Electron. J. Diff. Eqns., Vol. 2001(2001), No. 38, pp. 1-17.

Periodic solutions for a class of non-coercive Hamiltonian systems

Morched Boughariou

Abstract:
We prove the existence of non-constant T-periodic orbits of the Hamiltonian system
$\dot q =H_p (t, p(t), q(t))$
$\dot p =-H_q (t, p(t), q(t))$,
where H is a T-periodic function in t, non-convex and non-coercive in (p,q), and has the form
$H(t,p,q)\sim |q|^{\alpha}(|p|^{\beta}-1)$ with $\alpha$ greater than
$\beta$ greater than 1.

Submitted January 3, 2001. Published May 28, 2001.
Math Subject Classifications: 34C25, 37J45.
Key Words: Hamiltonian systems, non-coercive, periodic solutions, minimax argument.

Show me the PDF file (284K), TEX file, and other files for this article.

Morched Boughariou
Faculte des Sciences de Tunis
Departement de Mathematiques,
Campus Universitaire, 1060 Tunis, Tunisie
e-mail: Morched.Boughariou@fst.rnu.tn

Return to the EJDE web page