J. Colliander, M. Keel, G. Staffilani, H. Takaoka, & T. Tao
Abstract:
The initial value problem for the Korteweg-deVries equation
on the line is shown to be globally well-posed for rough data.
In particular, we show global well-posedness for
initial data in
for -3/10 < s.
Submitted January 31, 2001. Published April 27, 2001.
Math Subject Classifications: 35Q53, 42B35, 37K10.
Key Words: Korteweg-de Vries equation, nonlinear dispersive equations,
bilinear estimates.
Show me the PDF file (236K), TEX file, and other files for this article.
James Colliander Department of Mathematics, University of California Berkeley, California, 94720-3840 USA e-mail: colliand@math.berkeley.edu | |
Markus Keel Department of Mathematics Caltech Pasadena, California, 91125, USA e-mail: keel@cco.caltech.edu | |
Gigliola Staffilani Department of Mathematics Stanford University Stanford, California, 94305, USA e-mail: gigliola@math.stanford.edu | |
Hideo Takaoka Division of Mathematics, Graduate School of Science Hokkaido University Sapporo, 060-0810, Japan. e-mail: takaoka@math.sci.hokudai.ac.jp | |
Terence Tao Department of Mathematics University of California, Los Angeles, California, 90095-1596, USA e-mail: tao@math.ucla.edu |
Return to the EJDE web page