Electron. J. Diff. Eqns., Vol. 2000(2000), No. 36, pp. 1-10.

Global minimizing domains for the first eigenvalue of an elliptic operator with non-constant coefficients

Dorin Bucur & Nicolas Varchon

Abstract:
We consider an elliptic operator, in divergence form, that is a uniformly elliptic matrix. We describe the behavior of every sequence of domains which minimizes the first Dirichlet eigenvalue over a family of fixed measure domains of $R^N$. The existence of minimizers is proved in some particular situations, for example when the operator is periodic.

Submitted February 1-st, 2000. Published May 16, 2000.
Math Subject Classifications: 49Q10, 49R50.
Key Words: First eigenvalue, Dirichlet boundary, non-constant coeffcients, optimal domain.

Show me the PDF file (155K), TEX file, and other files for this article.

Dorin Bucur
Equipe de Mathematiques, UMR CNRS 6623
Universite; de Franche-Comte
16, route de Gray, 25030 Besancon Cedex, France
email: bucur@math.univ-fcomte.fr
Nicolas Varchon
Equipe de Mathematiques, UMR CNRS 6623
Universite; de Franche-Comte
16, route de Gray, 25030 Besancon Cedex, France
email: varchon@math.univ-fcomte.fr

Return to the EJDE web page