
Electronic Journal of Differential Equations, Vol. 2000(2000), No. 65, pp. 1–8.
ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu
ftp ejde.math.swt.edu (login: ftp)

POSITIVE SOLUTIONS TO A SECOND ORDER

MULTI-POINT BOUNDARY-VALUE PROBLEM

Daomin Cao & Ruyun Ma

Abstract. We prove the existence of positive solutions to the boundary-value prob-

lem

u′′ + λa(t)f(u, u′) = 0

u(0) = 0, u(1) =

m−2∑

i=1

aiu(ξi) ,

where a is a continuous function that may change sign on [0, 1], f is a continuous

function with f(0, 0) > 0, and λ is a samll positive constant. For finding solutions

we use the Leray-Schauder fixed point theorem.

1. Introduction

The study of multi-point boundary value problems for linear second order ordi-
nary differential equations was initiated by Il’in and Moiseev [8, 9]. Motivated by
the study of Il’in and Moiseev [8, 9], Gupta [4] studied certain three point boundary
value problems for nonlinear ordinary differential equations. Since then, more gen-
eral nonlinear multi-point boundary value problems have been studied by several
authors using the Leray-Schauder Continuation Theorem, Nonlinear Alternative of
Leray-Schauder, coincidence degree theory or fixed point theorem in cones. We
refer the reader to [1-3, 5, 10-12] for some existence results of nonlinear multi-point
boundary value problems. Recently, the second author[12] proved the existence of
positive solutions for the three-point boundary value problem

u′′ + b(t)g(u) = 0, t ∈ (0, 1) (1.1)

u(0) = 0, αu(η) = u(1) , (1.2)

where η ∈ (0, 1), 0 < α < 1
η
, b ≥ 0, and g ≥ 0 is either superlinear or sublinear by

the simple application of a fixed point theorem in cones.
In this paper, we consider the nonlinear eigenvalue m-point boundary value

problem

u′′ + λa(t)f(u, u′) = 0 (1.3)

u(0) = 0, u(1) =

m−2∑
i=1

aiu(ξi) (1.4)
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where λ is a positive parameter.

We make the following assumptions:

(A1) ai ≥ 0 for i = 1, · · · ,m−3 and am−2 > 0; ξi : 0 < ξ1 < ξ2 < · · · < ξm−2 < 1
and
∑m−2
i=1 aiξi < 1.

(A2) f : [0,∞)×R→ R is continuous and f(0, 0) > 0;
(A3) a ∈ C[0, 1] and there exist r0 ∈ [0, 1] and θ > 0 such that a(r0) 6= 0, and

the solution of the linear problem

u′′ + a+(t)− (1 + θ)a−(t) = 0, t ∈ (0, 1)

u(0) = 0, u(1) =
m−2∑
i=1

aiu(ξi)

is nonnegative in [0, 1], where a+ is the positive part of a and a− is the
negative part of a.

(A4) There exist a constant k in (1,∞) such that

P (t) ≥ kQ(t) (1.5)

where

P (t) =

∫ t
0

a+(s)ds +

∑m−2
i=1 ai

∫ ξi
0
(ξi − s)a+(s)ds

1−
∑m−2
i=1 aiξi

+

∫ 1
0
(1− s)a+(s)ds

1−
∑m−2
i=1 aiξi

and

Q(t) =

∫ t
0

a−(s)ds +

∑m−2
i=1 ai

∫ ξi
0
(ξi − s)a−(s)ds

1−
∑m−2
i=1 aiξi

+

∫ 1
0
(1− s)a−(s)ds

1−
∑m−2
i=1 aiξi

Our main result is

Theorem 1. Let (A1), (A2), (A3), and (A4) hold. Then there exists a positive
number λ∗ such that (1.3)-(1.4) has at least one positive solution for 0 < λ < λ∗.

The proof of this theorem is based upon the Leray-Schauder fixed point theorem
and motivated by [7].

2. Preliminary lemmas

In the sequel we shall denote by I the interval [0, 1] of the real line. E will stand

for the space of functions u : I → R such that u(0) = 0, u(1) =
∑m−2
i=1 aiu(ξi) and

u′ is continuous on I. We furnish the set E with the norm |u|E = max{|u|0, |u′|0} =
|u′|0, where |u|0 = max{u(t) | t ∈ I}. Then E is a Banach space.
To prove Theorem 1, we need the following preliminary results.

Lemma 1 [6]. Let ai ≥ 0 for i = 1, · · · ,m − 2, and
∑m−2
i=1 aiξi 6= 1, then for

y ∈ C(I), the problem

u′′ + y(t) = 0, t ∈ (0, 1) (2.1)

u(0) = 0, u(1) =
m−2∑
i=1

aiu(ξi) (2.2)

has a unique solution,

u(t) = −

∫ t
0

(t− s)y(s)ds − t

∑m−2
i=1 ai

∫ ξi
0
(ξi − s)y(s)ds

1−
∑m−2
i=1 aiξi

+ t

∫ 1
0
(1− s)y(s)ds

1−
∑m−2
i=1 aiξi

The following two results extend Lemma 2 and Lemma 3 of [12].
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Lemma 2. Let ai ≥ 0 for i = 1, · · · ,m− 2, and
∑m−2
i=1 aiξi < 1. If y ∈ C(I) and

y ≥ 0, then the unique solution u of the problem (2.1)-(2.2) satisfies

u(t) ≥ 0, ∀t ∈ I

Proof From the fact that u′′(x) = −y(x) ≤ 0, we know that the graph of u(t) is
concave down on I. So, if u(1) ≥ 0, then the concavity of u together with the
boundary condition u(0) = 0 implies that u ≥ 0 for all t ∈ I.
If u(1) < 0, then from the concavity of u we know that

u(ξi)

ξi
≥
u(1)

1
, for i = 1, · · · ,m− 2 (2.3)

This implies

u(1) =

m−2∑
i=1

aiu(ξi) ≥
m−2∑
i=1

aiξiu(1) (2.4)

This contradicts the fact that
∑m−2
i=1 aiξi < 1.

Lemma 3. Let ai ≥ 0 for i = 1, · · · ,m − 3, am−2 > 0, and
∑m−2
i=1 aiξi > 1. If

y ∈ C(I) and y(t) ≥ 0 for t ∈ I, then (2.1)-(2.2) has no positive solution.

Proof Assume that (2.1)-(2.2) has a positive solution u, then u(ξi) > 0 for i =
1, · · · ,m− 2, and

u(1) =

m−2∑
i=1

aiu(ξi) =

m−2∑
i=1

aiξi
u(ξi)

ξi

≥
m−2∑
i=1

aiξi
u(ξ̄)

ξ̄
>
u(ξ̄)

ξ̄

(2.5)

(where ξ̄ ∈ {ξ1, · · · , ξm−2} satisfies
u(ξ̄)

ξ̄
= min{u(ξi)

ξi
|i = 1, · · · ,m − 2}). This

contradicts the concavity of u.
If u(1) = 0, then applying am−2 > 0 we know that

u(ξm−2) = 0 (2.6)

From the concavity of u, it is easy to see that u(t) ≤ 0 for all t in I.

In the rest of this paper, we assume that ai ≥ 0 for i = 1, · · · ,m− 3, am−2 > 0,
and
∑m−2
i=1 aiξi < 1. We also assume that f(u, p) = f(0, p) for (u, p) ∈ (−∞, 0).

Lemma 4. Let (A1) and (A2) hold. Then for every 0 < δ < 1, there exists a
positive number λ̄ such that, for 0 < λ < λ̄, the problem

u′′ + λa+(t)f(u, u′) = 0 (2.7)

u(0) = 0, u(1) =
m−2∑
i=1

aiu(ξi) (2.8)

has a positive solution ũλ with |ũλ|E → 0 and |ũ′λ|0 → 0 as λ→ 0 , and

ũλ ≥ λδf(0, 0)p(t), t ∈ I (2.9)
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where

p(t) = −

∫ t
0

(t− s)a+(s)ds− t

∑m−2
i=1 ai

∫ ξi
0
(ξi − s)a+(s)ds

1−
∑m−2
i=1 aiξi

+ t

∫ 1
0
(1− s)a+(s)ds

1−
∑m−2
i=1 aiξi

Proof. By Lemma 2, we know that p(t) ≥ 0 for t ∈ I. From Lemma 1, (2.7)-(2.8)
is equivalent to the integral equation

u(t) =λ
[
−

∫ t
0

(t− s)a+(s)f(u(s), u′(s))ds

− t

∑m−2
i=1 ai

∫ ξi
0
(ξi − s)a+(s)f(u(s), u′(s))ds

1−
∑m−2
i=1 aiξi

+ t

∫ 1
0
(1− s)a+(s)f(u(s), u′(s))ds

1−
∑m−2
i=1 aiξi

]

def
= Au(t)

where u ∈ C1(I). Further, we have that

(Au)′(t) =λ
[
−

∫ t
0

a+(s)f(u(s), u′(s))ds

−

∑m−2
i=1 ai

∫ ξi
0
(ξi − s)a+(s)f(u(s), u′(s))ds

1−
∑m−2
i=1 aiξi

+

∫ 1
0
(1− s)a+(s)f(u(s), u′(s))ds

1−
∑m−2
i=1 aiξi

]
(2.10)

Then A : C1(I) → C1(I) is completely continuous and fixed points of A are so-
lutions of (2.7)-(2.8). We shall apply the Leray-Schauder fixed point theorem to
prove A has a fixed point for λ small.
Let ε > 0 be such that

f(u, y) ≥ δf(0, 0), for (u, y) ∈ [0, ε]× [−ε, ε] (2.11)

Suppose that

λ <
ε

2|P |0f̃(ε)
:= λ̄ (2.12)

where f̃(r) = max
(u,y)∈[0,r]×[−r,r]

f(u, y). By (A2) we know that

lim
r→0+

f̃(r)

r
= +∞. (2.13)

It follows that there exists rλ ∈ (0, ε) such that

f̃(rλ)

rλ
=

1

2λ|P |0
(2.14)
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We note that (2.14) implies

rλ → 0, as λ→ 0 (2.15)

Now, consider the homotopy equations

u = θAu, θ ∈ (0, 1) (2.16)

Let u ∈ C1(I) and θ ∈ (0, 1) be such that u = θAu. We claim that |u|E 6= rλ. In
fact,

u′(t) =θλ
[
−

∫ t
0

a+(s)f(u(s), u′(s))ds

−

∑m−2
i=1 ai

∫ ξi
0
(ξi − s)a+(s)f(u(s), u′(s))ds

1−
∑m−2
i=1 aiξi

+

∫ 1
0
(1− s)a+(s)f(u(s), u′(s))ds

1−
∑m−2
i=1 aiξi

]
(2.17)

This implies that

|u′(t)| ≤ λf̃(|u|E)P (t), t ∈ [0, 1] (2.18)

hence

|u|E ≤ λ|P |0f̃(|u|E) (2.19)

or
f̃(|u|E)

|u|E
≥

1

λ|P |0
(2.20)

which implies that |u|E 6= rλ. Thus by Leray-Schauder fixed point theorem, A has
a fixed point ũλ with

|ũλ|E ≤ rλ < ε (2.21)

Moreover, combining (2.21) and (2.11) and using (2.10) and Lemma 2, we have
that

ũλ(t) ≥ λδf(0, 0)p(t), (2.20)

for t ∈ I, λ ≤ λ̄ .

3. Proof of the main reuslt

Proof of Theorem 1. Let

q(t) = −

∫ t
0

(t− s)a−(s)ds − t

∑m−2
i=1 ai

∫ ξi
0
(ξi − s)a−(s)ds

1−
∑m−2
i=1 aiξi

+ t

∫ 1
0
(1− s)a−(s)ds

1−
∑m−2
i=1 aiξi

(3.1)
then from Lemma 2, we know that q(t) ≥ 0. By (A3) and (A4), there exist positive
numbers c, d ∈ (0, 1) such that for t ∈ I,

q(t)max{|f(u, y)| | 0 ≤ u ≤ c,−c ≤ y ≤ c} ≤ dp(t)f(0, 0),

Q(t)max{|f(u, y)| | 0 ≤ u ≤ c,−c ≤ y ≤ c} ≤ dP (t)f(0, 0) .
(3.2)
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Fix δ ∈ (d, 1) and let λ∗ > 0 be such that

|ũλ|E + λδf(0, 0)|P |0 ≤ c (3.3)

for λ < λ∗, where ũλ is given by Lemma 4, and

|f(u1, y1)− f(u2, y2)| ≤ f(0, 0)
( δ − d
2

)
(3.4)

for (u1, y1), (u2, y2) ∈ [0, c] × [−c, c] with

max{|u1 − u2|, |y1 − y2|} ≤ λ
∗δf(0, 0)|P |0 .

Let λ < λ∗. We look for a solution uλ of the form ũλ + vλ. Here vλ solves

v′′ + λa+(t)(f(ũλ + v, ũ
′
λ + v

′)− f(ũλ, ũ
′
λ))− λa

−(t)f(ũλ + v, ũ
′
λ + v

′) = 0
(3.5)

v(0) = 0, v(1) =

m−2∑
i=1

aiv(ξi) (3.6)

For each w ∈ C1(I), let v = T (w) be the solution of

v′′ + λa+(t)(f(ũλ + w, ũ
′
λ + w

′)− f(ũλ, ũ
′
λ))− λa

−(t)f(ũλ + w, ũ
′
λ + w

′) = 0

v(0) = 0, quadv(1) =

m−2∑
i=1

aiv(ξi)

Then T : C1(I)→ C1(I) is completely continuous.
Let v ∈ C1(I) and θ ∈ (0, 1) be such that v = θTv. Then we have

v′′ + θλa+(t)(f(ũλ + v, ũ
′
λ + v

′)− f(ũλ, ũ
′
λ))− θλa

−(t)(f(ũλ + v, ũ
′
λ + v

′)) = 0
(3.7)

v(0) = 0, v(1) =
m−2∑
i=1

aiv(ξi) (3.8)

We claim that |v|E 6= λδf(0, 0)|P |0 . Suppose to the contrary that |v|E =
λδf(0, 0)|P |0. Then by (3.3), we obtain

|ũλ + v|E ≤ |ũλ|E + |v|E ≤ c,

|ũλ + v|0 ≤ |ũλ|0 + |v|0 ≤ c .
(3.9)

These inequalities and (3.4) imply

|f(ũλ + v, ũ
′
λ + v

′)− f(ũλ, ũ
′
λ)|0 ≤ f(0, 0)

( δ − d
2

)
. (3.10)
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Using (3.10)and (3.2) and applying Lemma 1 and Lemma 2, we have that

|v(t)| ≤ λ
δ − d

2
f(0, 0)p(t) + λmax{|f(u, y)| | 0 ≤ u ≤ c,−c ≤ y ≤ c}q(t)

≤ λ
δ − d

2
f(0, 0)p(t) + λdf(0, 0)p(t)

= λ
δ + d

2
f(0, 0)p(t), t ∈ I

(3.11)

and

|v′(t)| ≤ λ
δ − d

2
f(0, 0)P (t) + λmax{|f(u, y)| | 0 ≤ u ≤ c,−c ≤ y ≤ c}Q(t)

≤ λ
δ − d

2
f(0, 0)P (t) + λdf(0, 0)P (t)

= λ
δ + d

2
f(0, 0)P (t), t ∈ I

(3.12)

In particular

|v|E ≤ λ
δ + d

2
f(0, 0)|P |0 < λδf(0, 0)|P |0 (3.13)

a contradiction, and the claim is proved. Thus by Leray-Schauder fixed point
theorem, T has a fixed ponit vλ with

|vλ|E ≤ λδf(0, 0)|P |0 (3.14)

Finally, using (2.9) and (3.11), we obtain

uλ ≥ ũλ − |vλ|

≥ λδf(0, 0)p(t) − λ
δ + d

2
f(0, 0)p(t)

= λ
δ − d

2
f(0, 0)p(t), t ∈ I

(3.15)

i.e., uλ is a positive solution of (1.3)-(1.4).
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