POSITIVE SOLUTIONS TO A SECOND ORDER MULTI-POINT BOUNDARY-VALUE PROBLEM

Daomin Cao \& Ruyun Ma

Abstract. We prove the existence of positive solutions to the boundary-value problem

$$
\begin{gathered}
u^{\prime \prime}+\lambda a(t) f\left(u, u^{\prime}\right)=0 \\
u(0)=0, \quad u(1)=\sum_{i=1}^{m-2} a_{i} u\left(\xi_{i}\right),
\end{gathered}
$$

where a is a continuous function that may change sign on $[0,1], f$ is a continuous function with $f(0,0)>0$, and λ is a samll positive constant. For finding solutions we use the Leray-Schauder fixed point theorem.

1. Introduction

The study of multi-point boundary value problems for linear second order ordinary differential equations was initiated by Il'in and Moiseev [8, 9]. Motivated by the study of Il'in and Moiseev [8, 9], Gupta [4] studied certain three point boundary value problems for nonlinear ordinary differential equations. Since then, more general nonlinear multi-point boundary value problems have been studied by several authors using the Leray-Schauder Continuation Theorem, Nonlinear Alternative of Leray-Schauder, coincidence degree theory or fixed point theorem in cones. We refer the reader to $[1-3,5,10-12]$ for some existence results of nonlinear multi-point boundary value problems. Recently, the second author[12] proved the existence of positive solutions for the three-point boundary value problem

$$
\begin{gather*}
u^{\prime \prime}+b(t) g(u)=0, \quad t \in(0,1) \tag{1.1}\\
u(0)=0, \quad \alpha u(\eta)=u(1), \tag{1.2}
\end{gather*}
$$

where $\eta \in(0,1), 0<\alpha<\frac{1}{\eta}, b \geq 0$, and $g \geq 0$ is either superlinear or sublinear by the simple application of a fixed point theorem in cones.

In this paper, we consider the nonlinear eigenvalue m-point boundary value problem

$$
\begin{gather*}
u^{\prime \prime}+\lambda a(t) f\left(u, u^{\prime}\right)=0 \tag{1.3}\\
u(0)=0, \quad u(1)=\sum_{i=1}^{m-2} a_{i} u\left(\xi_{i}\right) \tag{1.4}
\end{gather*}
$$

2000 Mathematics Subject Classifications: 34B10.
Key words: Multi-point boundary value problem, positive solution, fixed point theorem. (C) 2000 Southwest Texas State University.

Submitted September 18, 2000. Published Ocotber 30, 2000.
R.Ma was supported by the Natural Science Foundation of China (grant 19801028)
where λ is a positive parameter.
We make the following assumptions:
(A1) $a_{i} \geq 0$ for $i=1, \cdots, m-3$ and $a_{m-2}>0 ; \xi_{i}: 0<\xi_{1}<\xi_{2}<\cdots<\xi_{m-2}<1$ and $\sum_{i=1}^{m-2} a_{i} \xi_{i}<1$.
(A2) $f:[0, \infty) \times R \rightarrow R$ is continuous and $f(0,0)>0$;
(A3) $a \in C[0,1]$ and there exist $r_{0} \in[0,1]$ and $\theta>0$ such that $a\left(r_{0}\right) \neq 0$, and the solution of the linear problem

$$
\begin{gathered}
u^{\prime \prime}+a^{+}(t)-(1+\theta) a^{-}(t)=0, \quad t \in(0,1) \\
u(0)=0, \quad u(1)=\sum_{i=1}^{m-2} a_{i} u\left(\xi_{i}\right)
\end{gathered}
$$

is nonnegative in $[0,1]$, where a^{+}is the positive part of a and a^{-}is the negative part of a.
(A4) There exist a constant k in $(1, \infty)$ such that

$$
\begin{equation*}
P(t) \geq k Q(t) \tag{1.5}
\end{equation*}
$$

where

$$
P(t)=\int_{0}^{t} a^{+}(s) d s+\frac{\sum_{i=1}^{m-2} a_{i} \int_{0}^{\xi_{i}}\left(\xi_{i}-s\right) a^{+}(s) d s}{1-\sum_{i=1}^{m-2} a_{i} \xi_{i}}+\frac{\int_{0}^{1}(1-s) a^{+}(s) d s}{1-\sum_{i=1}^{m-2} a_{i} \xi_{i}}
$$

and

$$
Q(t)=\int_{0}^{t} a^{-}(s) d s+\frac{\sum_{i=1}^{m-2} a_{i} \int_{0}^{\xi_{i}}\left(\xi_{i}-s\right) a^{-}(s) d s}{1-\sum_{i=1}^{m-2} a_{i} \xi_{i}}+\frac{\int_{0}^{1}(1-s) a^{-}(s) d s}{1-\sum_{i=1}^{m-2} a_{i} \xi_{i}}
$$

Our main result is
Theorem 1. Let (A1), (A2), (A3), and (A4) hold. Then there exists a positive number λ^{*} such that (1.3)-(1.4) has at least one positive solution for $0<\lambda<\lambda^{*}$.

The proof of this theorem is based upon the Leray-Schauder fixed point theorem and motivated by [7].

2. Preliminary lemmas

In the sequel we shall denote by I the interval $[0,1]$ of the real line. E will stand for the space of functions $u: I \rightarrow R$ such that $u(0)=0, u(1)=\sum_{i=1}^{m-2} a_{i} u\left(\xi_{i}\right)$ and u^{\prime} is continuous on I. We furnish the set E with the norm $|u|_{E}=\max \left\{|u|_{0},\left|u^{\prime}\right|_{0}\right\}=$ $\left|u^{\prime}\right|_{0}$, where $|u|_{0}=\max \{u(t) \mid t \in I\}$. Then E is a Banach space.

To prove Theorem 1, we need the following preliminary results.
Lemma 1 [6]. Let $a_{i} \geq 0$ for $i=1, \cdots, m-2$, and $\sum_{i=1}^{m-2} a_{i} \xi_{i} \neq 1$, then for $y \in C(I)$, the problem

$$
\begin{gather*}
u^{\prime \prime}+y(t)=0, \quad t \in(0,1) \tag{2.1}\\
u(0)=0, \quad u(1)=\sum_{i=1}^{m-2} a_{i} u\left(\xi_{i}\right) \tag{2.2}
\end{gather*}
$$

has a unique solution,

$$
u(t)=-\int_{0}^{t}(t-s) y(s) d s-t \frac{\sum_{i=1}^{m-2} a_{i} \int_{0}^{\xi_{i}}\left(\xi_{i}-s\right) y(s) d s}{1-\sum_{i=1}^{m-2} a_{i} \xi_{i}}+t \frac{\int_{0}^{1}(1-s) y(s) d s}{1-\sum_{i=1}^{m-2} a_{i} \xi_{i}}
$$

The following two results extend Lemma 2 and Lemma 3 of [12].

Lemma 2. Let $a_{i} \geq 0$ for $i=1, \cdots, m-2$, and $\sum_{i=1}^{m-2} a_{i} \xi_{i}<1$. If $y \in C(I)$ and $y \geq 0$, then the unique solution u of the problem (2.1)-(2.2) satisfies

$$
u(t) \geq 0, \quad \forall t \in I
$$

Proof From the fact that $u^{\prime \prime}(x)=-y(x) \leq 0$, we know that the graph of $u(t)$ is concave down on I. So, if $u(1) \geq 0$, then the concavity of u together with the boundary condition $u(0)=0$ implies that $u \geq 0$ for all $t \in I$.

If $u(1)<0$, then from the concavity of u we know that

$$
\begin{equation*}
\frac{u\left(\xi_{i}\right)}{\xi_{i}} \geq \frac{u(1)}{1}, \quad \text { for } i=1, \cdots, m-2 \tag{2.3}
\end{equation*}
$$

This implies

$$
\begin{equation*}
u(1)=\sum_{i=1}^{m-2} a_{i} u\left(\xi_{i}\right) \geq \sum_{i=1}^{m-2} a_{i} \xi_{i} u(1) \tag{2.4}
\end{equation*}
$$

This contradicts the fact that $\sum_{i=1}^{m-2} a_{i} \xi_{i}<1$.
Lemma 3. Let $a_{i} \geq 0$ for $i=1, \cdots, m-3, a_{m-2}>0$, and $\sum_{i=1}^{m-2} a_{i} \xi_{i}>1$. If $y \in C(I)$ and $y(t) \geq 0$ for $t \in I$, then (2.1)-(2.2) has no positive solution.
Proof Assume that (2.1)-(2.2) has a positive solution u, then $u\left(\xi_{i}\right)>0$ for $i=$ $1, \cdots, m-2$, and

$$
\begin{align*}
u(1) & =\sum_{i=1}^{m-2} a_{i} u\left(\xi_{i}\right)=\sum_{i=1}^{m-2} a_{i} \xi_{i} \frac{u\left(\xi_{i}\right)}{\xi_{i}} \\
& \geq \sum_{i=1}^{m-2} a_{i} \xi_{i} \frac{u(\bar{\xi})}{\bar{\xi}}>\frac{u(\bar{\xi})}{\bar{\xi}} \tag{2.5}
\end{align*}
$$

(where $\bar{\xi} \in\left\{\xi_{1}, \cdots, \xi_{m-2}\right\}$ satisfies $\frac{u(\bar{\xi})}{\xi}=\min \left\{\left.\frac{u\left(\xi_{i}\right)}{\xi_{i}} \right\rvert\, i=1, \cdots, m-2\right\}$). This contradicts the concavity of u.

If $u(1)=0$, then applying $a_{m-2}>0$ we know that

$$
\begin{equation*}
u\left(\xi_{m-2}\right)=0 \tag{2.6}
\end{equation*}
$$

From the concavity of u, it is easy to see that $u(t) \leq 0$ for all t in I.
In the rest of this paper, we assume that $a_{i} \geq 0$ for $i=1, \cdots, m-3, a_{m-2}>0$, and $\sum_{i=1}^{m-2} a_{i} \xi_{i}<1$. We also assume that $f(u, p)=f(0, p)$ for $(u, p) \in(-\infty, 0)$.
Lemma 4. Let (A1) and (A2) hold. Then for every $0<\delta<1$, there exists a positive number $\bar{\lambda}$ such that, for $0<\lambda<\bar{\lambda}$, the problem

$$
\begin{gather*}
u^{\prime \prime}+\lambda a^{+}(t) f\left(u, u^{\prime}\right)=0 \tag{2.7}\\
u(0)=0, u(1)=\sum_{i=1}^{m-2} a_{i} u\left(\xi_{i}\right) \tag{2.8}
\end{gather*}
$$

has a positive solution \tilde{u}_{λ} with $\left|\tilde{u}_{\lambda}\right|_{E} \rightarrow 0$ and $\left|\tilde{u}_{\lambda}^{\prime}\right|_{0} \rightarrow 0$ as $\lambda \rightarrow 0$, and

$$
\begin{equation*}
\tilde{u}_{\lambda} \geq \lambda \delta f(0,0) p(t), \quad t \in I \tag{2.9}
\end{equation*}
$$

where

$$
p(t)=-\int_{0}^{t}(t-s) a^{+}(s) d s-t \frac{\sum_{i=1}^{m-2} a_{i} \int_{0}^{\xi_{i}}\left(\xi_{i}-s\right) a^{+}(s) d s}{1-\sum_{i=1}^{m-2} a_{i} \xi_{i}}+t \frac{\int_{0}^{1}(1-s) a^{+}(s) d s}{1-\sum_{i=1}^{m-2} a_{i} \xi_{i}}
$$

Proof. By Lemma 2, we know that $p(t) \geq 0$ for $t \in I$. From Lemma 1, (2.7)-(2.8) is equivalent to the integral equation

$$
\begin{aligned}
u(t)= & \lambda\left[-\int_{0}^{t}(t-s) a^{+}(s) f\left(u(s), u^{\prime}(s)\right) d s\right. \\
& -t \frac{\sum_{i=1}^{m-2} a_{i} \int_{0}^{\xi_{i}}\left(\xi_{i}-s\right) a^{+}(s) f\left(u(s), u^{\prime}(s)\right) d s}{1-\sum_{i=1}^{m-2} a_{i} \xi_{i}} \\
& \left.+t \frac{\int_{0}^{1}(1-s) a^{+}(s) f\left(u(s), u^{\prime}(s)\right) d s}{1-\sum_{i=1}^{m-2} a_{i} \xi_{i}}\right] \\
& \stackrel{\text { def }}{=} A u(t)
\end{aligned}
$$

where $u \in C^{1}(I)$. Further, we have that

$$
\begin{align*}
(A u)^{\prime}(t)= & \lambda\left[-\int_{0}^{t} a^{+}(s) f\left(u(s), u^{\prime}(s)\right) d s\right. \\
& -\frac{\sum_{i=1}^{m-2} a_{i} \int_{0}^{\xi_{i}}\left(\xi_{i}-s\right) a^{+}(s) f\left(u(s), u^{\prime}(s)\right) d s}{1-\sum_{i=1}^{m-2} a_{i} \xi_{i}} \tag{2.10}\\
& \left.+\frac{\int_{0}^{1}(1-s) a^{+}(s) f\left(u(s), u^{\prime}(s)\right) d s}{1-\sum_{i=1}^{m-2} a_{i} \xi_{i}}\right]
\end{align*}
$$

Then $A: C^{1}(I) \rightarrow C^{1}(I)$ is completely continuous and fixed points of A are solutions of (2.7)-(2.8). We shall apply the Leray-Schauder fixed point theorem to prove A has a fixed point for λ small.

Let $\epsilon>0$ be such that

$$
\begin{equation*}
f(u, y) \geq \delta f(0,0), \quad \text { for }(u, y) \in[0, \epsilon] \times[-\epsilon, \epsilon] \tag{2.11}
\end{equation*}
$$

Suppose that

$$
\begin{equation*}
\lambda<\frac{\epsilon}{2|P|_{0} \tilde{f}(\epsilon)}:=\bar{\lambda} \tag{2.12}
\end{equation*}
$$

where $\tilde{f}(r)=\max _{(u, y) \in[0, r] \times[-r, r]} f(u, y)$. By (A2) we know that

$$
\begin{equation*}
\lim _{r \rightarrow 0^{+}} \frac{\tilde{f}(r)}{r}=+\infty \tag{2.13}
\end{equation*}
$$

It follows that there exists $r_{\lambda} \in(0, \epsilon)$ such that

$$
\begin{equation*}
\frac{\tilde{f}\left(r_{\lambda}\right)}{r_{\lambda}}=\frac{1}{2 \lambda|P|_{0}} \tag{2.14}
\end{equation*}
$$

EJDE-2000/65 Positive solutions to a second order boundary-value problem
We note that (2.14) implies

$$
\begin{equation*}
r_{\lambda} \rightarrow 0, \quad \text { as } \lambda \rightarrow 0 \tag{2.15}
\end{equation*}
$$

Now, consider the homotopy equations

$$
\begin{equation*}
u=\theta A u, \quad \theta \in(0,1) \tag{2.16}
\end{equation*}
$$

Let $u \in C^{1}(I)$ and $\theta \in(0,1)$ be such that $u=\theta A u$. We claim that $|u|_{E} \neq r_{\lambda}$. In fact,

$$
\begin{align*}
u^{\prime}(t)= & \theta \lambda\left[-\int_{0}^{t} a^{+}(s) f\left(u(s), u^{\prime}(s)\right) d s\right. \\
& -\frac{\sum_{i=1}^{m-2} a_{i} \int_{0}^{\xi_{i}}\left(\xi_{i}-s\right) a^{+}(s) f\left(u(s), u^{\prime}(s)\right) d s}{1-\sum_{i=1}^{m-2} a_{i} \xi_{i}} \tag{2.17}\\
& \left.+\frac{\int_{0}^{1}(1-s) a^{+}(s) f\left(u(s), u^{\prime}(s)\right) d s}{1-\sum_{i=1}^{m-2} a_{i} \xi_{i}}\right]
\end{align*}
$$

This implies that

$$
\begin{equation*}
\left|u^{\prime}(t)\right| \leq \lambda \tilde{f}\left(|u|_{E}\right) P(t), \quad t \in[0,1] \tag{2.18}
\end{equation*}
$$

hence

$$
\begin{equation*}
|u|_{E} \leq \lambda|P|_{0} \tilde{f}\left(|u|_{E}\right) \tag{2.19}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{\tilde{f}\left(|u|_{E}\right)}{|u|_{E}} \geq \frac{1}{\lambda|P|_{0}} \tag{2.20}
\end{equation*}
$$

which implies that $|u|_{E} \neq r_{\lambda}$. Thus by Leray-Schauder fixed point theorem, A has a fixed point \tilde{u}_{λ} with

$$
\begin{equation*}
\left|\tilde{u}_{\lambda}\right|_{E} \leq r_{\lambda}<\epsilon \tag{2.21}
\end{equation*}
$$

Moreover, combining (2.21) and (2.11) and using (2.10) and Lemma 2, we have that

$$
\begin{equation*}
\tilde{u}_{\lambda}(t) \geq \lambda \delta f(0,0) p(t), \tag{2.20}
\end{equation*}
$$

for $t \in I, \lambda \leq \bar{\lambda}$.

3. Proof of the main reuslt

Proof of Theorem 1. Let

$$
\begin{equation*}
q(t)=-\int_{0}^{t}(t-s) a^{-}(s) d s-t \frac{\sum_{i=1}^{m-2} a_{i} \int_{0}^{\xi_{i}}\left(\xi_{i}-s\right) a^{-}(s) d s}{1-\sum_{i=1}^{m-2} a_{i} \xi_{i}}+t \frac{\int_{0}^{1}(1-s) a^{-}(s) d s}{1-\sum_{i=1}^{m-2} a_{i} \xi_{i}} \tag{3.1}
\end{equation*}
$$

then from Lemma 2, we know that $q(t) \geq 0$. By (A3) and (A4), there exist positive numbers $c, d \in(0,1)$ such that for $t \in I$,

$$
\begin{align*}
q(t) \max \{|f(u, y)| \mid 0 & \leq u \leq c,-c \leq y \leq c\} \leq d p(t) f(0,0) \tag{3.2}\\
Q(t) \max \{|f(u, y)| \mid 0 & \leq u \leq c,-c \leq y \leq c\} \leq d P(t) f(0,0)
\end{align*}
$$

Fix $\delta \in(d, 1)$ and let $\lambda^{*}>0$ be such that

$$
\begin{equation*}
\left|\tilde{u}_{\lambda}\right|_{E}+\lambda \delta f(0,0)|P|_{0} \leq c \tag{3.3}
\end{equation*}
$$

for $\lambda<\lambda^{*}$, where \tilde{u}_{λ} is given by Lemma 4, and

$$
\begin{equation*}
\left|f\left(u_{1}, y_{1}\right)-f\left(u_{2}, y_{2}\right)\right| \leq f(0,0)\left(\frac{\delta-d}{2}\right) \tag{3.4}
\end{equation*}
$$

for $\left(u_{1}, y_{1}\right),\left(u_{2}, y_{2}\right) \in[0, c] \times[-c, c]$ with

$$
\max \left\{\left|u_{1}-u_{2}\right|,\left|y_{1}-y_{2}\right|\right\} \leq \lambda^{*} \delta f(0,0)|P|_{0} .
$$

Let $\lambda<\lambda^{*}$. We look for a solution u_{λ} of the form $\tilde{u}_{\lambda}+v_{\lambda}$. Here v_{λ} solves

$$
\begin{gather*}
v^{\prime \prime}+\lambda a^{+}(t)\left(f\left(\tilde{u}_{\lambda}+v, \tilde{u}_{\lambda}^{\prime}+v^{\prime}\right)-f\left(\tilde{u}_{\lambda}, \tilde{u}_{\lambda}^{\prime}\right)\right)-\lambda a^{-}(t) f\left(\tilde{u}_{\lambda}+v, \tilde{u}_{\lambda}^{\prime}+v^{\prime}\right)=0 \tag{3.5}\\
v(0)=0, v(1)=\sum_{i=1}^{m-2} a_{i} v\left(\xi_{i}\right) \tag{3.6}
\end{gather*}
$$

For each $w \in C^{1}(I)$, let $v=T(w)$ be the solution of

$$
\begin{gathered}
v^{\prime \prime}+\lambda a^{+}(t)\left(f\left(\tilde{u}_{\lambda}+w, \tilde{u}_{\lambda}^{\prime}+w^{\prime}\right)-f\left(\tilde{u}_{\lambda}, \tilde{u}_{\lambda}^{\prime}\right)\right)-\lambda a^{-}(t) f\left(\tilde{u}_{\lambda}+w, \tilde{u}_{\lambda}^{\prime}+w^{\prime}\right)=0 \\
v(0)=0, \operatorname{quadv}(1)=\sum_{i=1}^{m-2} a_{i} v\left(\xi_{i}\right)
\end{gathered}
$$

Then $T: C^{1}(I) \rightarrow C^{1}(I)$ is completely continuous.
Let $v \in C^{1}(I)$ and $\theta \in(0,1)$ be such that $v=\theta T v$. Then we have

$$
\begin{gather*}
v^{\prime \prime}+\theta \lambda a^{+}(t)\left(f\left(\tilde{u}_{\lambda}+v, \tilde{u}_{\lambda}^{\prime}+v^{\prime}\right)-f\left(\tilde{u}_{\lambda}, \tilde{u}_{\lambda}^{\prime}\right)\right)-\theta \lambda a^{-}(t)\left(f\left(\tilde{u}_{\lambda}+v, \tilde{u}_{\lambda}^{\prime}+v^{\prime}\right)\right)=0 \tag{3.7}\\
v(0)=0, v(1)=\sum_{i=1}^{m-2} a_{i} v\left(\xi_{i}\right) \tag{3.8}
\end{gather*}
$$

We claim that $|v|_{E} \neq \lambda \delta f(0,0)|P|_{0}$. Suppose to the contrary that $|v|_{E}=$ $\lambda \delta f(0,0)|P|_{0}$. Then by (3.3), we obtain

$$
\begin{align*}
\left|\tilde{u}_{\lambda}+v\right|_{E} & \leq\left|\tilde{u}_{\lambda}\right|_{E}+|v|_{E} \leq c, \\
\left|\tilde{u}_{\lambda}+v\right|_{0} & \leq\left|\tilde{u}_{\lambda}\right|_{0}+|v|_{0} \leq c . \tag{3.9}
\end{align*}
$$

These inequalities and (3.4) imply

$$
\begin{equation*}
\left|f\left(\tilde{u}_{\lambda}+v, \tilde{u}_{\lambda}^{\prime}+v^{\prime}\right)-f\left(\tilde{u}_{\lambda}, \tilde{u}_{\lambda}^{\prime}\right)\right|_{0} \leq f(0,0)\left(\frac{\delta-d}{2}\right) \tag{3.10}
\end{equation*}
$$

Using (3.10)and (3.2) and applying Lemma 1 and Lemma 2, we have that

$$
\begin{align*}
|v(t)| & \leq \lambda \frac{\delta-d}{2} f(0,0) p(t)+\lambda \max \{|f(u, y)| \mid 0 \leq u \leq c,-c \leq y \leq c\} q(t) \\
& \leq \lambda \frac{\delta-d}{2} f(0,0) p(t)+\lambda d f(0,0) p(t) \tag{3.11}\\
& =\lambda \frac{\delta+d}{2} f(0,0) p(t), \quad t \in I
\end{align*}
$$

and

$$
\begin{align*}
\left|v^{\prime}(t)\right| & \leq \lambda \frac{\delta-d}{2} f(0,0) P(t)+\lambda \max \{|f(u, y)| \mid 0 \leq u \leq c,-c \leq y \leq c\} Q(t) \\
& \leq \lambda \frac{\delta-d}{2} f(0,0) P(t)+\lambda d f(0,0) P(t) \tag{3.12}\\
& =\lambda \frac{\delta+d}{2} f(0,0) P(t), \quad t \in I
\end{align*}
$$

In particular

$$
\begin{equation*}
|v|_{E} \leq \lambda \frac{\delta+d}{2} f(0,0)|P|_{0}<\lambda \delta f(0,0)|P|_{0} \tag{3.13}
\end{equation*}
$$

a contradiction, and the claim is proved. Thus by Leray-Schauder fixed point theorem, T has a fixed ponit v_{λ} with

$$
\begin{equation*}
\left|v_{\lambda}\right|_{E} \leq \lambda \delta f(0,0)|P|_{0} \tag{3.14}
\end{equation*}
$$

Finally, using (2.9) and (3.11), we obtain

$$
\begin{align*}
u_{\lambda} & \geq \tilde{u}_{\lambda}-\left|v_{\lambda}\right| \\
& \geq \lambda \delta f(0,0) p(t)-\lambda \frac{\delta+d}{2} f(0,0) p(t) \tag{3.15}\\
& =\lambda \frac{\delta-d}{2} f(0,0) p(t), \quad t \in I
\end{align*}
$$

i.e., u_{λ} is a positive solution of (1.3)-(1.4).

References

[1] W. Feng and J. R. L. Webb, Solvability of a three-point boundary value problems at resonance, Nonlinear Analysis TMA 30 (1997), 3227-3238.
[2] W. Feng and J. R. L. Webb, Solvability of a m-point boundary value problems with nonlinear growth, J. Math. Anal. Appl. 212 (1997), 467-480.
[3] W. Feng, On an m-point boundary value problem, Nonlinear Analysis TMA 30 (1997), 5369-5374.
[4] C. P. Gupta, Solvability of a three-point nonlinear boundary value problem for a second order ordinary differential equation, J. Math. Anal. Appl. 168 (1992), 540-551.
[5] C. P. Gupta, A sharper condition for the solvability of a three-point second order bounder value problem, J. Math. Anal. Appl. 205 (1997), 586-597.
[6] C. P. Gupta, S. K. Ntouyas and P. Ch. Tsamatos, On an m-point boundary value problem for second order ordinary differential equations, Nonlinear Analysis TMA 23, (1994), 1427-1436.
[7] D. D. Hai, Positive solutions to a class of elliptic boundary value problems, J. Math. Anal. Appl. 227 (1998), 195-199.
[8] V. A. Il'in and E. I. Moiseev, Nonlocal boundary value problem of the first kind for a Sturm-Liouville operator in its differential and finite difference aspects, Differential Equations 23(7) (1987), 803-810.
[9] V. A. Il'in and E. I. Moiseev, Nonlocal boundary value problem of the second kind for a Sturm-Liouville operator, Differential Equations 23(8) (1987), 979-987.
[10] R. Ma, Existence theorems for a second order three-point boundary value problem, J. Math. Anal. Appl. 212 (1997), 430-442.
[11] R. Ma, Existence theorems for a second order m-point boundary value problem, J. Math. Anal. Appl. 211 (1997), 545-555.
[12] R. Ma, Positive solutions of a nonlinear three-point boundary value problem, Electron. J. Differential Equations 341999 (1999) 1-8.

Daomin Cao
Institute of Applied Mathematics, Academy of Mathematics and System Sciences, Beijing 100080, People's Republic of China
E-mail address: cao@amath6.amt.ac.cn

Ruyun Ma
Department of Mathematics, Northwest Normal University, Lanzhou 730070, Gansu, People's Republic of China
E-mail address: mary@mx.amss.ac.cn

