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studying connecting orbits of

Hamiltonian systems ∗

Chao-Nien Chen & Shyuh-yaur Tzeng

Abstract

In this article, we consider a class of second order Hamiltonian systems
that possess infinite or finite number of equilibria. Variational arguments
will be used to study the existence of connecting orbits joining pairs of
equilibria. Applying penalization methods, we obtain various patterns for
multibump homoclinics and heteroclinics of Hamiltonian systems.

0 Introduction

In recent years, some new tools have been developed in the calculus of variations
for studying the existence of connecting orbits of nonlinear differential equations;
see for example [1, 4, 5, 6, 8, 14, 18, 19, 22, 23, 27, 28, 29, 30, 33, 34, 35]. A great
deal of attention has been focused on the second order Hamiltonian system

q̈ − V ′(t, q) = 0 , (HS)

where q : R→ Rn, V ∈ C2(R×Rn,R), and V ′(t, y) = DyV (t, y). If V ′(t, η) = 0
for all t ∈ R, then η is an equilibrium of (HS). A solution q of (HS), that
satisfies

lim
t→−∞

q(t) = ηi and lim
t→∞

q(t) = ηj (0.1)

for a pair of equilibria ηi and ηj , is called a heteroclinic solution or heteroclinic
orbit of (HS). In case that ηi = ηj and q 6≡ ηi, the solution is called a homoclinic
orbit.

Rabinowitz [27] considered a class of (HS) where V is periodic in t and has
a local minimum at 0. Under certain growth conditions for V at y = 0 and
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infinity, he applied Mountain Pass Lemma to obtain a homoclinic orbit q of
(HS) which satisfies

lim
|t|→∞

q(t) = 0 . (0.2)

Subsequently, Coti Zelati and Rabinowitz [8] studied the multibump homoclinic
solutions for this system. Qualitatively, if the one bump homoclinic solution
satisfies certain nondegeneracy condition, a chain of one bump homoclinics can
be concatenated to form a multibump homoclinic. Such techniques have been
extended to study semilinear elliptic partial differential equations [9, 34]. Results
in this spirit in dynamical systems are the Shadowing Lemma and the Smale-
Birkhoff Theorem (see e.g. [15]).
The existence of heteroclinic orbits of (HS) has been studied in [5, 35], where

the function V satisfies the following conditions:

(V1) There is a set K1 ⊂ Rn such that if η ∈ K1 then V (t, η) = inf
y∈Rn

V (t, y) =

V0 for all t ∈ R.

(V2) There are positive numbers µ1, µ2 and ρ0 such that if |y − η| ≤ ρ0 for
some η ∈ K1 then µ2|y − η|2 ≥ V (t, y) − V0 ≥ µ1|y − η|2 for all t ∈ R.
Moreover, if ηi, ηj ∈ K1 and i 6= j, then |ηi − ηj | > 8ρ0.

(V3) There is a µ0 > 0 such that if V (t, y) ≤ V0 + µ0 for some t ∈ R then
|y − η| ≤ ρ0 for some η ∈ K1.

(V4) For any r0 > 0 there is an M > 0 such that sup
t∈R
‖ D2yV (t, y) ‖∞≤ M if

|y| ≤ r0.

If V is periodic in t and in each component of y, Strobel [35] showed that,
for any ηi ∈ K1, there is a heteroclinic solution q of (HS) which satisfies

q(t)→ ηi as t→ −∞

and

q(t)→ K1\{ηi} as t→∞.

Moreover, for any pair of ηi, ηj ∈ K1, they can be joined by a chain of heteroclin-
ics. If additional nondegeneracy conditions are satisfied, there exist multibump
heteroclinic orbits connecting ηi and ηj . Such kinds of results have also been
proved by Rabinowitz [28] and Maxwell [22, 23] for orbits connecting periodic
solutions instead of equilibria.
For the first order Hamiltonian system, the existence of multibump homo-

clinic solutions was proved by Sèrè [33]. The interested readers may consult
[6, 18, 19, 24, 30] for more references and various extensions for using varia-
tional methods to study connecting orbits of Hamiltonian systems.
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In this paper, we treat the case where V is not necessarily periodic in its vari-
ables. By (HS), the potential V is only determined up to an additive constant,
so we may assume that V0 = 0. Let E =W

1,2(R,Rn) with the norm

‖ z ‖= (

∫ ∞
−∞
(|ż|2 + |z|2)dt)1/2.

By changing variables of V , we may take η1 = 0. For z ∈ E, define

I(z) =

∫ ∞
−∞
[
1

2
|ż|2 + V (t, z)]dt. (0.3)

Since I ∈ C1(E,R) and E ⊂ C0(R,Rn), the space of continuous functions z on
R such that z(t)→ 0 as |t| → ∞, if I ′(q) = 0 and I(q) > 0 then q is a homoclinic
orbit of (HS).
A sequence {zm} ⊂ E is called a (PS)c sequence if I(zm)→ c and I ′(zm)→ 0

as m → ∞. Our approach is to search critical points of I by investigating the
convergence of Palais-Smale sequences. The investigation will be based on a
comparison argument described as follows. Define

θ(ρ) = min(µ1ρ
2, µ0) ,

Λ = sup{‖V ′(t, y)‖+ 1/2|t ∈ R and y ∈
⋃
η∈K1

Bρ0(η)} .

For j1 < j2, let

Ê(j1, j2) = {z ∈W
1,2
loc (R,R

n)|z(t) = η1 if t ≤ j1 and z(t) = η2 if t ≥ j2},

Ẽ(j1, j2) = {z ∈W
1,2
loc (R,R

n)|z(t) = η2 if t ≤ j1 and z(t) = η1 if t ≥ j2} ,
α̂(j1, j2) = inf

z∈Ê(j1,j2)
I(z) ,

α̃(j1, j2) = inf
z∈Ẽ(j1,j2)

I(z) .

Set α̂(−∞, j2) = limj1→−∞ α̂(j1, j2) and α̂(j1,∞) = limj2→∞ α̂(j1, j2).

Theorem 1 Assume (V1)-(V4) are satisfied. Suppose there are k1 < k2 <
k3 < k4 such that

α̂(k1, k2) < min(α̂(−∞, k1), α̂(k2, k3)) , (0.4)

α̃(k3, k4) < min(α̃(k2, k3), α̃(k4,∞)), (0.5)

k3 − k2 > 6ρ0 + 2(α̂(k1, k2) + α̃(k3, k4) + ρ0
√
2θ(ρ0))/θ(r), (0.6)

where

r = min

(
1,
ρ0

2
,
4

√
ρ20
8µ2

,
ρ0
√
2θ(ρ0)

Λ
,
θ̂

3Λ

)
(0.7)

and θ̂ = min(α̂(−∞, k1)− α̂(k1, k2), α̂(k2, k3)− α̂(k1, k2), α̃(k2, k3)− α̃(k3, k4),
α̃(k4,∞)− α̃(k3, k4)). Then there is a homoclinic orbit of (HS) which satisfies
(0.2).
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The homoclinic orbit described in Theorem 1 will be obtained by finding a
local minimizer of I. Our strategy is to add penalization to I so that a local
minimizer of I becomes a global minimzer to a penalized functional. An ex-
ample for which Theorem 1 holds is n = 1 and V (t, y) = G(t)(1 − (y − 1)2)2,
where G > 0 and is relatively large on (−∞, k1), (k2, k3) and (k4,∞). Such
oscillation conditions may repeat infinitely many times when V is periodic in t.
In this case, I possesses a large number of local minimizers. To find multiple
homoclinics of (HS), we add different penalty functions to single out such local
minimzers. Roughly speaking, the homoclinics obtained here comprise two het-
eroclinics nicely concatenated. It will also be discussed under what conditions a
chain of more than two heteroclinics can be concatenated to form a multibump
homoclinic. Strobel [35] has obtained such multibump solutions by using del-
icate deformation arguments. There additional nondegeneracy conditions are
required and in general such conditions are hard to verify. Also, as in most
results for multibump solutions, Strobel’s arguments indicate that the distance
between two bumps needs to be long; however, there is no estimates for how
long it has to be. We do not assume any nondegenercy condition on single bump
solutions and a lower bound of distance between two bumps will be obtained.
Our methods can be applied to aperiodic Hamiltonian systems as well. The
detailed analysis will be given in Section 2 and Section 4.

In Sections 3, a minimax method, in the framework of Mountain Pass
Lemma, will be used to obtain homoclinic solutions of (HS). Since the local
minimizers obtained by penalization methods are not necessary to be isolated,
additional works are required to verify the existence of minimax critical values
of I. Also, the justification of convergence of minimaxing sequences is more
complicated than that of minimizing sequences.

A simple example for which the potential of (HS) possesses more than two
minima is a forced pendulum problem, where V (t, y) = G(t)(1 + cos(y − π)),
y ∈ R and G > 0. Such examples can easily be found in case of n > 1. The
distribution of the wells of V in general need not to be equi-distanced. Naturally,
one expects to find a connecting orbit whose trajectory is close to some other
equilibria in some time intervals. Results for (HS) involving connecting orbits
of this type will be presented in Section 5.

1 Preliminaries

This section contains several technical results such as qualitative properties of
I and various estimates of Palais-Smale sequences.

Proposition 1 For any t1, t2 ∈ R, q ∈ W 1,2([t1, t2],R
n) and ρ ∈ (0, ρ0], if

inf
t∈[t1,t2]
η∈K1

|q(t)− η| ≥ ρ then
∫ t2
t1
V (t, q)dt ≥ (t2 − t1)θ(ρ).

The proof of this proposition follows from (V2) and (V3).
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Proposition 2 Suppose q(t1) ∈ ∂Bρ(ηi), q(t2) ∈ ∂Bρ(ηj), and
q(t) ∈ Rn\(∪η∈K1Bρ(η)) for t ∈ (t1, t2). If i 6= j and ρ ∈ (0, ρ0], then

∫ t2
t1

[
1

2
|q̇(t)|2 + V (t, q)]dt ≥

1

2(t2 − t1)
(|ηi − ηj | − 2ρ)

2 + θ(ρ)(t2 − t1). (1.1)

Proof. Since

|ηi − ηj | − 2ρ ≤ |q(t2)− q(t1)| = |

∫ t2
t1

q̇(t)dt| ≤
√
t2 − t1(

∫ t2
t1

|q̇(t)|2dt)1/2,

Proposition 1 yields (1.1).

Lemma 1 Let {zm} ⊂ E be a (PS)c sequence. Then there is a constant C0 > 0
such that

sup
m∈N

‖ żm ‖L2(R)≤ C0.

The proof of this lemma is trivial.

Lemma 2 If {zm} is a (PS)c sequence then {zm} is bounded in L∞(R,Rn).

Proof. Without loss of generality, we may assume that I(zm) ≤ c+ 1 for all
m ∈ N. Let dm(τ) = infη∈K1 |zm(τ) − η| and S̃m = {τ ∈ R|dm(τ) < ρ0}. By
Proposition 2, for any t ∈ R,

S̃m ∩ [−n̂+ t, n̂+ t] 6= φ,

where n̂ = [ c+12θ(ρ0)
] + 2. Pick a tm ∈ S̃m ∩ [−n̂+ t, n̂+ t]. It follows from Lemma

1 that

|zm(t)| ≤ |zm(tm)|+ |

∫ t
tm

żm(s)ds| ≤ sup
η∈K1

|η|+ ρ0 +
√
n̂C0.

This completes the proof of the case of Card K1 < ∞. An argument used in
[5][Lemma 2] takes care of the other case.

2 A Penalization Method

We now prove the existence of homoclinic orbits of (HS). As mentioned earlier,
the homoclinic orbit will be obtained as a local minimizer of I. To find such a
local minimizer, we use a penalization method descirbed as follows.
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Proof of Theorem 1. To illustrate the basic idea of penalization, here we
give a proof for the special case where K = {η1, η2}. The extension to the
general case can easily be carried out once we have seen the proof of Theorem
4. Let ρ̄ = 5ρ0/2, t̂1 = k1 − 3ρ0 − (α̂(k1, k2) + α̃(k3, k4))/θ(r), t̂2 = k2 + 3ρ0 +
(α̂(k1, k2) + ρ0

√
2θ(ρ0))/θ(r), t̂3 = k3 − 3ρ0 − (α̃(k3, k4) + ρ0

√
2θ(ρ0))/θ(r),

t̂4 = k4 + 3ρ0 + (α̂(k1, k2) + α̃(k3, k4))/θ(r) and

M0 =

[
α̂(k1, k2) + α̃(k3, k4) + 1

ρ0

]2
+
α̂(k1, k2) + α̃(k3, k4)

t̂3 − t̂2
+ θ(r).

Let ψ ∈ C∞(R× Rn,R) such that 0 ≤ ψ ≤M0 and

ψ(t, y) =



0 if y ∈ Bρ̄(η2) or t ∈ [t̂1 + ρ0, t̂2 − ρ0] ∪ [t̂3 + ρ0, t̂4 − ρ0]
M0 if y 6∈ B3ρ0(η2) and t ∈ [t̂2, t̂3]
0 if y ∈ Bρ̄(η1) and t 6∈ (t̂2 − ρ0, t̂3 + ρ0)
M0 if y ∈ Rn\(

⋃
i=1,2B3ρ0(ηi)) and t ∈ (−∞, t̂1] ∪ [t̂4,∞).

Set

I0(z) = I(z) +

∫ ∞
−∞

ψ(t, z) dt , (2.1)

α = inf
z∈E

I0(z). (2.2)

It is clear that

α < α̂(k1, k2) + α̃(k3, k4). (2.3)

Let {um} be a sequence which satisfies limm→∞ I0(um) = α and

sup
m∈N

I0(um) ≤ α+ 1. (2.4)

By Lemma 2, {um} is bounded inW
1,2
loc (R,R

n). Hence there is a q ∈ W 1,2
loc (R,R

n)
such that along a subsequence

um → q weakly in W 1,2
loc (R,R

n) and strongly in L∞loc(R,R
n) (2.5)

and

I0(q) ≤ α. (2.6)

To show that q is a homoclinic orbit of (HS), we first note that q 6≡ 0. Indeed,

there is a t0 ∈ (t̂2, t̂3) such that q(t0) ∈ Br(η2); (2.7)

for otherwise, we would obtain I0(q) > α which violates (2.6). Hence there is a
m0 ∈ N such that if m ≥ m0 then um(t0) ∈ Br(η2).
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We are now going to show that q ∈ E. Let

τ1(m) = sup
{
s|um(t) ∈ Br(0) if t ≤ s

}
,

τ2(m) = sup{t|t < t0 and um(t) ∈ Br(0)}.
(2.8)

We claim

τ2(m) ≥ t̂1 −
1

θ(r)
(α+ 1). (2.9)

Suppose (2.9) is false. Letting

τ3(m) = inf{t|t > τ2(m) and um(t) ∈ Br(η2)}, (2.10)

we get

τ3(m) ≤ τ2(m) +
1

θ(r)
(α+ 1) < t̂1.

Then there are t1, t2 ∈ (τ2(m), τ3(m)) such that um(t1) ∈ ∂B3ρ0(0), um(t2) ∈
∂B3ρ0(η2) and um(t) ∈ R

n\(
⋃
i=1,2B3ρ0(ηi)) if t ∈ (t1, t2). It follows from

Proposition 2 and (2.3) that

I0(um) ≥
2ρ20

(t2 − t1)
+ (t2 − t1)

[
1 + α̂(k1, k2) + α̃(k3, k4)

ρ0

]2
> 2(1 + α̂(k1, k2) + α̃(k3, k4)) > α+ 1. (2.11)

This violates (2.4) and thus (2.9) must be true. Similarly τ5(m) ≤ t̂4 + (α +
1)/θ(r), where

τ5(m) = inf
{
t|t > t0 and um(t) ∈ Br(0)

}
.

By (2.5) there are τ̂ ∈ (t̂1− (α+1)/θ(r), t0) and τ̄ ∈ (t0, t̂4+(α+1)/θ(r)) such
that max(|q(τ̂ )|, |q(τ̄ )|) < r. Let

τ3 = τ3(q) = inf{t|t ∈ (τ̂ , t0] and q(t) ∈ Br(η2)}, (2.12)

τ2 = τ2(q) = sup{t|t < τ3 and q(t) ∈ Br(0)}, (2.13)

τ4 = τ4(q) = sup{t|t ∈ [t0, τ̄ ) and q(t) ∈ Br(η2)}, (2.14)

τ5 = τ5(q) = inf
{
t|t > τ4 and q(t) ∈ Br(0)

}
. (2.15)

We claim that

there is no t < τ2 such that q(t) ∈ Br(η2). (2.16)

Suppose (2.16) is false. Then there are τ0, τ1 ∈ (−∞, τ2) such that q(τ0) ∈
∂Bρ0(η2), q(τ1) ∈ ∂Bρ0(0) and q(t) ∈ R

n\(
⋃
i=1,2Bρ0(ηi)) if t ∈ (τ0, τ1). It

follows from Proposition 2 that∫ τ1
τ0

[
1

2
|q̇|2 + V (t, q)]dt ≥ 2ρ0

√
18θ(ρ0).
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Set

Z(t) =



0 if t ∈ (−∞, τ2 − r] ∪ [τ5 + r,∞)
t−τ2+r
r

q(τ2) if t ∈ (τ2 − r, τ2)

q(t) if t ∈ [τ2, τ5]
τ5+r−t
r

q(τ5) if t ∈ (τ5, τ5 + r).

Applying the mean value theorem yields∫ τ2
τ2−r
[
1

2
|Ż|2 + V (t, Z)]dt+

∫ τ5+r
τ5

[
1

2
|Ż|2 + V (t, Z)]dt ≤ 2Λr. (2.17)

Hence

I0(Z) = I0(q)−

∫ τ2
−∞
[
1

2
|q̇|2 + V (t, q) + ψ(t, q)]dt

−

∫ ∞
τ5

[
1

2
|q̇|2 + V (t, q) + ψ(t, q)]dt+

∫ τ2
τ2−r
[
1

2
|Ż|2 + V (t, Z)]dt

+

∫ τ5+r
τ5

[
1

2
|Ż|2 + V (t, Z)]dt

≤ α− 2ρ0
√
18θ(ρ0) + 2Λr < α.

This violates (2.2) and thus (2.16) must be true. Likewise, there is no t > τ5
such that q(t) ∈ Br(η2). Let

S0 = {t|q(t) 6∈ Br(0)} ∩ ((−∞, τ2) ∪ (τ5,∞)).

It is easy to see that |S0| ≤ [
α

θ(r)
] + 1, where |S0| is the Lebesgue measure of

S0. Let S1 = S0 ∪ [τ2, τ5] and S2 = R\S1. It follows from (V2) that

I0(q) ≥

∫ ∞
−∞

1

2
|q̇|2dt+

∫
S1

[V (t, q) + ψ(t, q)]dt +

∫
S2

µ1|q|
2dt.

Since |S1| ≤ [α/θ(r)] + 1 + τ5 − τ2, we conclude that q ∈ E and thus q(t) → 0
as |t| → ∞.
To show q satisfies (HS), we first prove that

q(t) ∈ B2ρ0(0) if t ∈ (−∞, τ2) ∪ (τ5,∞). (2.18)

We only treat the case of t ∈ (−∞, τ2), the other is analogue. Suppose there
is a τ < τ2 such that q(τ) 6∈ B2ρ0(0). Then we can find t3 < t4 < t5 ≤ t6 <
t7 < t8 ≤ τ2 such that q(ti) ∈ ∂Br(0) if i = 3, 8, q(ti) ∈ ∂Bρ0(0) if i = 4, 7,
q(ti) ∈ ∂B2ρ0(0) if i = 5, 6 and ρ0 < |q(t)| < 2ρ0 if t ∈ (t4, t5) ∪ (t6, t7). If
t8 − t3 < 2r, setting

Z1(t) =

{
q(t) if t 6∈ (t3, t8)
t8−t
t8−t3

q(t3) +
t−t3
t8−t3

q(t8) if t ∈ (t3, t8),
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we get

I0(Z1)− I0(q) =

∫ t8
t3

[
1

2(t8 − t3)2
|q(t8)− q(t3)|

2 + V (t, Z1)]dt

−

∫ t8
t3

[
1

2
|q̇|2 + V (t, q) + ψ(t, q)]dt .

Now

ρ0 ≤ |q(t5)− q(t4)| = |

∫ t5
t4

q̇(t)dt| ≤
√
t5 − t4(

∫ t5
t4

|q̇(t)|2dt)1/2

which implies that∫ t5
t4

[
1

2
|q̇|2 + V (t, q)]dt ≥

ρ20
2(t5 − t4)

>
ρ20

2(t8 − t3)
.

Likewise, ∫ t7
t6

[
1

2
|q̇|2 + V (t, q)]dt >

ρ20
2(t8 − t3)

.

Moreover, by (V2)∫ t8
t3

[
1

2(t8 − t3)2
|q(t8)− q(t3)|

2 + V (t, Z1)]dt <
2r2

t8 − t3
+ 2µ2r

3.

Invoking (0.7) yields

I0(Z1)− I0(q) <
2r2

t8 − t3
+ 2µ2r

3 −
ρ20

t8 − t3
≤ 0,

which is absurd since I0(q) = minz∈E I(z).
We next consider the case that t8 − t3 ≥ 2r. Let

Z2(t) =




q(t) if t 6∈ (t3, t8)

0 if t ∈ [t3 + r, t8 − r]
t3+r−t
r q(t3) if t ∈ (t3, t3 + r)

t−t8+r
r

q(t8) if t ∈ (t8 − r, t8) .

Arguing as in (2.17), we obtain∫ t8
t3

[
1

2
|Ż2|

2 + V (t, Z2) + ψ(t, Z2)]dt ≤ 2Λr.

On the other hand, by (V2)∫ t5
t4

[
1

2
|q̇|2 + V (t, q)]dt ≥

ρ20
2(t5 − t4)

+ θ(ρ0)(t5 − t4) ≥ ρ0
√
2θ(ρ0).
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Likewise, ∫ t7
t6

[
1

2
|q̇|2 + V (t, q)]dt ≥ ρ0

√
2θ(ρ0).

Hence using (0.7) yields

I0(Z2)− I0(q)

=

∫ t8
t3

[
1

2
|Ż2|

2 + V (t, Z2) + ψ(t, Z2)−
1

2
|q̇|2 − V (t, q)− ψ(t, q)] dt

< 2Λr − 2ρ0
√
2θ(ρ0) ≤ 0 ,

which leads to the same contradiction as above. This completes the proof of
(2.18). Also, a slight modification in the above argument shows that

q(t) ∈ B2ρ0(η2) if t ∈ (τ3, τ4). (2.19)

Next, we claim

τ3 < t̂2 − 2ρ0. (2.20)

If (2.20) is false, then∫ τ3
−∞
[
1

2
|q̇|2 + V (t, q) + ψ(t, q)]dt = inf

z∈A1

∫ τ3
−∞
[
1

2
|ż|2 + V (t, z) + ψ(t, z)]dt

< α̂(k1, k2) + Λr, (2.21)

where A1 = {z|z ∈ E and z(τ3) = q(τ3)}. Combining (2.21) with (0.7) gives∫ τ3
−∞
[
1

2
|q̇|2 + V (t, q) + ψ(t, q)]dt < α̂(k1, k2) + ρ0

√
2θ(ρ0).

It follows from Proposition 2 that

τ2 ≥ τ3 −
1

θ(r)

(
α̂(k1, k2) + ρ0

√
2θ(ρ0)

)
≥ k2 + ρ0.

Setting

Z3(t) =




η2 if t ≥ τ3 + r
τ3+r−t
r

q(τ3) +
t−τ3
r
η2 if t ∈ (τ3, τ3 + r)

q(t) if t ∈ [τ2, τ3]
t−τ2+r
r

q(τ2) if t ∈ (τ2 − r, τ2)

0 if t ≤ τ2 − r,

we see that Z3 ∈ Ê(k2, k3) and∫ τ3
τ2

[
1

2
|q̇|2 + V (t, q) + ψ(t, q)]dt ≥ I0(Z3)− 2Λr

> α̂(k2, k3)− 2Λr

≥ α̂(k1, k2) + Λr.
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This is incompatible with (2.21), so (2.20) must hold. The above argument also
shows that

τ4 > t̂3 + 2ρ0. (2.22)

It remains to prove that

τ2 > t̂1 + 2ρ0 (2.23)

and

τ5 < t̂4 − 2ρ0. (2.24)

Again, we argue indirectly. If (2.23) is false, then τ3 ≤ k1 − ρ0. This implies
that∫ τ3
τ2

[
1

2
|q̇|2 + V (t, q) + ψ(t, q)]dt ≥ α̂(τ2 − r, τ3 + r) − 2Λr > α̂(−∞, k1)− 2Λr .

Define

Z4(t) =




q(t) if t ≥ τ4
τ4−t
r
η2 +

t−τ4+r
r

q(τ4) if t ∈ (τ4 − r, τ4)

η2 if t ∈ (k2, τ4 − r)

Z5(t) if t ∈ (−∞, k2),

where Z5 ∈ Ê(k1, k2) and satisfies I0(Z5) = α̂(k1, k2). Since Z4 ∈ E and

I0(Z4) ≤ α̂(k1, k2) + Λr +

∫ ∞
τ4

[
1

2
|q̇|2 + V (t, q) + ψ(t, q)]dt

= α̂(k1, k2) + Λr + I0(q)−

∫ τ4
−∞
[
1

2
|q̇|2 + V (t, q) + ψ(t, q)]dt

< α̂(k1, k2) + α− α̂(−∞, k1) + 3Λr ≤ α, (2.25)

we see that (2.25) contradicts (2.2) and thus (2.23) must hold. The proof of
(2.24) is similar.

3 A Minimax Approach

We now use a minimax approach, which is in the same spirit of Mountain Pass
Lemma [2], to obtain the existence of homoclinic solutions of (HS). Let q be the
homoclinic solution obtained in Theorem 1,

Γ = {v ∈ C([0, 1], E)|v(0) = q and v(1) = 0} (3.1)

β = inf
v∈Γ
max
a∈[0,1]

I(v(a)) . (3.2)

Proposition 3 If the hypotheses of Theorem 1 are satisfied, then β > α.
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Proof. We argue indirectly. If β = α, then there exists a sequence {vm} ⊂ Γ
such that

max
a∈[0,1]

I(vm(a))→ α as m→∞.

For z ∈ E, define

G(z) = {(t, z(t))|t ∈ R}.

Let A = {(t, y)|ψ(t, y) = 0}, where ψ was the penalty function defined in the
proof of Theorem 1. For fixed m, we set

am = sup{ā|G(vm(a)) ⊂ Åif a < ā} (3.3)

and um = vm(am). Then G(um) ∩ ∂A 6= φ. Since

lim
m→∞

I0(um) = lim
m→∞

I(um) = α,

the arguments used to prove (2.9), (2.11) and (2.17) show that if um(t) ∈ ∂A and
m is sufficiently large, then t ∈ [t̂1−(α+1)/θ(r), t̂4+(α+1)/θ(r)]. Furthermore,
we may proceed as the proof of Theorem 1 to obtain a q̄ ∈ E and a subsequence,
still denoted by {um}, such that um → q̄ weakly in W 1,2

loc (R,R
n) and strongly in

L∞loc(R,R
n). Consequently there is an s ∈ [t̂1 − (α+ 1)/θ(r), t̂4 + (α + 1)/θ(r)]

such that q̄(s) ∈ ∂A. On the other hand, repeating the proof of Theorem 1
yields I(q̄) = α and G(q̄) ⊂Å. Thus we get a contradiction which completes the
proof.
To show β is a critical value of I, we use comparison arguments to justify

the convergence of (PS)β sequences. Let Ek = {z ∈ E|z(t) = 0 if t ∈ [−k, k]}.
For w ∈ Ek, we define

Jk(w) =

∫ −k
−∞
[
1

2
|ẇ|2 + V (t, w)]dt +

∫ ∞
k

[
1

2
|ẇ|2 + V (t, w)]dt (3.4)

and

Pk =
{
c : there exists a sequence {wm} ⊂ Ek with Jk(wm)→ c

and J ′k(wm)→ 0 as m→∞
}
.

To simplify the presentation, we focus on the case where K1 = {η1, η2} in the
remaining of this section.

Theorem 2 Assume the hypotheses of Theorem 1 are satisfied. If

β < min(α̂(−∞, k1), α̃(k4,∞)), (3.5)

β 6∈ Pk and β − α 6∈ Pk for some k, (3.6)

then there are at least two homoclinic orbits of (HS) which satisfy (0.2).
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We now state a technical lemma to be used in the proof of Theorem 2.

Lemma 3 Let {zm} be a (PS)c sequence and q0 be a function which satisfies
I ′(q0) = 0. Suppose there is an increasing sequence {tm} ⊂ (0,∞) such that
tm →∞ and ∫ tm

−tm

|zm − q0|
2dt→ 0 as m→∞. (3.7)

Then, for k ≥ 1, there is a sequence {wm} ⊂ Ek such that limm→∞ Jk(wm) =
c− I(q0) and limm→∞ J ′k(wm) = 0.

A detailed proof of the lemma can be found in [8].

Proof of Theorem 2. By the standard deformation theory (e.g., [26]), there
exists a sequence {zm} ⊂ E such that limm→∞ I(zm) = β and limm→∞ I ′(zm) =
0. It follows from Lemma 2 that {zm} is bounded in W

1,2
loc (R,R

n). Hence there

is a q̃ ∈ W 1,2
loc (R,R

n)∩L∞loc(R,R
n) such that along a subsequence zm → q̃ weakly

in W 1,2
loc (R,R

n) and strongly in L∞loc(R,R
n). Moreover,

I(q̃) ≤ β.

Applying (3.5) and the arguments used to prove Theorem 1, we get q̃ ∈ E. It
follows from Lemma 2 and the Dominated Convergence Theorem that

lim
m→∞

∫ ∞
−∞

V ′(t, zm)φdt =

∫ ∞
−∞

V ′(t, q̃)φdt (3.8)

for all φ ∈ C∞0 (R,R
n). Since C∞0 (R,R

n) is dense in E, it follows that I ′(q̃)φ = 0
for all φ ∈ E.
It remains to show that q̃ 6≡ 0 and q̃ 6= q. if q̃ ≡ 0, invoking Lemma 3 would

yield β ∈ Pk. Similarly, using β − α 6∈ Pk, we obtain q̃ 6= q.
In the next existence result, we add an additional assumption on V so that

(3.6) holds.

(V5) There exist positive numbers e, θ1, θ2, R1, R2, R3, R4 such that

V (t, y) ≥

{
θ1 if t ≤ −k and R3 ≤ |y| ≤ R1
θ2 if t ≥ k and R4 ≤ |y| ≤ R2

and y ·V ′(t, y) ≥ e|y|2 if (t, y) ∈ ((−∞,−k]×BR1(0))∪ ([k,∞)×BR2(0)).

Theorem 3 Assume (V5), (3.5) and the hypotheses of Theorem 1 are satisfied.
If

β < min(
√
2θ1(R1 −R3),

√
2θ2(R2 −R4)), (3.9)

then there are at least two homoclinic orbits of (HS) which satisfy (0.1).
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Proof. It suffices to verify (3.6). Let {wm} ⊂ Ek be a sequence such that
J ′k(wm) → 0 as m → ∞. If ‖wm‖L∞(−∞,−k] ≤ R1 and ‖wm‖L∞[k,∞) ≤ R2 for
all large m, then it follows from (V5) that

J ′k(wm)
wm

‖wm‖k
≥ ‖wm‖

−1
k

∫
|t|≥k
(|ẇm|

2 + e|wm|
2)dt ≥ ē‖wm‖k,

where ē = min(1, e) and ‖ · ‖k denotes the restriction of ‖ · ‖ on Ek. Then we
have ‖wm‖k → 0 and consequently

Jk(wm)→ 0 as m→∞. (3.10)

Suppose that there is a subsequence, still denoted by {wm}, such that
‖wm‖L∞(−∞,−k] > R1. Since wm(−k) = 0 and limt→−∞ wm(t) = 0, there
is a sm ∈ (−∞,−k) such that |wm(sm)| > R1. Using (V5) and arguing like
(2.11), we get

Jk(wm) ≥ (R1 −R3)
√
2θ1. (3.11)

Likewise,

Jk(wm) ≥ (R2 −R4)
√
2θ2 (3.12)

if ‖wm‖L∞[k,∞) > R2. Now (3.10),(3.11) and (3.12) imply (3.6). The proof is
complete.

4 Multibump Homoclinic Solutions

As we have seen, the homoclinic solution obtained in Theorem 1 comprises two
heteroclinics nicely concatenated. Our aim in this section is to discuss under
what conditions a chain of more than two heteroclinics can be concatenated to
form a multibump homoclinic. To avoid complicated notation, we will mainly
focus on the case where V is periodic in t.

(V6) V (t+ T, y) = V (t, y) for all t ∈ R and y ∈ Rn.

Let us first deal with the case that two heteroclinics are concatenated to
form a homoclinic solution of (HS).

Theorem 4 Assume that (V1)-(V3) and (V6) are satisfied. Suppose there are
k0 < k1 < k2 < k3 < k4 = k0 + T such that

α̂(k1, k2) < min(α̂(k0, k1), α̂(k2, k3)) , (4.1)

α̃(k3, k4) < min(α̃(k2, k3), α̃(k0, k1)) , (4.2)

min(k3 − k2, k1 − k0) > 6ρ0 + 2(α̂(k1, k2) + α̃(k3, k4) + ρ0
√
2θ(ρ0))/θ(r) ,

(4.3)
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where

r = min

(
1,
ρ0

2
, 4

√
ρ20
8µ2

,
ρ0
√
2θ(ρ0)

Λ
,
θ̄

3Λ

)
(4.4)

and θ̄ = min(α̂(k0, k1) − α̂(k1, k2), α̂(k2, k3) − α̂(k1, k2), α̃(k2, k3) − α̃(k3, k4),
α̃(k0, k1)− α̃(k3, k4)). Then there exist a sequence of homoclinics {qj} of (HS)
which satisfy (0.2) and I(qj) < α̂(k1, k2) + α̃(k3, k4). Moreover, for any pair of
qi and qj, there does not exist m ∈ N such that qi(t+mT ) = qj(t).

Proof. The proof is similar to that of Theorem 1, so we only sketch the sig-
nificant difference. Let ψ1 ∈ C∞(R× Rn,R) such that 0 ≤ ψ1 ≤M1 and

ψ1(t, y) =




0 if t ∈ [t̂1 + ρ0, t̂2 − ρ0] ∪ [t̂3 + ρ0, t̂4 − ρ0]
M1 if y 6∈ B3ρ0(η2) and t ∈ [t̂2, t̂3]
0 if y ∈ Bρ̄(η2) and t ∈ (t̂2 − ρ0, t̂3 + ρ0)
M1 if y 6∈ B3ρ0(η1) and t ∈ [t̂0, t̂1] ∪ [t̂4, t̂1 + T ]
0 if y ∈ Bρ̄(η1) and t ∈ (−∞, t̂2 − ρ0] ∪ [t̂3 + ρ0,∞),

where ρ̄ = 5ρ0/2, t̂0 = k0+3ρ0+

(
α̃(k3, k4)+ρ0

√
2θ(ρ0)

)
/θ(r), t̂1 = k1−3ρ0−(

α̂(k1, k2) + ρ0
√
2θ(ρ0)

)
/θ(r), t̂2 = k2+3ρ0+

(
α̂(k1, k2) + ρ0

√
2θ(ρ0)

)
/θ(r),

t̂3 = k3−3ρ0−

(
α̃(k3, k4)+ρ0

√
2θ(ρ0)

)
/θ(r), t̂4 = t̂0+T , t

? = min(t̂3−t̂2, t̂1−t̂0)

and M1 = θ(r) + (α̂(k1, k2) + α̃(k3, k4))/t
?. Set

I1(z) =

∫ ∞
−∞
[
1

2
|ż|2 + V (t, z) + ψ1(t, z)]dt. (4.5)

We may proceed as in the proof of Theorem 1 to get a q ∈ E which satisfies

I1(q) = inf
z∈E

I1(z) < α̂(k1, k2) + α̃(k3, k4), (4.6)

(2.18), (2.20), and (2.22).
Next, we prove that q satisfies (2.23), (2.24) and (2.19). If (2.23) is false,

arguing like (2.21) yields∫ τ3
τ2

[
1

2
|q̇|+ V (t, q) + ψ1(t, q)]dt <

∫ t0
−∞
[
1

2
|q̇|2 + V (t, q) + ψ1(t, q)]dt

< α̂(k1, k2) + Λr , (4.7)

where as (2.7) t0 is a point in (t̂2, t̂3) and q(t0) ∈ Br(η2). Combining (4.7) with
(4.4) gives

τ3 ≤ τ2 +
1

θ(r)
(α̂(k1, k2) + ρ0

√
2θ(ρ0)) ≤ k1 − ρ0. (4.8)
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Arguing like (2.7), we get an s ∈ (t̂0, t̂1) such that q(s) ∈ Br(0). Hence τ2 > t̂0
and∫ τ3

τ2

[
1

2
|q̇|2 + V (t, q) + ψ1(t, q)]dt ≥ α̂(k0, k1)− 2Λr ≥ α̂(k1, k2) + Λr. (4.9)

This completes the proof of (2.23), since (4.9) is incompatible with (4.7).
The proofs of (2.24) and (2.19) follow from the same lines of reasoning as

above. Thus we have shown that q is a homoclinic solution of (HS).
To obtain more homoclinic solutions of (HS), we add different penalty func-

tionals to I. It will be seen that the distance between two bumps can be as long
as we please. For j ∈ N, let ψj(t, y) be defined as follows:


0 if t ∈ [t̂1 + ρ0, t̂2 − ρ0] ∪ [t̂3 + ρ0 + (j − 1)T, t̂4 − ρ0 + (j − 1)T ]
M1 if y 6∈ B3ρ0(η2) and t ∈ [t̂2, t̂3 + (j − 1)T ]

0 if y ∈ Bρ̄(η2) and t ∈ (t̂2 − ρ0, t̂3 + ρ0 + (j − 1)T )
M1 if y 6∈ B3ρ0(η1) and t ∈ [t̂0, t̂1] ∪ [t̂4 + (j − 1)T, t̂1 + jT ]
0 if y ∈ Bρ̄(η1) and t ∈ (−∞, t̂2 − ρ0] ∪ [t̂3 + ρ0 + (j − 1)T,∞).

If

Ij(z) = I(z) +

∫ ∞
−∞

ψj(t, z)dt, (4.10)

there is a qj ∈ E which satisfies

Ij(qj) = inf
z∈E

Ij(z) < α̃(k1, k2) + α̃(k3, k4). (4.11)

Moreover, a slight modification in the above argument shows that qj is a solution
of (HS). Observe that

τ4(qj) > t̂3 + 2ρ0 + (j − 1)T ,

τ5(qj) < t̂4 − 2ρ0 + (j − 1)T,

where τi(qj) defined as (2.14), (2.15). Thus the last assertion of the theorem is
verified.

Remark. From the proof of Theorem 4, we know that as long as suitable
oscillation conditions like (4.1) and (4.2) hold, homoclinic orbits still exist even
if V is not periodic in t.
A special case of Theorem 4 is the following:

Theorem 5 Assume that (V1)-(V3) and (V6) are satisfied. Suppose there are
k1 < k2 < k3 = k1 + T such that α̂(k1, k2) < α̂(k2, k3), α̃(k1, k2) < α̃(k2, k3)
and k3 − k2 > 6ρ0 + 2

(
α̂(k1, k2) + α̃(k1, k2) + ρ0

√
2θ(ρ0)

)
/θ(r), where

r = min

(
1,
ρ0

2
,
4

√
ρ20
8µ2

,
ρ0
√
2θ(ρ0)

Λ
,
θ̄

3Λ

)

and θ̄ = min(α̂(k2, k3)− α̂(k1, k2), α̃(k2, k3)− α̃(k1, k2)). Then the assertion of
Theorem 4 holds.
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Next, we consider 2`-bump solutions for ` > 1.

Theorem 6 Suppose the hypotheses of Theorem 4 are satisfied. For each ` ∈ N,
there exist a sequence of 2`-bump homoclinics {qj} of (HS) which satisfy (0.2).

Proof. The homoclinic solutions will be obtained by adding different penalty
functions. Set

M` = θ(r) + (α̂(k1, k2) + α̃(k3, k4))`/t
?.

Let ψ̂1(t, y, `,m) be defined as follows:

0 if t ∈ (−∞, t̂0 − (`− 1)T − ρ0] ∪ [t̂1 + (m− 1)T + ρ0,∞)
M` if y 6∈ B3ρ0(η1) and t ∈ [t̂0 − (`− 1)T, t̂1 + (m− 1)T ]
0 if y ∈ Bρ̄(η1) and

t ∈ (−∞, t̂0 − (`− 1)T − ρ0) ∪ (t̂1 + (m− 1)T + ρ0,∞)

and let ψ̂2(t, y, `,m) be defined as follows:

0 if t ∈ (−∞, t̂2 − (`− 1)T − ρ0] ∪ [t̂3 + (m− 1)T + ρ0,∞)
M` if y 6∈ B3ρ0(η2) and t ∈ [t̂2 − (`− 1)T, t̂3 + (m− 1)T ]
0 if y ∈ Bρ̄(η2) and

t ∈ (−∞, t̂2 − (`− 1)T − ρ0) ∪ (t̂3 + (m− 1)T + ρ0,∞).

For every ` ∈ N, we may use ψ̂1 and ψ̂2 to construct penalty functions and
obtain a sequence of 2`-bump homoclinics. Since the notation is quite involved,
we only carry out the case of ` = 2 as follows: Let m1,m2,m3 ∈ N, ` = 2 and

ψ̃(t, y,m1,m2,m3) = ψ̂1(t, y, `, 1) + ψ̂2(t− (`− 1)T, y, `,m1)

+ψ̂1(t− (2`− 2 +m1)T, y, `,m2)

+ψ̂2(t− (3`− 3 +m1 +m2)T, y, `,m3)

+ψ̂1(t− (4`− 4 +m1 +m2 +m3)T, y, `, 1),

where t̂i, 0 ≤ i ≤ 3, are defined as in the proof of Theorem 4. Let N be the set
of all positive integers and N` = N\{1, 2, · · · , `− 1}. For every (m1,m2,m3) ∈
N
3
2, by adding

∫∞
−∞ ψ̃(t, z,m1,m2,m3)dt to I(z), the corresponding penalized

functional possesses a minimizer which is a homoclinic orbit of (HS).
For ` ≥ 3, we can construct a penalty function ψ̃`(t, y,m1,m2, · · · ,m2`−1)

for every (m1,m2, · · · ,m2`−1) ∈ N
2`−1
` in the same vein. Then various patterns

of multibump homoclinics of (HS) can be obtained as local minimizers of I.

5 Multibump Heteroclinic Solutions

When (HS) possesses more than two equilibria, there could be more different
patterns of multibump connecting orbits. A connecting orbit is said of type
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(η1, η2, · · · , η`) if there exist t2 < t3 < · · · < t`−1 and {η1, η2, · · · , η`} ⊂ K1 such
that q(tk) ∈ Bρ0(ηk) for 2 ≤ k ≤ `−1, limt→−∞ q(t) = η1 and limt→∞ q(t) = η`.
Here it is understood that ηm 6= ηm+1 for all m. In this section, we study
such types of heteroclinic solutions of (HS). Related results for homoclinics can
be found in the same way. Since the notation is quite involved, we give a
presentation for a heteroclinic of type (η1, η2, η3) to illustrate the main idea for
the construction of penalty functions. For j1 < j2, let

F (ηi, ηm, j1, j2)

=
{
z ∈W 1,2

loc (R,R
n) : z(t) = ηi if t ≤ j1 and z(t) = ηm if t ≥ j2

}
.

and

γ(ηi, ηm, j1, j2) = inf
z∈F (ηi,ηm,j1,j2)

I(z) .

Set

γ(ηi, ηm,−∞, j2) = lim
j1→−∞

γ(ηi, ηm, j1, j2) ,

γ(ηi, ηm, j1,∞) = lim
j2→∞

γ(ηi, ηm, j1, j2).

Theorem 7 Assume (V1)-(V4) are satisfied. Suppose there are k1 < k2 <
k3 < k4 such that

γ(η1, η2, k1, k2) < min(γ(η1, η2,−∞, k1), γ(η1, η2, k2, k3)) + 3Λr ,
γ(η2, η3, k3, k4) < min(γ(η2, η3, k2, k3), γ(η2, η3, k4,∞)) + 3Λr ,

k3 − k2 > 6ρ0 + 2(γ(η1, η2, k1, k2) + γ(η2, η3, k3, k4) + ρ
√
2θ(ρ0))/θ(r) ,

where

r ≤ min

(
1,
ρ0

2
,
4

√
ρ20
8µ2

,
ρ0
√
2θ(ρ0)

Λ

)
.

Then (HS) possesses a heteroclinic orbit of type (η1, η2, η3).

Proof. Let W ∈ C∞(R× Rn,R) such that 0 ≤W ≤ M̃ and

W (t, y) =




0 if t ∈ [s1 + ρ0, s2 − ρ0] ∪ [s3 + ρ0, s4 − ρ0]
M̃ if y 6∈ B3ρ0(η2) and t ∈ [s2, s3]
0 if y ∈ Bρ̄(η2) and t ∈ (s2 − ρ0, s3 + ρ0)
M̃ if y 6∈ B3ρ0(η1) and t ∈ (−∞, s1]
0 if y ∈ Bρ̄(η1) and t ∈ (−∞, s2 − ρ0]
M̃ if y 6∈ B3ρ0(η3) and t ∈ [s4,∞)
0 if y ∈ Bρ̄(η3) and t ∈ [s3 + ρ0,∞),

where ρ̄ = 5ρ0/2, s1 = k1 − 3ρ0 − (ρ0
√
2θ(ρ0) + γ12)/θ(r), s2 = k2 + 3ρ0 +

(ρ0
√
2θ(ρ0) + γ12)/θ(r), s3 = k3 − 3ρ0 − (ρ0

√
2θ(ρ0) + γ23)/θ(r), s4 = k4 +

3ρ0 + (ρ0
√
2θ(ρ0) + γ23)/θ(r), γ12 = γ(η1, η2, k1, k2), γ23 = γ(η2, η3, k3, k4) and

M̃ = θ(r) + (γ12 + γ23)/(s3 − s2) + (γ12 + γ23 + 1)
2/ρ20.
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Let Q ∈ C2(R,Rn) be a fixed function which satisfies

Q(t) =

{
η1 if t ≤ − 12
η3 if t ≥ 1

2 .

For z ∈ E, define

IQ(z) =

∫ ∞
−∞
[
1

2
|Q̇+ ż|2 + V (t, Q+ z) +W (t, Q+ z)]dt.

We may procced as in the proof of Theorem 1 to get a z̄ ∈ E which satisfies

IQ(z̄) = inf
z∈E

IQ(z).

Then with a slight modification, the arguments used in Theorem 1 can be
adapted to show that the function Q+ z̄ is a heteroclinic solution of (HS).
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