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On the tidal motion around the earth complicated

by the circular geometry of the ocean’s shape ∗

Ranis N. Ibragimov

Abstract

We study the Cauchy-Poisson free boundary problem on the stationary
motion of a perfect incompressible fluid circulating around the Earth.
The main goal is to find the inverse conformal mapping of the unknown
free boundary in the hodograph plane onto some fixed boundary in the
physical domain. The approximate solution to the problem is obtained
as an application of this method. We also study the behaviour of tidal
waves around the Earth. It is shown that on a positively curved bottom
the problem admits two different high order systems of shallow water
equations, while the classical problem for the flat bottom admits only one
system.

1 Introduction

We study the Cauchy-Poisson problem on the stationary motion of a perfect
fluid which has a free boundary and has a solid bottom represented by a circle
with a sufficiently large radius. We have shown in [4] that such problem can
be associated with a two dimensional model to an oceanic motion around the
Earth since we consider strictly longitudinal flow. Since the problem is a free
boundary problem, the analysis is rather difficult.
The permanent water waves have been considered in a great number of

papers. However, most researchers are concerned with fluid motion which is
infinitely deep and extends infinitely both rightward and leftward. See Crapper
[1], Stoker [9] or Stokes [10] for the history. Such problems are usually called
Stoke problem (if the surface tension is neglected) and Wilton’s problem (if the
surface tension is taken into account).
We consider water waves for which ratio of depth of fluid above the circu-

lar bottom to the radius of the circle is small (shallow water). In these the
disturbance to the water does not penetrate unchanged to the bottom and the
effective inertia of the water is therefore reduced.
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Our primary concern is to find the conformal mapping (for the Stoke prob-
lem) of the unknown free boundary onto fixed one. The resulting Dirichlet prob-
lem can be solved numerically using Okamoto method [3]. The more detailed
structure of the bifurcation of solutions for the related problem was numerically
computed by Fujita at al. [3]. The existence of nontrivial solutions for the
analogous reduced Dirichlet problem can be found in Okamoto [7], Ibragimov
[4] as well as in classical literature (see e.g., [8] or [9]).
The higher order shallow water equations in the non-stationary case are

derived in this paper. It is shown that the present problem admits two differ-
ent systems of shallow water equations while the classical problem for the flat
bottom admits only one system (see [2]).
We note that papers [3], [6] and [7] are concerned with fluid whose surface

tension is taken into account. In fact, the surface tension plays the role of a
”regulator” of the problem which simplifies the analysis substantially. Further-
more the nature of the problem requires the surface tension to be neglected.
Thus, the present paper represents more systematic approach to the problem.
The present paper aims to investigate the problem by using a conformal

mapping which distinguishes our paper from [3], [4], [6] and [7].

2 Basic Equations

The analysis of this problem is performed in the following notation: R is the
radius of the circle, r is a distance from the origin, θ is a polar angle, h0 is the
undisturbed level of the liquid above the circle and h = h(θ) is the level of the
disturbance of the free boundary above the circle. For the sake of simplicity we
assume that the pressure is constant on the free boundary. The stream function
ψ = ψ(r, θ) defines the velocity vector, i.e.,

vr = −
1

r
ψθ, vθ = ψr .

Hence irrotational motion of an ideal incompressible fluid of the constant pres-
sure in the homogeneous gravity field g =const is described by the stream func-
tion ψ in the domain

Ωh = {(r, θ) : 0 ≤ θ ≤ 2π,R ≤ r ≤ R+ h0 + h(θ)}

which is bounded by the bottom ΓR = {(r, θ) : r = R, θ ∈ [0, 2π]} and the free
boundary with equation Γh = {(r, θ) : r = R+ h0 + h(θ), θ ∈ [0, 2π]}. Note that
ψ is a harmonic function in Ωh, since we assumed that the flow is irrotational.
More specifically, we assume that the fluid is incompressible and inviscid and
that the flow is stationary. Then the problem is to find the function h(θ) and
the stationary, irrotational flow beneath the free boundary r = R + h0 + h(θ)
given by the stream function ψ which satisfy the following differential equations

∆ψ = 0(in Ωh), ψ = 0(on ΓR), ψ = a (on Γh), (1)

|∇ψ|2 + 2gh = constant ( on Γh), (2)

1
2

∫ 2π
0
(R + h0 + h(θ))

2 dθ = π(R+ h0)
2, (3)
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where the constant a denotes the flow rate. Equations (1)-(3) represent the free
boundary Cauchy-Poisson problem in which the boundary Γh is unknown as
well as the stream function.

3 The Inverse Transforms Principle

Constant flow

The exact solution
h ≡ 0 and ψ = ψ0 = a log r (4)

of (1)-(3) corresponds to the constant flow with undisturbed free boundary. The
trivial solution (4) represents a flow whose streamlines are concentric circles with
the common center at the origin.
The following non-dimensional quantities are introduced:

r = R+ h0r
′, h = h0h

′, ψ = aψ′, ε =
h0

R
, F =

h0
√
gh0

a
,

where F is a Froude number and R is used as a vertical scale. We consider ε
as the small parameter of the problem. After dropping the prime, Equations
(1)-(3) are written by ψ′, h′, and (r′, θ) as follows

∆(ε)ψ = 0 (in Ωh), (5)

ψ = 0(on ΓR), (6)

ψ = 1(on Γh), (7)∣∣∇(ε)ψ∣∣2 + 2F−2h = constant (on Γh), (8)

1
2

∫ 2π
0 (1 + ε+ εh(θ))

2dθ = π(1 + ε)2 (on Γh). (9)

Here the Laplace and gradient operators are given by

∆(ε) = (ε∂θ)
2 + [(1 + εr)∂r ]

2, ∇(ε) =
( ε∂θ

(1 + εr)
, ∂r

)
,

where the subscripts imply the differentiation.
We further consider the complex potential ω(ζ) = φ+iψ where ζ = (1+εr)eiθ

is the independent complex variable and φ(ζ) is the velocity potential which is
characterized by the analyticity of φ+ iψ, i.e.,

φr =
εψθ

(1 + εr)
,

εφθ

(1 + εr)
= −ψr.

We note that the complex velocity dω/dζ is a single-valued analytic function of
ζ, although ω is not single-valued. In fact, when we turn around the bottom
r = 1 once, φ increases by

−

∫ 2π
0

ψr(1, θ) dθ
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which has a positive sign by the maximum principle (Hopf’s lemma). Hence, if
we remove the width of annulus region θ = 0, r ∈ [1, 1 + ε], then at every point
(r, θ), ω(ζ) is single-valued analytic function which maps the rectangular (in the
ω(α)-hodograph plane) domain with φ in [0,−2π/ log(1 + ε)] and ψ in [0, 1] as
coordinates onto the annulus

Γ0h = {(r, θ) : 1 < r < 1 + ε, θ ∈ [0, 2π]} .

We represent the constant flow (4) by

ω(ζ) = φ+ iψ =
i log(1 + εr)− θ

log(1 + ε)
, (10)

where r = ξ0(ψ) and θ = η0(φ) transform the rectangular domain in the hodo-
graph plane onto Γ0h. Consequently, each conformal mapping by the function
ω(ζ) between hodograph and physical planes represents an irrotational flow in
the physical ζ plane. Furthermore, (10) implies that

η0(φ) = −φ log(1 + ε) and ξ0(ψ) = ε
−1([1 + ε]ψ − 1). (11)

Reduction on the boundary

Now a two-dimensional infinitesimal disturbance ξ′ and η′ is superimposed on
ξ0 and η0. Then the resulting transform components are

ξ = ξ0 + ξ
′, η = η0 + η

′.

The perturbed quantities ξ′ and η′ are assumed to be small quantities so that
the nontrivial solution is close to the trivial one.
Then with (11) the inverse transform can be combined in form

log ζ = ψ log(1 + ε)− iφ log(1 + ε) + log(1 +
εξ′

1 + εξ0
) + iη′,

since log(1 + εξ0) = ψ log(1 + ε). Consequently, the polar angle θ and radius r
are given by equations

θ = −φ log(1 + ε) + η′, r = ε−1[(1 + ε)ψ(1 +
εξ′

1 + εξ0
)− 1].

Since the motion is irrotational, we can decrease the dimension of the prob-
lem by one. In other words, we introduce the boundary value for the function ξ
and reduce the basic equations to the quantities which arise from the condition
on the free boundary ψ = 1. To this end we introduce the regular function
f(ω) = α+ iβ such that

(α, β) =
1

(λ2 + (η′)2)φ
(λφ,−η

′
φ).

Then the nonlinear boundary condition (8) can be reduced to the differential
equation of the conservation form for f(ω) by virtue of the following
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Theorem 1 Let the function λ(φ, ψ) defined by

1 +
εξ′

1 + εξ0
= eλ(φ,ψ) (12)

be differentiable. We introduce the derivative operator ∂n along the normal to
ψ = 1 by ∂nµ = λψ |ψ=1, where µ(φ) = λ(φ, 1). Then on the free boundary, the
following three relations hold:

βφ = −∂nα = −∂φ∂n

{
(τ +

1 + ε2

2
)e2µ
}
, (13)

where τ = (b− µF−2)(1 + ε)2, and b = const is the Bernoulli constant.

Proof. Since the velocity potential ω defined by (10) is analytic function, ξ
and η are single-valued and they satisfy the Cauchy-Riemann equations

ε

1 + εξ
ξ′φ = η

′
ψ,

ε

1 + εξ
ξ′ψ −

ε2(1 + εξ)−1

(1 + εξ0)
ξ0ψ = −η

′
φ

which can be simplified as

λφ = η
′
ψ , λψ = −η

′
φ. (14)

From (11), (14) and the representation ζ = (1 + εξ′)eiη
′
, it follows that∣∣∣∣ dζdφ

∣∣∣∣
2

= ε2(ε−1 + 1)2e2λλ2φ + (1 + εξ)
2η
2

φ (15)

since ξ0 = 1 on the free boundary.
By virtue of the (14) and (15) and presentation ηφ = − log(1+ ε)− ∂nµ, the

Bernoulli equation (8) takes the form

τ [e2λλ2φ +
1

(1 + ε)2
((1 + εξ′)2(log(1 + ε) + ∂nµ)

2)]−
1

2
= 0

which can be transformed to the conservation law i.e.,

α(φ, 1) =
∂

∂φ
(τ +

(1 + ε2)

2
)e2µ. (16)

Thus, the first equation in (13) holds due to analyticity of function f(ω) and
the second equation in (13) follows from the definition of the normal derivative
operator ∂n. Finally, the last equation is the consequence of the changing of the
order of differentiation ∂φ∂nµ = ∂nµφ. ♦

Note that function µ(φ) is being found by analyticity of f(ω) and thus trans-
formation ξ(φ, ψ) is determined by definition (12) as

ξ′ = (
1

ε
+ ξ0(ψ))(e

λ(φ,ψ) − 1).
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Solution to the Dirichlet Problem in a fixed domain

In view of Theorem 1, it follows from the definition for function α(φ, 1) and (16)
that integrating (13) over φ along ψ = 1 leads to the following equation on the
free boundary:

4τe2µ[log(1 + ε) + ∂nµ] + ∂n([2τ + 1 + ε
2]e2µ)− εδ0 = 0 ,

where δ0 is the constant of integrating which represent the horizontal impulse
flow.
Finally, simplifying the last equation we arrive to the Dirichlet problem in

the fixed domain

λφφ + λψψ = 0 (0 < ψ < 1), (17)

λ(φ, 0) = 0, λ(φ, 1) = µ, (18)

µ∂nµF
−2 − (b+

1

4
[1−F−2]−

ε

2
)∂nµ

+
log(1 + ε)

2
(µF−2 − b) +

δe−2µ

(1 + ε)2
= 0 , (19)

where we denote δ = δ0
8 .

Now the problem (17)-(19) is reduced to finding of one function µ(φ) since
if function µ is known then function λ(φ, ψ) is defined as the solution of the
mixed problem for the Laplace equation (17) and the boundary conditions (18).
In particular, λψ|ψ=1 can be considered as the result of action of the operator
∂n on function µ. Namely, we represent λ(φ, ψ) by the Fourier series (see for
example Ovsjannikov [8] or Stoker [9]). Then the dependence between n − th
Fourier coefficients of functions λ, µ and ∂nµ is given by

[λ(φ, ψ)]n =
sinhnψ

sinhn
µn, [µ(φ)]n = µn [∂nµ(φ)]n = µn cotn , (20)

in which µ(φ) = µne
inφ (summation is assumed). Thus problem (17)-(19) is

written in terms of [µ(φ)]n only. Since [∂nµ]n are given by (20), we can represent
the disturbance µ(φ) by the expansion in series with respect to parameter ε (see
also Ovsjannikov [8]). Consequently we apply the stretching transformation and
expansion

(µ, ∂nµ, ) =

∞∑
0

εi
{
ε(µi, ε(∂nµ)i)

}
(i = 0,∞) (21)

which is a characteristic of a shallow water. Substitution of representation (21)
into (19) and elimination mod ε3 (neglecting of the terms with εm, m > 4) yields
the approximate solution of the form [µi]n = [µi(b,F)]n as follows:

δ −
b

2
+ +ε

{
− 2δ +

b

4
+
F−2

2
µ1 −

1

4
[1−F−2 + 4b](∂nµ)1 − 2δµ1

}
+ε2
{
3δ −

b

6
−
F−2

4
µ1 +

F−2

4
µ2 +

1

2
(∂nµ)1 −

1

4
[1−F−2 + 4b](∂nµ)2
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+4δµ1 + 2δµ
2
1 − 2δµ2 + µ1(∂nµ)1

}
+ ε3
{
− 4δ +

b

8
+
F−2

6
µ1 −

F−2

4
µ2

+
F−2

2
µ3 +

1

2
(∂nµ)2 −

1

4
[1−F−2 + 4b](∂nµ)3 − 6δµ1 − 4δµ

2
1 −
4

3
δµ31

+4δµ2 − 2δµ3 + 4δµ1µ2 + µ1(∂nµ)2 + (∂nµ)1µ2
}
+ o(ε4). (22)

Thus, in view of (20), Expression (22) represents the recurrent system of alge-
braic equations for determination of all [µi]n, where the horizontal impulse flow
has asymptotic δ = b

2 .
The shape of the free boundary h(θ) can be determined numerically using

Okmaoto’s method [3]. The existence of exact solution (ψ, h) can be established
analytically by the Fixed Point Theorem (see, for example, Okamoto & Shoji
[7] or Ibragimov [4]).

4 Behavior of Tides waves

Existence of stationary waves

The main concern of this part is the evolution of tides around the Earth in time
t. In order to bring out the essential parameters of the problem, the dimensional
fundamental equations, (1)-(2), are written in non-stationary case as follows:

∆(ψ) = 0 (in Ωh),

ψθ = 0 (on ΓR),

rht + ψθ + ψrhθ = 0 (on Γh),

−hθψtθ + r2ψtr +
r
2 (
ψ2θ
r2
+ ψ2r )θ + rghθ = 0 (on Γh),

where ∆ = (∂θθ + r
2∂rr + r∂r).

The perturbed quantities h′ and ψ′ are interrelated as

h = h′, ψ = −
γ

2π
log r + ψ′,

where γ is the intensity of the vortex. For the small disturbances we obtain
the linear problem in the domain D0 = {(r, θ) : R 6 r 6 R+ h0, 0 6 θ 6 2π} as
follows

∆(ψ′) = 0 (in D0), (23)

ψ′θ = 0 (on ΓR), (24)

h′θ +
ψ′θ
r
− γh′θ
2πr2 = 0 (on Γh0), (25)

r2ψ′tr −
γ
2πψ

′
rθ + rgh

′
θ = 0 (on Γh0) . (26)

Since Equations (23)-(26) are linear, the method of superposition is applica-
ble (see also Friedrichs [2]). Hence it is sufficient to look for periodic solutions
of the form

(h′, ψ′) = (H,Ψ(r)) exp {i(kθ − wt)} (27)
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in which the wave number k is a given real quantity and eigenvalues w give the
different modes of the tide’s wave propagation. Substitution of representation
(27) into (23)-(26) leads to the expression

Ψ(r) = c(rk −R2kr−k)

and to the equations

H(w +
kγ

2πr2
)−

kc

r
(rk −R2kr−k) = 0,

kg

cr
H − (w +

kγ

2πr2
)(krk−1 + kR2kr−k−1) = 0

in which c is a constant of integrating. Consequently, the determinantal equation
for the longitudinal tide wave is as follows

w = ±

√
kg

(R+h0)

[
(R+ h0)k−1 −R2k(R + h0)−k−1

]
(R + h0)k−1 +R2k(R + h0)−k−1

−
kγ

2π(R+ h0)2
(28)

Thus surface tide waves (on the constant flow) are dispersive with two dif-
ferent modes of propagation. Simplification of relation (28) shows that the tide
wave is propagated with a speed

a0 =
w

k
= ±
√
gh0

√
tanh[k ln(1 + ε)]

kRh0(1 + ε)
−

γ

2πR2(1 + ε)2
.

Hence the condition of the existence of stationary tide waves (a0 = 0) is

|γ| 6 2πRε− 12 (1 + ε)2
√
gh0.

Splitting phenomena for shallow water equations

We suppose that the parameter ε is infinitesimally small. So we consider R as
the natural physical scale. Note that kinematic condition can be written as the
mass balance equation. Namely,

ht + (R+ h)
−1∂θ

∫ R+h

R

vθdr = 0 (29)

since the radial velocity component is given by

vr = −r−1
∫ R+h

R

vθθ dr .

Hence the mass balance equation (29) takes the form

rht + ∂θ(uh) = 0 (on Γh),



EJDE–2000/35 Ranis N. Ibragimov 9

where the average velocity u(θ, t) is defined by relation

u(θ, t) = h−1
∫ R+h

R

vθ(r, θ, t) dr .

To go further, it is better to introduce an nondimensionalization here. We put

t =
R

U
t′, ψ = h0Uψ

′, u = Uu′,

where U is a unit of velocity. Hereafter index prime will be omitted. Then the
impulse equation is written as

−
ε2hθψtθ

(1 + εh)2
+ ψtr +

1

2(1 + εh)
∂θ(

ε2ψ2θ
(1 + εh)2

+ ψ2r) +
hθ

(1 + εh)
= 0. (30)

We represent the stream function ψ by the Lagrangian expansion (see also Ovs-
jannikov [8] or Friedrichs [2])

ψ =

∞∑
i=0

εiψ(i) .

Then the Laplace equation takes the form (mod ε2)

ψ(0)rr + ε(ψ
(1)
rr + 2rψ

(0)
rr + ψ

(0)
r ) (31)

+ε2(ψ
(0)
θθ + ψ

(2)
rr + 2rψ

(1)
rr + r

2ψ(0)rr + ψ
(1)
r + rψ

(0)
r ) = 0 .

Equation (31) represents the recurrent system of differential equations for the
determination of ψ(i) as the solution of the Cauchy problem with boundary con-
ditions ψ(0, θ, t) = 0, ψ(1 + h, θ, t) = uh for ψ(0) and zero boundary conditions
for ψ(1) and ψ(2). Hence function ψ (mod ε2) is as follows:

ψ = ur + ε(u
r2

2
− uh

r

2
) + ε2(−uθθ

r3

6
+ uh

r2

4
+ uθθh

2 r

6
− uh2

r

4
). (32)

We use the Tailor expansion

(1 + εh)−1 = 1− εh+ (εh)2 + · · · (33)

to write (30) as

ψtr +
1

2
(ε2ψ2θ + ψ

2
r)θ − ε

2hθψtθ + (εh− 1)(
1

2
εh(ψ2r)θ + εhh)θ + hθ = 0 . (34)

Multiply (30) by (1+ εh)2 and then use expansion (33). Then (30) becomes

ψtr +
1

2
(ε2ψ2θ +ψ

2
r)θ − ε

2hθψtθ + εh(ψtr(2 + εh) +
1

2
(ψ2r)θ + hθ) + hθ = 0 . (35)
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If we substitute ψ defined by (32) into (34), we obtain the following equation of
the shallow water theory

ut + uuθ + hθ + ε(
h

2
ut −

u

2
ht + u

2hθ − hhθ)

+ε2
(
hhθuθt −

h3

3
uθθt +

h2

4
ut +

h

3
uθθht + hhθu

2
θ (36)

+h2uθuθθ +
3

4
uuθ + hu

2hθ −
1

3
uθuθθ −

1

3
uuθθθ + h

2hθ

)
= 0 .

Consequently, the substitution of ψ (32) into (35) yields

ut + uuθ + hθ + ε

(
h

2
ut −

u

2
ht +

h

2
uut +

u2

2
hθ +

3

2
huuθ

)

+ε2
(
− hhθuθt −

h2

3
uθθt +

9

4
h2ut +

h

3
htuθθ − uhht (37)

+hhθu
2
θ + h

2uθuθθ +
3

4
h2uuθ +

1

4
u2hhθ −

1

3
uθθθ

+
3

4
h2uθ +

1

2
uhθ +

uh

2
hθ

)
= 0 .

Equatrions (36) and (37) supplied with the kinematic condition

∂t(εh
2 + 2h) + 2∂θ(uh) = 0 (38)

represent two systems of the shallow water equations.
To verify that these two systems are different, we compute their first integrals

in the stationary case as follows

h+ ε(2c2h−
1

2
h2) + ε2(3c2h2 −

1

3
h3) = J1,

h+
1

2
εc2h+

1

2
ε2(
17

4
c2h2 −

1

2
c2h2 − ch) = J2,

where c, J1, J2 are constants of integration. Obviously, J1 6= J2.
At first sight, it seems that the problem (23)-(26) does not have a unique

solution because of that fact. However, it can be shown that the solution of the
problem is invariant with respect to the decomposition of the function which
represent the free boundary. Since it is not difficult, the proof is omitted.
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