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EXISTENCE OF SOLUTIONS FOR A SUBLINEAR

SYSTEM OF ELLIPTIC EQUATIONS

CARLOS CID & CECILIA YARUR

Abstract. We study the existence of non-trivial non-negative solutions for
the system

−∆u = |x|avp

∆v = |x|buq ,

where p and q are positive constants with pq < 1, and the domain is the unit
ball of RN (N > 2) except for the center zero. We look for pairs of functions
that satisfy the above system and Dirichlet boundary conditions set to zero.
Our results also apply to some super-linear systems.

1. Introduction

The purpose of this paper is to study the existence of non-trivial non-negative
solutions to the Dirichlet problem

−∆u = |x|avp in B′,

∆v = |x|buq in B′,

u = v = 0 on ∂B ,

(1.1)

where p > 0, q > 0, pq < 1, B is the unit ball of RN (N > 2) centered at 0, and
B′ = B \ {0}.
By a non-negative solution of (1.1) we mean a pair of functions u, v in C2(B′)

such that u ≥ 0, v ≥ 0, and (u, v) satisfies (1.1). Note that u is super-harmonic
whereas v is sub-harmonic in B′.
In [4], we proved the existence of solutions for (1.1) in the super-linear case,

pq > 1. Bidaut-Veron and Grillot [3] studied the behavior of solutions near zero
and the non-existence of non-negative solutions without boundary conditions.
A non-negative non-trivial solution (u, v) is said to be singular at zero (or just

singular) if

lim sup
x→0

(u(x) + v(x)) = +∞ .
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Note that since v is sub-harmonic it must be singular at zero, and thus any non-
trivial non-negative solution to (1.1) is singular at zero.
Let

L := lim sup
x→0

|x|N−2(u(x) + v(x)).

If 0 < L < +∞, we say that (u, v) has a fundamental singularity. If L = +∞, we
call this singularity a strong singularity.
The existence of singular non-negative solutions of fundamental type for systems

more general than (1.1) was proved in [5]. Recall that for

−∆u = uq, u > 0 in B′,

u = 0 on ∂B,
(1.2)

solutions that are singular and non-negative exist if

q <
N + 2

N − 2
.

In such a case, the solution u with a singularity at zero satisfies

0 ≤ lim sup
x→0

|x|N−2u(x) < +∞,

and thus the singularity is of fundamental type. See Lions [8], Ni and Sacks [9],
Lin [7] and the references therein.
Brézis and Veron [2] showed that for q ≥ N/(N − 2) solutions of

∆u = |u|q−1u in B′(1.3)

are bounded near zero. For q < N/(N − 2), Veron [10] proved the existence of non-
negative singular solutions of (1.3) with either a strong or a fundamental singularity
at zero.
Next, we state our main result for Problem (1.1).

Theorem 1.1. Let p > 0, q > 0 and pq < 1. Then there exists a non-trivial
non-negative solution to (1.1) if and only if

p <
N + a

N − 2
and N + a+ βp > 0,(1.4)

where

β := b+ 2− (N − 2)q .(1.5)

Moreover, if (a, b, p, q) satisfies (1.4), then for any c > 0, there exists a non-negative
solution (u, v) such that

lim
x→0
|x|N−2u(x) = c .

If in addition

q ≥
N + b

N − 2
,

the above solution has a singularity of strong type at zero.

In Section 2, we shall prove the existence of singular non-negative solutions for
a system more general than (1.1); see Theorems 2.1 and 2.3 below. As for (1.3),
under additional assumptions for (1.1), we find both fundamental and strong types
of singularities. In Section 3, we prove Theorem 1.1, and give some applications of
our result for bi-harmonic equations.
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2. Existence results for general systems

In this section, we prove the existence of singular non-negative radially symmetric
solutions to

−(rN−1u′(r))′ = rN−1f(r, v(r)) in (0, 1),

(rN−1v′(r))′ = rN−1g(r, u(r)) in (0, 1),

u(1) = v(1) = 0,

(2.1)

without sub-linear type conditions. In particular the results in this section apply
to (1.1) with pq 6= 1. When pq < 1, our results are optimal as stated in Theorem
1.1. When pq > 1, our results extend some results in [4] to the inequality case.
Throughout this section we will assume that f and g are non-negative continuous

functions from (0, 1)× R+ to R and satisfying

0 ≤ f(r, s) ≤ f1(r, s), 0 ≤ g(r, s) ≤ g1(r, s),(2.2)

where f1 and g1 are continuous functions that are non-decreasing as functions of s.
Set u0(r) := r

2−N − 1, and fixed positive values α and d, define

vα(r) := du0(r) +

∫ 1
r

s1−N
∫ 1
s

tN−1g1(t, αt
2−N ) dt ds .(2.3)

To state the main result of this section, we assume that

(H1) Λα := (N − 2)
−1

∫ 1
0

tN−1f1(t, vα(t))dt <∞ .

Theorem 2.1. Assume that f and g are two non-negative continuous functions
satisfying (2.2). Assume that there exists α > 0 such that (H1) is satisfied and
Λα < α. Then there exist infinitely many positive solutions to (2.1). Moreover, for
any c ∈ [0, α− Λα) there exists a solution (u, v) such that

lim
r→0+

rN−2u(r) = c .(2.4)

Proof. Let c be such that 0 ≤ c < α− Λα. Consider the the system of integrals

u(r) = cu0(r) +

∫ 1
r

s1−N
∫ s
0

tN−1f(t, v(t)) dt ds ,

v(r) = du0(r) +

∫ 1
r

s1−N
∫ 1
s

tN−1g(t, u(t)) dt ds .

(2.5)

Define the operator T = (T1, T2), where

T1(u, v)(r) = cu0(r) +

∫ 1
r

s1−N
∫ s
0

tN−1f(t, v(t)) dt ds ,

T2(u, v)(r) = du0(r) +

∫ 1
r

s1−N
∫ 1
s

tN−1g(t, u(t)) dt ds .

(2.6)

Then a non-negative fixed point (u, v) of the operator T is is a non-negative solution
to (2.1). To apply the Schauder fixed point Theorem to T , we do the following three
steps. First construct an invariant setM under T . Second transform the setM into
a set A, and thus the operator T into an operator W . Third prove the continuity
and compactness of W on A.
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Step 1. LetM be a subset of (C(0, 1])2 defined by

M := {(u, v) : 0 ≤ u(r) ≤ αr2−N , 0 ≤ v(r) ≤ vα(r)}.(2.7)

Next, we show that T (M) ⊂M. Let (u, v) ∈M, and thus v(r) ≤ vα(r). Therefore,
from the definition of T1 and (2.2) we have

T1(u, v)(r) ≤cu0(r) +

∫ 1
r

s1−N
∫ s
0

tN−1f1(t, vα(t))dtds

≤cu0(r) + (N − 2)Λα

∫ 1
r

s1−Nds

≤αr2−N ,

where we used the choice of c. Now, we show that T2(u, v)(r) ≤ vα(r). Since
(u, v) ∈M, and from the definition of vα given by (2.3)

T2(u, v)(r) ≤ du0(r) +

∫ 1
r

s1−N
∫ 1
s

tN−1g1(t, αt
2−N ) dt ds = vα(r).

Step 2. Let ε > 0, and let ϑ ∈ C1((0, 1)) ∩ C([0, 1]) be a non-negative function
such that

ϑ(r) :=



0 if r = 0,

v−1−εα (r) if r ∈ (0, 1/2),

1 if r ∈ (3/4, 1].

Since vα(r) ≥ dr2−N near zero, the continuity of ϑ at zero follows.
Let A be the subset of (C[0, 1])2 defined by

A = {(y, z) : 0 ≤ y(r) ≤ αrε, 0 ≤ z(r) ≤ ϑ(r)vα(r)} .

Define in A the operator

W (y, z)(r) = (W1(y, z)(r),W2(y, z)(r)),(2.8)

where

W1(y, z)(r) = r
N−2+εT1

(
r2−N−εy(r), ϑ−1(r)z(r)

)
,

W2(y, z)(r) = ϑ(r)T2
(
r2−N−εy(r), ϑ−1(r)z(r)

)
,

(2.9)

and thus

W1(y, z)(r) = r
N−2+ε

(
cu0(r) +

∫ 1
r

s1−N
∫ s
0

tN−1f
(
t, ϑ−1(t)z(t)

)
dt ds

)
,

W2(y, z)(r) = ϑ(r)
(
du0(r) +

∫ 1
r

s1−N
∫ 1
s

tN−1g
(
t, t2−N−εy(t)

)
dt ds

)
.

(2.10)

By (2.8) and (2.9) we have that (y, z) is a fixed point of W if and only if (u, v) =
(r2−N−εy, ϑ−1z) is a fixed point of T . Moreover, from Step 1 we have thatW (A) ⊂
A. Furthermore, A is a closed convex bounded subset of (C[0, 1])2. In order to
show existence of a fixed point, via Schauder fixed point theorem, to W in A it is
enough to prove that W is a continuous and compact operator, which is done in
the next step.

Step 3. First, we show thatW (A) is a relatively compact subset of (C[0, 1])2. Since
W (A) is bounded, by Ascoli-Arzela theorem, it is enough to prove that W (A) is
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an equicontinuos subset of (C[0, 1])2. This can be done by proving the existence of
two functions ψ, ϕ ∈ L1(0, 1) and a positive constant C such that for any r ∈ [0, 1],∣∣∣∣ ddrW1(y, z)(r)

∣∣∣∣ ≤ Cψ(r)(2.11)

and ∣∣∣∣ ddrW2(y, z)(r)
∣∣∣∣ ≤ Cϕ(r) .(2.12)

From (2.10) and with ′ = d/dr we have

W ′
1(y, z)(r) =(N − 2 + ε)r

−1W1(y, z)(r)

− c(N − 2)rε−1 − rε−1
∫ r
0

tN−1f
(
t, ϑ−1(t)z(t)

)
dt .

Thus, using invariance property of W in A and the definition of Λα we obtain∣∣∣∣ ddrW1(y, z)(r)
∣∣∣∣ ≤
(
(N − 2)(α+ c+ Λα) + εα

)
rε−1.

Hence, W1 satisfies (2.11) with ψ(r) = r
ε−1. Similarly, by (2.10) we obtain

W ′
2(y, z)(r) =

ϑ′(r)

ϑ(r)
W2(y, z)(r)− d(N − 2)r

1−Nϑ(r)

− ϑ(r)r1−N
∫ 1
r

tN−1g(t, t2−N−εy(t))dt .

Using again the invariance property of W in A we obtain

|W ′
2(y, z)(r)| ≤ |ϑ

′(r)|vα(r) + ϑ(r)r
1−N
(
(N − 2)d+

∫ 1
r

tN−1g1(t, αt
2−N )dt

)
,

and by definition (2.3) of vα we have

|W ′
2(y, z)(r)| ≤ |ϑ

′(r)|vα(r) + ϑ(r)|v
′
α(r)| = ϕ(r).

The function ϕ ∈ L1(0, 1), since it is bounded for r > 1/2 and for r near zero

ϕ(r) = −(2 + ε)v′α(r)v
−1−ε
α (r).

Finally, we prove the continuity of W in A. Let (yn, wn) be any sequence con-
verging on A to (y, w) and let r ∈ [0, 1] be fixed. From the definition of W given
by (2.10) and the continuity of u 7→ f(t, u), u 7→ g(t, u), uniform convergence
of (yn, wn) to (y, w) and the Lebesgue dominated convergence theorem we easily
deduce that

lim
n→∞

W (yn, wn)(r) =W (y, w)(r)(2.13)

for all r ∈ [0, 1]. Moreover, since A is closed and W (A) is equicontinuous, then
{W (yn, wn) : n ≥ 1}∪{W (y, w)} is an equicontinuous family. Thus from pointwise
convergence (2.13) we obtain the uniform convergence, that is,W (yn, wn) converges
to W (y, w) uniformly. Therefore W is a continuous operator.
Thus by Schauder fixed point theorem, there exists (u, v) ∈M satisfying

u(r) = cu0(r) +

∫ 1
r

s1−N
∫ s
0

tN−1f(t, v(t))dtds,

v(r) = du0(r) +

∫ 1
r

s1−N
∫ 1
s

tN−1g(t, u(t)) dt ds .
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Hence there exists a positive solution to (2.1).
The behavior of u at zero is a consequence of L’Hôpital rule.

lim
r→0+

rN−2u(r) = c+ lim
r→0+

∫ 1
r
s1−N

∫ s
0 t
N−1f(t, v(t)) dt ds

r2−N
,

= c+ lim
r→0+

r1−N
∫ r
0 t
N−1f(t, v(t))dt

(N − 2)r1−N
,

= c+
1

N − 2
lim
r→0+

∫ r
0

tN−1f(t, v(t))dt,

= c.

�
As a consequence of the construction of non-negative solutions given in the above

theorem, we have the following result about existence of positive solutions with a
strong singularity.

Corollary 2.2. Assume that the hypotheses in Theorem 2.1 hold and g(r, s) is non
decreasing in s. Then,

(i) If ∫ 1
0

tN−1g(t, αt2−N )dt = +∞ for any α > 0,(2.14)

there exists a non-negative solution (u, v) to (2.1) with a strong singularity.
(ii) If ∫ 1

0

tN−1g(t, αt2−N )dt < +∞ for any α > 0,

any non-negative non-trivial radially symmetric solution has fundamental sin-
gularity.

Proof. Assume first that (2.14) is satisfied. Let (u, v) be a solution to (2.1) con-
structed in Theorem 2.1 with c > 0. Thus,

v(r) = du0(r) +

∫ 1
r

s1−N
∫ 1
s

tN−1g(t, u(t)) dt ds .

By a generalize version of L’Hôpital rule (see Proposition 7.1 in [6]) we have

lim inf
r→0+

rN−2v(r) ≥ lim inf
r→0+

∫ 1
r
s1−N

∫ 1
s
tN−1g(t, u(t)) dt ds

r2−N
,

≥ lim inf
r→0+

r1−N
∫ 1
r
tN−1g(t, u(t))dt

(N − 2)r1−N
,

=
1

N − 2
lim
r→0+

∫ 1
r

tN−1g(t, u(t))dt = +∞,

where the last equality holds by (2.14) and since limr→0+ r
N−2u(r) = c.

Assume now, that
∫ 1
0
tN−1g(t, αt2−N )dt < +∞, and let (u, v) be a non-negative

solution to (2.1). Since −rN−1u′(r) is non decreasing, we easily obtain that u(r) ≤
αr2−N , where α = −u′(1)/(N − 2). Moreover, from the second in (2.1) v satisfies

v(r) = du0(r) +

∫ 1
r

s1−N
∫ 1
s

tN−1g(t, u(t)) dt ds
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and thus

v(r) ≤
(
d+ (N − 2)−1

∫ 1
0

tN−1g(t, αt2−N )dt
)
u0(r),

and the conclusion follows. �
Next, we will show a general existence result of fundamental singular solutions

which is included in [5], Theorem 4.3. We give an idea of the proof for the sake of
completeness .
For this purpose, let α > 0 and let

uα(r) :=

∫ 1
r

s1−N
∫ s
0

tN−1f1(t, αt
2−N ) dt ds .

Theorem 2.3. Assume that f and g are two non negative functions satisfying
(2.2). Assume that ∫ 1

0

tN−1f1(t, αt
2−N )dt <∞,

and

λα :=
1

N − 2

∫ 1
0

tN−1g1(t, uα(t))dt <∞.

Moreover, suppose that for some α > 0, we have λα < α. Then, for any d ∈ (λα, α],
there exists a non-negative solution (u, v) to (2.1) such that

lim
r→0+

rN−2(u, v)(r) = (0, d).

Proof. The proof of this result is similar to the proof of Theorem 2.1. Let d ∈
(λα, α], and let F = (F1, F2) be given by

F1(u, v)(r) =

∫ 1
r

s1−N
∫ s
0

tN−1f(t, v(t))dt,

F2(u, v)(r) = du0(r) −

∫ 1
r

s1−N
∫ s
0

tN−1g(t, u(t))dt.

Define N as the subset of C((0, 1])2 such that

N := {(u, v) | 0 ≤ u ≤ uα, 0 ≤ v ≤ αu0}.

Under the assumptions of the theorem, it is not difficult to prove that F (N ) ⊂ N .
The rest of the proof follows the ideas of Theorem 2.1. �
Next, we will apply Theorem 2.1 to problem (2.1) with

0 ≤ f(r, s) ≤ rasp, 0 ≤ g(r, s) ≤ rbsq.(2.15)

Theorem 2.4. Let p > 0 and q > 0, with pq 6= 1 and suppose that (a, b, p, q)
satisfies (1.4). Assume that f and g are two non negative functions satisfying
(2.15). Then, there exist c0 > 0 such that for any c ∈ [0, c0) there exists (u, v) a
non-negative singular solution to (2.1) such that

lim
r→0+

rN−2u(r) = c.

Moreover, if pq < 1 then c0 = +∞.
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Proof. Let

f1(r, s) = r
asp, g1(r, s) = r

bsq.

The function vα defined by (2.3) is given now by

vα(r) := du0(r) + α
q

∫ 1
r

s1−N
∫ 1
s

tN−1+b−(N−2)q dt ds .(2.16)

Next, we show that (H1) is equivalent to

N + a+min{β, 2−N}p > 0,

where β is defined by (1.5). Let

w1(r) :=

∫ 1
r

s1−N
∫ 1
s

tN−1+b−(N−2)q dt ds .(2.17)

Thus, by setting ρ := β +N − 2,

w1(r) =




u0(r)
ρ(N−2) +

rβ−1
ρβ

if β 6= 0 and ρ 6= 0,

u0(r)
(N−2)2 +

log(r)
N−2 if β = 0,

∫ 1
r
s1−N | log(s)|ds if ρ = 0.

Moreover, if ρ = 0,

lim
r→0+

rN−2| log(r)|−1w1(r) = (N − 2)
−1.

Now, the proof of the equivalence to (H1) follows easily.
To prove the existence of a non-negative solution it is sufficient to find d and α

positive constants such that

Λα = (N − 2)
−1

∫ 1
0

tN−1+avpα(t)dt < α .(2.18)

Since vα = du0 + αqw1, where w1 is given by (2.17), and using the inequality
(x + y)p ≤ C(xp + yp), for any non-negative numbers x and y, and where C =
max{1, 2p−1}, we see that (2.18) is satisfied if

Adp +Bαpq < (N − 2)α ,(2.19)

where

A :=

∫ 1
0

tN−1+aup0(t)dt, B :=

∫ 1
0

tN−1+awp1(t) dt .

If we choose, for instance, d such that Adp = Bαpq, (2.19) is satisfied for any α
such that

2Bαpq−1 < N − 2 .

Moreover, by Theorem 2.1 there exists (u, v) non-negative singular solution such
that limr→0+ r

N−2u(r) = c, for any c ∈ [0, α − Λα), and thus if pq < 1 and since
α − Λα tends to infinity as α does, the existence in the sub-linear case is for any
c > 0. �
The following result is an application of Theorem 2.3 to problem (2.1).
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Theorem 2.5. Assume that f and g are two non-negative functions satisfying
(2.15), with p > 0 and q > 0 and pq 6= 1. Also assume that (a, b, p, q) satisfies

p < (N + a)/(N − 2) and N + b+ µq > 0,

where µ := min{a + 2 − (N − 2)p, 0}. Then, there exist d0 ≥ 0 and d1 > 0, with
d0 < d1, such that for any d ∈ (d0, d1) there exists (u, v) a non-negative singular
solution to (2.1) such that

lim
r→0+

rN−2(u, v)(r) = (0, d).

Moreover, if pq < 1, d1 = +∞ and if pq > 1, d0 = 0.

Remark 2.1. In [4] we proved existence of solutions for (1.1) in the super-linear
case, that is when pq > 1. In the super-linear case, Theorem 2.4 and Theorem 2.5
do not give the optimal region of the values (a, b, p, q) of existence of non-negative
solutions to (1.1). However, we will show later that for the sub-linear case Theorem
2.4 is optimal, see Theorem 1.1.

As a consequence of Theorem 2.4, Corollary 2.2 and Theorem 2.5 we have the
following.

Corollary 2.6. Let p > 0 and q > 0, and consider

−∆u = vp in B′,

∆v = uq in B′,

u = v = 0 on ∂B,

(2.20)

with q ≥ N/(N − 2) and N +
(
2− (N − 2)q

)
p > 0. Then, there exist fundamental

and strongly singular non-negative solutions of (2.20).

3. Proof of main theorem 1.1

In this section we prove our main result and we give some applications to bi-
harmonic equations.
Proof of Theorem 1.1. Let p > 0, q > 0 and pq < 1. Assume that (a, b, p, q)
satisfies (1.4). The existence of a non-negative singular solution to (1.1) follows
from Theorem 2.4.
Assume that (a, b, p, q) does not satisfies (1.4), with p > 0, q > 0 and pq < 1 and

let (u, v) be a non-negative solution to (1.1). We will show that (u, v) must be the
trivial solution.
First, when N + a+ βp ≤ 0, the conclusion follows form Theorem 1.2 in [3].
Now, assume that p ≥ (N+a)/(N−2). Since u is a non-negative super-harmonic

function, from Theorem 1 in [1], we obtain that

|x|avp ∈ L1loc(B).

Moreover, since v is sub-harmonic there exists a non-negative constant c (possible
c = ∞) such that limr→0+ r

N−2v(r) = c, where v is the spherical average of v.
Assume first that c = 0. Let w(s) := sv(r) with s = rN−2. We easily obtain that
w is a convex function satisfying w(0) = w(1) = 0, and thus v = 0. On the other
hand, if c 6= 0, we have for some positive constant C such that for all r near 0,

v(r) ≥ Cr2−N .(3.1)
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By Remark 3.1 in [3] and (3.1) we deduce that vp(r) ≥ Cvp(r) ≥ Cr(2−N)p, and
thus

∞ >

∫
Bε(0)

|x|avp(x)dx ≥ C

∫ ε
0

ra+N−1vp(r)dr ≥ C

∫ ε
0

ra+N−1−p(N−2)dr,

contradicting p ≥ N+a
N−2 .

The last assertion on the theorem follows from Corollary 2.2. �
The following two results are applications of Theorem 1.1 to the bi-harmonic

equation.

Corollary 3.1. Let N > 2, and let 0 < q < 1. Then there exist positive solutions
of

∆2u+ |x|buq = 0 in B′1(0),

u = ∆u = 0 on ∂B1(0),
(3.2)

such that −∆u ≥ 0, if and only if

q <
N + b+ 2

N − 2
.

Corollary 3.2. Let N > 2, and 0 < q < 1. Then there exist positive solutions of
(3.2) such that ∆u ≥ 0, if and only if

q <
N + b

N − 2
.

As a consequence of the results in [4] and the two corollaries above, we obtain
the following.

Corollary 3.3. Let N > 2, and 0 < q 6= 1. Then

(i) There exist positive solutions of (3.2) with b = 0 such that −∆u ≥ 0, if and
only if

(N − 4)q < N.

(ii) There exist positive solutions of (3.2) with b = 0 such that ∆u ≥ 0, if and
only if

q <
N

N − 2
.
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