L. Ragoub
Abstract:
Using a new approach due to F. Brock called the Steiner symmetrization,
we show first that if
is a solution of an
overdetermined problem in the divergence form satisfying the Neumann
and non-constant Dirichlet boundary conditions, then
is an N-ball.
In addition, we show that we can relax the condition on
the value of the Dirichlet boundary condition in the case of
superharmonicity.
Finally, we give an application to positive solutions of some
semilinear elliptic problems in symmetric domains for the divergence case.
Submitted October 1, 1999. Published June 12, 2000.
Math Subject Classifications: 28D10, 35B05, 35B50, 35J25, 35J60, 35J65.
Key Words: Moving plane method, Steiner Symmetrization,
Overdetermined problems, Local Symmetry.
Show me the PDF file (137K), TEX file, and other files for this article.