Jean-François Couchouron, Claude Dellacherie, & Michel Grandcolas
Abstract:
In this paper we study the uniqueness of solutions to
ordinary differential equations which fail to satisfy
both accretivity condition and the uniqueness condition of
Nagumo, Osgood and Kamke.
The evolution systems considered here are governed by a
continuous operators
defined on
such that
is a derivor; i.e.,
is quasi-monotone with respect to
.
Submitted December 4, 2000. Published May 8, 2001.
Math Subject Classifications: 34A12, 34A40, 34A45, 34D05.
Key Words: derivor, quasimonotone operator, accretive operator,
Cauchy problem, uniqueness condition.
Show me the PDF file (519K), TEX file, and other files for this article.
Jean-Francois Couchouron UFR MIM Departement de Mathematiques Universite de Metz Ile du Saulcy 57045 Metz Cedex 01 France e-mail: couchour@loria.fr | |
Dellacherie Claude Departement de Mathematiques UFR Sciences, Site Colbert, Universite de Rouen 76821 Mont Saint Aignan, france e-mail: dellache@univ-rouen.fr | |
Michel Grandcolas UFR MIM Departement de Mathematiques Universite de Metz Ile du Saulcy 57045 Metz Cedex 01 France e-mail: grandcol@poncelet.univ-metz.fr |
Return to the EJDE web page