For x > 0, we have

f(t, ξ) = f(t, 1) +
∫ ξ

t−µ
∂ηf(t, η)dη +

∫ t−µ

1

∂ηf(t, η)dη

= f(t, 1) + (α− 1)B
∫ ξ

t−µ
|η|α−2dη +O(t−γ

∫ ξ

t−µ
|η|α−2dη)

+O(‖|ξ| 12−βξ∂ξf(t, ξ)‖(
∫ t−µ

1

|ξ|2β−3dξ)1/2)

= B|ξ|α−1 +O(1 + t−γ |ξ|α−1 + tµ(1−β)+γ)
= B|ξ|α−1 +O(t−γ |ξ|α−1)

for all tµ−1 ≤ |ξ| ≤ 2t−ρ since µ(1 − β) + 2γ ≤ ρ(1 − α). We make a change of
variable of integration ξ = zt−1/2, then we have

I(t, x) = t−1/2

∫
e−

i
2 (z−b)2

f(t, zt−1/2)dz,

where b = a
√
t = x/

√
t. First consider the case |x| ≤ t1−ρ, i.e. b ≤ t

1
2−ρ. We

represent
I = Bt−

α
2 Φ(b) +R1 +R2,

where the remainder terms are

Rj = t−1/2

∫
e−

i
2 (z−b)2

(f(t, zt−1/2)−Bt
1−α

2 |z|α−1)ϕj(z)dz,
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the function ϕ1(z) ∈ C1(R) : ϕ1(z) = 1 if z < b/3 and ϕ1(z) = 0 if z > 2b/3,
ϕ2(z) = 1−ϕ1(z). In the remainder term R1 we integrate by parts via the identity

e−
i
2 (z−b)2

=
1

1− iz(z − b)
d

dz
(ze−

i
2 (z−b)2

) (2.1)

to get

|R1| ≤ Ct−
α
2−γ

∫
|z|α−1〈zb〉−1(|ϕ1|+ |zϕ′1|)dz

+Ct−
α
2

∫
|z|≤tµ−

1
2

|z|α−1〈zb〉−1dz

≤ Ct−
α
2−γ〈b〉−α ≤ Ct−α2−γ〈a

√
t〉−α. (2.2)

In the remainder term R2 we use the identity

e−
i
2 (z−b)2

=
1

1− i(z − b)2

d

dz
((z − b)e− i

2 (z−b)2
) (2.3)

to find

|R2| ≤ Ct−
α
2−γ

∫
|z|α−1〈z − b〉−2(|ϕ2|+ |zϕ′2|)dz

+Ct−
α
2

∫
|z|≤tµ−

1
2

|z|α−1〈z − b〉−2dz

+Ct−1/2

∫
|z|>2t

1
2−ρ
〈z − b〉−2|zt−1/2||f ′(t, zt−1/2)|dz

= O(t−
α
2−γ〈b〉α−1) = O(t−

α
2−γ〈a

√
t〉α−1), (2.4)

since ∫
|z|>2t

1
2−ρ
〈z − b〉−2|zt−1/2||f ′(t, zt−1/2)|dz

≤ C‖|ξ| 12−βξf ′(t, ξ)‖(
∫
|z|>2t

1
2−ρ
|zt−1/2|2β−1〈z − b〉−4dz)1/2

≤ Ct
1−2β

4 〈b〉−1‖|ξ| 12−βξf ′(t, ξ)‖(
∫
|z|>2t

1
2−ρ

z2β−3dz)1/2

≤ Ct−
1
4 +ρ(1−β)〈b〉−1‖|ξ| 12−βξf ′(t, ξ)‖ ≤ Ct−γ〈b〉−1.

We consider now the case |x| > t1−ρ, i.e. b > t
1
2−ρ. Then we represent I in the

form

I = t−1/2

∫
|z|≤tθ−

1
2

e−
i
2 (z−b)2

f(t, zt−1/2)dz +
√
π

it
f(t, a) +R3 +R4,

where the remainder terms are

R3 = t−1/2

∫
|z|>tθ−

1
2

e−
i
2 (z−b)2

f(t, zt−1/2)ϕ1(z)dz

R4 = t−1/2

∫
e−

i
2 (z−b)2

(f(t, zt−1/2)− f(t, a))ϕ2(z)dz.
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Consider the integral

t−1/2

∫
|z|≤tθ−

1
2

e−
i
2 (z−b)2

f(t, zt−1/2)dz =
∫
|ξ|≤tθ−1

e−
i
2 t(ξ−a)2

f(t, ξ)dξ

= t1−α
∫
|ξ|≤tθ−1

e−
i
2 t(ξ−a)2

Ψ(tξ)dξ +O(t−α−γ)

= t−αe−
ix2
2t

∫
|y|≤tθ

eiyaΨ(y)dy +O(t−α−γ)

=
√

2πt−αe−
ix2
2t Ψ̂(a) +O(t−α−γ).

In the remainder term R3 above we integrate by parts via identity (2.1) to get

|R3| ≤ Ct−
α
2

∫
|z|≥tθ−

1
2

|z|α−1〈zb〉−1(|ϕ1|+ |zϕ′1|)dz

+Ct−1/2

∫
|z|>2t

1
2−ρ
〈zb〉−1|zt−1/2||f ′(t, zt−1/2)|dz (2.5)

≤ Ct−α+ρ−θ(1−α) + Ct−α−γ ≤ Ct−α−γ

since θ(1 − α) − ρ ≥ γ. In the remainder term R4 we integrate by parts via (2.3)
to find

|R4| ≤ Ct−1/2

∫ ∞
b/3

|f(t, zt−1/2)− f(t, a)|〈z − b〉−4dz

+t−1

∫ ∞
b/3

|f ′(t, zt− 1
2 )|〈z − b〉−1dz (2.6)

≤ C|a|−1tγ−
1+β

2 ≤ C〈a〉−1t−
1
2−γ ,

since

|f(t, zt−1/2)− f(t, a)| = |
∫ a

zt−1/2
∂ξf(t, ξ)dξ| ≤

∫ a

zt−1/2
|ξ|β− 3

2 |ξ| 32−β |∂ξf(t, ξ)|dξ

≤ C‖|ξ| 12−βξ∂ξf(t, ξ)‖(
∫ a

zt−1/2
|ξ|2β−3dξ)1/2

≤ C|a|−1tγ−
β
2 |z − b|β .

Collecting estimates (2.2), (2.4)-(2.6) we get the asymptotic statement needed and
Lemma 2.3 is proved. �

In the next lemma we obtain time-decay estimate via additional derivative for
the nonlinear term. We will use this estimate in the proof of Theorem 1.2.

Lemma 2.4. We have the estimate

‖|∂x|
1
2−β(uxvx)‖1,0

≤ Ctβ−1‖|∂x|
1
2−βu‖1,0‖|∂x|

1
2−βv‖1,0

+Ct−1(tβ‖FU(−t)ux‖∞ + ‖|∂x|
1
2−βu‖1,0)‖|∂x|

1
2−βJ ∂xv‖1,0

+Ct−1(tβ‖FU(−t)vx‖∞ + ‖|∂x|
1
2−βv‖1,0)‖|∂x|

1
2−βJ ∂xu‖1,0

for all t > 0, where β ∈ (0, 1/2].
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Proof. Application of the Fourier transformation yields

F(uxvx) =
1√
2π

∫
û(t, ξ + η)v̂(t, η)(ξ + η)ηdη,

then changing iηû(t, η) = e−
it
2 η

2
φ(t, η) and iηv̂(t, η) = e−

it
2 η

2
ψ(t, η) we obtain

FU(−t)(uxvx) =
1√
2π

∫
e−itξηφ(t, ξ + η)ψ(t, η)dη, (2.7)

whence integrating by parts with respect to η we get

‖|∂x|
1
2−β(uxvx)‖ = C‖|ξ| 12−βFU(−t)(uxvx)‖

= C‖|ξ| 12−β
∫
e−itξηφ(t, ξ + η)ψ(t, η)dη‖

≤ C‖〈tξ〉−1|ξ| 12−β‖(‖
∫
e−itξηφ(t, ξ + η)ψ(t, η)dη‖∞

+‖
∫
e−itξηφξ(t, ξ + η)ψ(t, η)dη‖∞

+‖
∫
e−itξηφ(t, ξ + η)ψη(t, η)dη‖∞)

≤ Ctβ−1‖φ‖‖ψ‖+ Ctβ−1‖φ‖∞‖|ξ|
1
2−β∂ξψ‖+ Ctβ−1‖ψ‖∞‖|ξ|

1
2−β∂ξφ‖

≤ Ctβ−1‖ux‖‖vx‖+ Ctβ−1‖FU(−t)ux‖∞‖|∂x|
1
2−βJ ∂xv‖

+Ctβ−1‖FU(−t)vx‖∞‖|∂x|
1
2−βJ ∂xu‖

and

‖|∂x|
3
2−β(uxvx)‖ = C‖|ξ| 32−βFU(−t)(uxvx)‖

= C‖|ξ| 32−β
∫
e−itξηφ(t, ξ + η)ψ(t, η)dη‖

≤ Ct−1(‖|ξ| 12−β
∫
e−itξηφξ(t, ξ + η)ψ(t, η)dη‖

+C‖|ξ| 12−β
∫
e−itξηφ(t, ξ + η)ψη(t, η)dη‖)

≤ Ct−1‖〈ξ〉 1
2−βφ‖‖∂ξψ‖1 + Ct−1‖φ‖‖|ξ| 12−β∂ξψ‖1

+Ct−1‖〈ξ〉 1
2−βψ‖‖∂ξφ‖1 + Ct−1‖ψ‖‖|ξ| 12−β∂ξψ‖1

≤ Ct−1‖|∂x|
1
2−βu‖1,0‖|∂x|

1
2−βJ ∂xv‖1,0

+Ct−1‖|∂x|
1
2−βv‖1,0‖|∂x|

1
2−βJ ∂xu‖1,0.

Lemma 2.4 is proved. �

3. Proof of Theorem 1.1

By virtue of the method in [4], [5] (see also the proof of a-priori estimates below
in Lemma 3.2) we easily obtain the local existence of solutions in the functional
space

XT =
{
φ ∈ C((−T, T );L2(R)) : sup

t∈(−T,T )

‖φ(t)‖X <∞
}
,
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where the norm in X is

‖u‖X = 〈t〉−γ‖u‖3,0 + 〈t〉−γ‖Iu‖1,0 + 〈t〉−3γ‖I2u‖
+tα〈t〉1−2γ‖∂tFU(−t)ux(t)‖0,1,∞,

with I = x∂x + 2t∂t.
Theorem 3.1. Let the initial data u0 ∈ H3,0 ∩H2,2. Then for some time T > 0
there exists a unique solution u ∈ XT of the Cauchy problem (1.1). If we assume
in addition that the norm of the initial data ‖u0‖3,0 + ‖u0‖2,2 = ε2 is sufficiently
small, then there exists a unique solution u ∈ XT of (1.1) for some time T > 1,
such that the following estimate supt∈[0,T ] ‖u‖X < ε is valid.

In the next lemma we obtain the estimates of global solutions in the norm X.
Lemma 3.2. Let α ∈ [1/2, 1). We assume that the initial data u0 ∈ H3,0 ∩H2,2

and the norm ‖u0‖3,0 + ‖u0‖2,2 = ε2 is sufficiently small. Then there exists a
unique global solution of the Cauchy problem (1.1) such that u ∈ C(R;H3,0) and
the following estimate is valid

sup
t>0
‖u‖X < ε. (3.1)

Proof. Applying the result of Theorem 3.1 and using a standard continuation ar-
gument we can find a maximal time T > 1 such that the inequality

‖u‖X ≤ ε (3.2)

is true for all t ∈ [0, T ]. If we prove (3.1) on the whole time interval [0, T ], then
by the contradiction argument we obtain the desired result of the lemma. In view
of the local existence Theorem 3.1 it is sufficient to consider the estimates of the
solution on the time interval t ≥ 1 only.

As a consequence of (3.2) we have

‖FU(−t)ux(t)‖0,1,∞ ≤ Cε+
∫ t

0

‖∂τFU(−τ)ux(τ)‖0,1,∞dτ

≤ Cε+ Cε

∫ t

0

〈τ〉γ−1τ−αdτ ≤ Cε.

Note that J ∂x = I + 2itL, where J = x+ it∂x. Hence

‖J ∂xu‖1,0 ≤ ‖Iu‖1,0 + Ct‖Lu‖1,0 ≤ ‖Iu‖1,0 + Ct1/2‖ux‖∞‖u‖2,0
and

‖J ∂xIu‖ ≤ ‖I2u‖+ Ct‖LIu‖ ≤ ‖I2u‖+ Ct1/2‖ux‖∞(‖ux‖+ ‖Iux‖).

Then by Lemma 2.1 with β = 1
2 , using estimate (3.4) we find

‖ux‖1,0,∞ ≤ Ct−1/2‖FU(−t)ux‖0,1,∞ + Ct
γ
2−

3
4 (‖u‖2,0 + ‖J ∂xu‖1,0)

≤ Cεt−1/2 + Cεt3γ−
1
4 ‖ux‖∞,

whence
‖ux‖1,0,∞ ≤ Cεt−1/2. (3.3)

Therefore by virtue of (3.2) we have also the estimates

t−γ‖J ∂xu‖1,0 + t−3γ‖J ∂xIu‖ ≤ Cε. (3.4)
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Let us estimate norms ‖u‖3,0, ‖Iu‖1,0 and ‖I2u‖. Differentiating three times
equation (1.1) we get for h0 = (1 + ∂3

x)u

Lh0 = t−α(ux∂xh0 + ux∂xh0) +R0

where
L = i∂t +

1
2
∂2
x, R0 = t−α(−|ux|2 + 3uxxuxxx + 3uxxxuxx).

Via (3.2), (3.3) we have the estimate

‖R0‖ ≤ Ct−α‖ux‖1,0,∞‖h0‖ ≤ Cε2tγ−1.

Applying the operator I to both sides of equation (1.1) and using the commutator
relations LI = (I + 2)L and [I, t−α] = −2αt−α, we find

Lhk = t−α(ux∂xhk + ux∂xhk) +Rk, (3.5)

where k = 1, 2, h1 = (1 + ∂x)Iu, h2 = I2u,

R1 = t−α(uxxIux + uxxIux + 2(1− α)(1 + ∂x)|ux|2),

and
R2 = 2t−α(|Iux|2 + (2− α)I|ux|2 + 2(1− α)2|ux|2).

By (3.2) and (3.4) we have

‖IuxIux‖ ≤ Ct−
1
2 ‖Iux‖

3
2 ‖J Iux‖1/2 ≤ Cε2t3γ−

1
2 ,

then by virtue of (3.2), (3.3) we estimate the remainder terms

‖R1‖ ≤ Ct−1/2‖ux‖1,0,∞(‖u‖1,0 + ‖Iu‖1,0) ≤ Cε2tγ−1

and

‖R2‖ ≤ Ct−1/2‖ux‖∞(‖u‖1,0 + ‖Iu‖1,0) + Ct−1/2‖IuxIux‖ ≤ Cε2t3γ−1.

To cancel the higher-order derivative t−αūx∂xhk, we multiply (3.5) by E ≡ e−t−αū.
The other higher-order derivative t−αux∂xhk will be eliminated via integration by
parts. Since E(L − t−αux∂x) = (L − g)E, where g = −t−αuxx + 1

2 t
−2α(ux)2 −

t−2α|ux|2, from equation (3.5) we obtain

LEhk = t−αuxE∂xhk + ERk + gEhk. (3.6)

Note that ‖E‖1,0,∞ ≤ C and ‖g‖∞ ≤ Cεt−1 by virtue of (3.2), (3.3). Applying the
energy method to (3.6) we obtain

d

dt
‖Ehk‖2 ≤ Ct−α|

∫
uxE∂x(hk)2dx|+ C(‖ERk‖+ ‖gEhk‖)‖Ehk‖,

whence integration by parts yields
d

dt
‖Ehk‖ ≤ Cεt−1‖Ehk‖+ C‖Rk‖, (3.7)

where k = 0, 1, 2. Integrating (3.7) with respect to time t ∈ [1, T ] we obtain the
estimate

〈t〉−γ‖u‖3,0 + 〈t〉−γ‖Iu‖1,0 + 〈t〉−3γ‖I2u‖ < ε

2
. (3.8)

for all t ∈ [0, T ]. We now estimate ‖∂tFU(−t)ux(t)‖0,1,∞. We apply the Fourier
transformation to equation (1.1), then changing the dependent variable Fux =
e−

it
2 ξ

2
w, in view of (2.7) we obtain

iwt(t, ξ) = − iξt
−α
√

2π

∫
e−itξηw(t, ξ + η)w(t, η)dη, (3.9)
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where w(t, ξ) = FU(−t)ux. When t ∈ (0, 1) we get

‖ξ
∫
e−itξηw(t, ξ + η)w(t, η)dη‖0,1,∞ ≤ C‖w‖20,2 ≤ C‖u‖23,0 ≤ Cε2

and if t ≥ 1, we integrate by parts with respect to η,

‖ξ
∫
e−itξηw(t, ξ + η)w(t, η)dη‖0,1,∞

≤ C〈t〉−1‖
∫
e−itξη∂η(w(t, ξ + η)w(t, η))dη‖0,1,∞

≤ C〈t〉−1‖∂ηw‖0,1‖w‖0,1
≤ C〈t〉−1‖J ∂xu‖1,0‖u‖2,0 ≤ Cε2〈t〉2γ−1;

therefore,
tα〈t〉1−2γ‖∂tFU(−t)ux(t)‖0,1,∞ <

ε

2
. (3.10)

By (3.8) and (3.10) we see that estimate (3.1) is true for all t ∈ [0, T ]. The contra-
diction obtained proves (3.1) for all t > 0. �

To complete the proof of Theorem 1.1 we evaluate the large time asymptotic
estimate of the solution u. Note that by Lemma 2.1 derivative ux has a quasi linear
asymptotic formula

ux = MDw +O(tγ−
3
4 ‖J ∂xu‖) = MDw +O(t2γ−

3
4 ),

where M = e
ix2
2t , Dφ = 1√

it
φ(xt ). For the solution u(t, x) we have

u(t, x) = F−1e−
it
2 ξ

2
v =

M√
2π

∫
e−

it
2 (ξ− xt )2

v(t, ξ)dξ,

where v = FU(−t)u. In the same way as in the proof of (3.10) we have the estimate

‖∂tFU(−t)Iux(t)‖0,1,∞ ≤ Ct5γ−α−1.

To apply Lemma 2.3 we need to prove the representation

∂ξv(t, ξ) = (α− 1)B|ξ|α−1ξ−1 +O(t−γ |ξ|α−2)

for all tθ−1 ≤ |ξ| ≤ t−µ, ∂ξv(t, ξ) = O(|ξ|α−2) and v(t, ξ) = t1−αΨ(tξ) +O(t1−α−δ)
for all |ξ| ≤ tθ−1, with δ ≥ θ + γ. From (3.4) we get ‖ξ∂ξv‖ ≤ ‖∂xJ u‖ ≤ Ctγ . We
have

∂ξv(t, ξ) = ξ−1(2t∂t − v − Îv),

where Î = FIF−1 = −∂ξξ + 2t∂t.
Similarly to (3.5) we get

LIu = t−α(uxIux + uxIux) + 2(1− α)t−α|ux|2,

hence

Îv(t, ξ) = Îv(0, ξ) +
i√
2π

∫ t

0

τ−αdτ

∫
e−iτξηÎw(τ, ξ + η)w(τ, η)dη

+
i√
2π

∫ t

0

τ−αdτ

∫
e−iτξηw(τ, ξ + η)Îw(τ, η)dη

+
2i(1− α)√

2π

∫ t

0

τ−αdτ

∫
e−iτξηw(τ, ξ + η)w(τ, η)dη.
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Since t∂tv = O(t1−α〈tξ〉−1) = O(t−γ |ξ|α−1) for tθ−1 ≤ |ξ| and t∂tv = O(|ξ|α−1) for
|ξ| ≤ tθ−1, applying Lemma 2.2 we get

vξ(t, ξ) = −ξ−1(Îv + v) +O(t−γ |ξ|α−2)

= − i√
2π

∫ t

0

τ−αdτ

∫
e−iτξηÎw(τ, ξ + η)w(τ, η)dη

− i√
2π

∫ t

0

τ−αdτ

∫
e−iτξηw(τ, ξ + η)Îw(τ, η)dη

+
2iα√

2π

∫ t

0

τ−αdτ

∫
e−iτξηw(τ, ξ + η)w(τ, η)dη +O(t−γ |ξ|α−2)

= G(t)|ξ|α−1ξ−1 +O(t−γ |ξ|α−2)

for all tθ−1 ≤ |ξ| ≤ t−µ, and ∂ξv(t, ξ) = O(|ξ|α−2) for all |ξ| ≤ tθ−1, where

G(t) =
2i√
2π

Γ(1− α) sin(
πα

2
)<
∫
Îw(t, η)w(t, η)|η|α−1dη

+
2iα√

2π
Γ(1− α) sin(

πα

2
)
∫
|w(t, η)|2|η|α−1dη,

since |w(t, η)|2signη and <(Îw(t, η)w(t, η))signη are odd functions. We have by
(3.10)

‖w(t, η)− w(τ, η)‖0,1,∞ ≤ ‖
∫ t

τ

∂sw(s, η)ds‖0,1,∞ ≤ C
∫ t

τ

s2γ−α−1ds ≤ Cτ2γ−α

for all 1 ≤ τ ≤ t. Therefore there exists a limit W = limt→∞ w(t) in H0,1
∞ (R) such

that

‖w(t, η)−W‖0,1,∞ ≤ Cτ2γ−α.

Similarly to (3.10) we get by (3.4)

‖∂tÎw‖0,1,∞ ≤ Cεt5γ−α−1 (3.11)

for all t ≥ 1. Hence there exists a limit K = limt→∞ Îw(t) in H0,1
∞ (R) such that

‖Îw(t, η)−K‖0,1,∞ ≤ Cτ5γ−α.

Thus

∂ξv(t, ξ) = B1|ξ|α−1ξ−1 +O(t−γ |ξ|α−2),

where

B1 =
2i√
2π

Γ(1− α) sin(
πα

2
)<
∫
K(η)W (η)|η|α−1dη

+
2iα√

2π
Γ(1− α) sin(

πα

2
)
∫
|W (η)|2|η|α−1dη.
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Also we have

v(t, ξ) =
∫ t

0

τ−αdτ

∫
e−iτξηw(τ, ξ + η)w(τ, η)dη

=
∫ t

0

τ−αdτ

∫
e−iτξη|W (η)|2dη +O(t−γ min(|ξ|α−1, t1−α))

= t1−α
∫ 1

0

|z|−αdz
∫
e−izηtξ|W (η)|2dη +O(t1−α−δ)

= t1−αΨ(tξ) +O(t1−α−δ)

for |ξ| ≤ tθ−1, where δ = α − 2γ, Ψ(x) =
∫ 1

0
|z|−αdz

∫
e−izηx|W (η)|2dη. Now

application of Lemma 2.3 yields asymptotics (1.4) for the solution u(t, x). Using
Lemma 3.2 we get the result of Theorem 1.1 with B = B1/

√
2π, P = 1√

2π
Ψ̌,

Q = 1√
2π
V . Theorem 1.1 is proved.

4. Proof of Theorem 1.2

By the method in [3] (see also the proof of a-priori estimates below in Lemma
4.2), we easily obtain the local existence of solutions in the analytic functional space

AT =
{
φ ∈ C([−T, T ]; L2(R)) : sup

t∈[−T,T ]

‖φ(t)‖At
<∞

}
,

where the norm At is defined as

‖u‖At = 〈t〉−γ‖|∂x|
1
2−βu‖3,0 + tα〈t〉1−γ‖∂tFU(−t)ux(t)‖0,1,∞

+
∞∑
n=1

〈t〉−nγ

n!
‖|∂x|

1
2−βInu‖1,0.

Denote

‖u‖Z =
∞∑
n=0

t−nγ

n!
‖|∂x|

1
2−βInu‖1,0.

Theorem 4.1. Let α ∈ (0, 1). We assume that the initial data u0 ∈ A0. Then
for some time T > 0 there exists a unique solution u ∈ AT of the Cauchy problem
(1.1). If we assume in addition that the norm of the initial data ‖u0‖A0 = ε2 is
sufficiently small, then there exists a unique solution u ∈ AT of (1.1) for some time
T > 1, such that the following estimate supt∈[0,T ] ‖u‖A < ε is valid.

In the next lemma we obtain the estimates of global solutions in the norm At.

Lemma 4.2. Let the initial data u0 ∈ A0 are such that the norm ‖u0‖A0 = ε2 is
sufficiently small. Then there exists a unique global solution of the Cauchy problem
(1.1) such that u ∈ A∞. Moreover the following estimate is valid

‖u‖At
< ε (4.1)

for all t > 0.

Proof. As in Lemma 3.2 we argue by contradiction and find a maximal time T > 1
such that the estimate

‖u‖At
≤ ε (4.2)
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is valid for all t ∈ [0, T ]. Via Theorem 4.1 it is sufficient to consider t ≥ 1.
As above in Lemma 3.2 we can estimate the norms ‖ux‖1,0,∞, ‖|∂x|

1
2−βJ ∂xu‖1,0,

‖|∂x|
1
2−βJ ∂xIu‖1,0 via the norm ‖u‖Z. Indeed we have the estimate

‖|∂x|
1
2−βJ ∂xu‖1,0 ≤ ‖|∂x|

1
2−βIu‖1,0 + 2t‖|∂x|

1
2−βLu‖1,0

≤ C‖u‖Z + C‖u‖2
Z
≤ Cε

and

‖|∂x|
1
2−βJ ∂xIu‖1,0 ≤ ‖|∂x|

1
2−βI2u‖1,0 + 2t‖|∂x|

1
2−βLIu‖1,0

≤ C‖u‖Z + C‖u‖2
Z
≤ Cε.

We first estimate ‖∂tFU(−t)ux(t)‖0,1,∞. We apply the Fourier transformation
to equation (1.1), then changing the dependent variable Fux = e−

it
2 ξ

2
w, in view of

(2.7) we obtain

iwt(t, ξ) =
iξt−α√

2π

∫
e−itξηw(t, ξ + η)w(t, η)dη, (4.3)

where w(t, ξ) = FU(−t)ux. For t ≥ 1, we integrate by parts with respect to η

‖ξ
∫
e−itξηw(t, ξ + η)w(t, η)dη‖0,1,∞

≤ C〈t〉−1‖
∫
e−itξη∂η(w(t, ξ + η)w(t, η))dη‖0,1,∞ ≤ C〈t〉−1‖∂ηw‖0,1‖w‖0,1

≤ C〈t〉−1‖J ∂xu‖1,0‖u‖2,0 ≤ Cε2〈t〉2γ−1;

therefore,

tα+1−2γ‖∂tFU(−t)ux(t)‖0,1,∞ < ε (4.4)

for all t ≥ 1. In the same manner

tα+1−5γ‖∂tFU(−t)Iux(t)‖0,1,∞ < ε. (4.5)

We estimate the norm ‖u‖Z =
∑∞
n=0

t−nγ

n! ‖|∂x|
1
2−βInu‖1,0 for all t ≥ 1. Note that

∞∑
n=0

t−γn

n!
‖(I + a)nu‖1,0

≤
∞∑
n=0

t−γn

n!

n∑
j=0

Cjn|a|n−j‖Iju‖1,0 =
∞∑
n=0

n−j∑
j=0

|a|n−j

(n− j)!
t−γn

j!
‖Iju‖1,0

=
∞∑
j=0

t−γj

j!
‖Iju‖1,0

∞∑
k=j

|at|k−j

(k − j)!
= e|a|t

−γ
∞∑
j=0

t−γj

j!
‖Iju‖1,0 ≤ C‖u‖Z
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We have by Lemma 2.4 denoting Cmn = n!
m!(n−m!)

‖Lu‖Z = ‖t−α|ux|2‖Z =
∞∑
n=0

t−nγ

n!
‖|∂x|

1
2−βInt−α|ux|2‖1,0

= t−α
∞∑
n=0

t−nγ

n!
‖|∂x|

1
2−β(I − 2α)n|ux|2‖1,0

= t−α
∞∑
n=0

t−nγ

n!

n∑
j=0

Cjn‖|∂x|
1
2−β(I − 2α)n−jux(I − 2α)jux‖1,0

=
∞∑
n=0

n∑
j=0

t−α−3nγ

(n− j)!j!
‖|∂x|

1
2−β((I − 1− 2α)n−ju)x((I − 1− 2α)ju)x‖1,0

≤ C
∞∑
n=0

n∑
j=0

t−α−3nγ+β−1

(n− j)!j!
‖|∂x|

1
2−β(I − 1− 2α)n−ju‖1,0

(‖|∂x|
1
2−β(I − 1− 2α)ju‖1,0 + ‖|∂x|

1
2−β(I − 1− 2α)jJ ∂xu‖1,0)

≤ Ct−α+β−1‖u‖Z(‖u‖Z + ‖Iu‖Z + t‖Lu‖Z),

hence we get

‖Lu‖Z ≤ Ct−α+β−1‖u‖2
Z

+ Ct−α+β−1‖u‖Z‖Iu‖Z
≤ Ct−γ−1(‖u‖Z + ‖Iu‖Z).

In particular we have
‖J ∂xu‖Z ≤ C‖u‖Z + C‖Iu‖Z.

Using the commutation relations In∂x = ∂x(I + 1)n, LIn = (I + 2)nL, Int−α =
t−α(I − 2α)n applying operator I to equation (1.1) we get

LInu = t−α(I + 2(1− α))n|ux|2. (4.6)

Via (4.3) we obtain
∞∑
n=0

t−α−γn(n!)−1‖|∂x|
1
2−β(I + 2− 2α)n|ux|2‖1,0

≤ C
∞∑
n=0

t−α−γn(n!)−1
n∑

m=0

Cmn (2− 2α)n−m

×
m∑
j=0

Cjm‖|∂x|
1
2−β((I + 1)ju)x((I + 1)m−ju)x‖1,0

≤ Ctβ−α−1‖u‖2
Z

+ Ctβ−α−1‖u‖Z‖J ∂xu‖Z
≤ Cεt−γ−1(‖u‖Z + ‖Iu‖Z) .

Using Lemma 2.4 we obtain

‖|∂x|
1
2−β((I + 1)ju)x((I + 1)m−ju)x‖1,0

≤ Ctβ−1‖|∂x|
1
2−β(I + 1)ju‖1,0‖|∂x|

1
2−β(I + 1)m−ju‖1,0

+Ctβ−1‖|∂x|
1
2−β(I + 1)ju‖1,0‖|∂x|

1
2−β(I + 1)m−jJ ∂xu‖1,0

+Ctβ−1‖|∂x|
1
2−β(I + 1)jJ ∂xu‖1,0‖|∂x|

1
2−β(I + 1)m−ju‖1,0.
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Hence by the energy method, in view of (4.2) we find
d

dt
‖u‖Z ≤ −γt−1−γ‖Iu‖Z + Cεt−γ−1‖u‖Z + Cεt−γ−1‖Iu‖Z ≤ Cεtβ−α−1‖u‖Z.

(4.7)
Integration of (4.7) with respect to time t ≥ 1 yields ‖u‖Z < ε

2 for all t ≥ 1. The
norm ‖|∂x|

1
2−βu‖3,0 is estimated in the same manner as in the proof of Lemma 3.2.

Therefore, Lemma 4.2 is proved. �

Now we complete the proof of Theorem 1.2 by applying Lemmas 2.2 and 2.3 as
in the previous section.
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