On a mixed problem for a linear coupled system with variable coefficients *

H. R. Clark, L. P. San Gil Jutuca, \& M. Milla Miranda

Abstract

We prove existence, uniqueness and exponential decay of solutions to the mixed problem $$
\begin{gathered} u^{\prime \prime}(x, t)-\mu(t) \Delta u(x, t)+\sum_{i=1}^{n} \frac{\partial \theta}{\partial x_{i}}(x, t)=0, \\ \theta^{\prime}(x, t)-\Delta \theta(x, t)+\sum_{i=1}^{n} \frac{\partial u^{\prime}}{\partial x_{i}}(x, t)=0, \end{gathered}
$$ with a suitable boundary damping, and a positive real-valued function μ.

1 Introduction

Let Ω be a bounded and open set in $\mathbb{R}^{n}(n \geq 1)$ with boundary Γ of class C^{2}. Assumed that there exists a partition $\left\{\Gamma_{0}, \Gamma_{1}\right\}$ of Γ such that Γ_{0} and Γ_{1} each has positive induced Lebesgue measure, and that $\bar{\Gamma}_{0} \cap \bar{\Gamma}_{1}$ is empty. We consider the linear system

$$
\begin{gather*}
\left.u^{\prime \prime}(x, t)-\mu(t) \Delta u(x, t)+\sum_{i=1}^{n} \frac{\partial \theta}{\partial x_{i}}(x, t)=0 \text { in } \Omega \times\right] 0, \infty[\tag{1.1}\\
\left.\theta^{\prime}(x, t)-\Delta \theta(x, t)+\sum_{i=1}^{n} \frac{\partial u^{\prime}}{\partial x_{i}}(x, t)=0 \text { in } \Omega \times\right] 0, \infty[\tag{1.2}\\
\left.u(x, t)=0, \theta(x, t)=0 \text { on } \Gamma_{0} \times\right] 0, \infty[\tag{1.3}\\
\left.\frac{\partial u}{\partial \nu}(x, t)+\alpha(x) u^{\prime}(x, t)=0 \text { on } \Gamma_{1} \times\right] 0, \infty[\tag{1.4}\\
\left.\frac{\partial \theta}{\partial \nu}(x, t)+\beta \theta(x, t)=0 \text { on } \Gamma_{1} \times\right] 0, \infty[\tag{1.5}\\
u(x, 0)=u^{0}(x), u^{\prime}(x, 0)=u^{1}(x), \theta(x, 0)=\theta^{0}(x) \text { on } \Omega, \tag{1.6}
\end{gather*}
$$

where μ is a function of $W_{\text {loc }}^{1, \infty}(0, \infty)$, such that $\mu(t) \geq \mu_{0}>0$. By α we represent a function of $W^{1, \infty}\left(\Gamma_{1}\right)$ such that $\alpha(x) \geq \alpha_{0}>0$, and by β a positive real number. The prime notation denotes time derivative, and $\frac{\partial}{\partial \nu}$ denotes derivative in the direction of the exterior normal to Γ.

The above system is physically meaningful only in one dimension. For which there exists an extensive literature on existence, uniqueness and stability when $\mu \equiv 1$. See the recent papers of Muñhoz Rivera [9], Henry, Lopes, Perisinotto [2], and Scott Hansen [10].

[^0]The paper of Milla Miranda and L. A. Medeiros [8] on wave equations with variable coefficients has a particular relevance to this work. In that paper, due to the boundary condition of feedback type, the authors introduced a special basis necessary to apply the Galerkin method. This is the natural method solving problems with variable coefficients.

In this article, we show the existence of a strong global solution of (1.1)(1.6), when u^{0}, u^{1} and θ^{0} satisfy additional regularity hypotheses. Then this result is used for finding a weak global solution to (1.1)-(1.6) in the general case. By the use of a method proposed in [4], we study the asymptotic behavior of an energy determined by solutions.

The paper is organized as follows: In $\S 2$ notation and basic results, in $\S 3$ strong solutions, in $\S 4$ weak solutions, and in $\S 5$ asymptotic behavior.

2 Notation and Basic Results

Let the Hilbert space

$$
V=\left\{v \in H^{1}(\Omega) ; v=0 \quad \text { on } \Gamma_{0}\right\}
$$

be equipped with the inner product and norm given by

$$
((u, v))=\sum_{i=1}^{n} \int_{\Omega} \frac{\partial u}{\partial x_{i}}(x) \frac{\partial v}{\partial x_{i}}(x) d x, \quad\|v\|=\left(\sum_{i=1}^{n} \int_{\Omega}\left(\frac{\partial u}{\partial x_{i}}(x)\right)^{2} d x\right)^{1 / 2}
$$

While in $L^{2}(\Omega),(.,$.$) and |$.$| represent the inner product and norm, respectively.$
Remark 2.1 Milla Miranda and Medeiros [8] showed that in $V \cap H^{2}(\Omega)$ the norm $\left(|\Delta u|^{2}+\left\|\frac{\partial u}{\partial \nu}\right\|_{H^{1 / 2}\left(\Gamma_{1}\right)}^{2}\right)^{1 / 2}$ is equivalent to the norm $\|\cdot\|_{H^{2}(\Omega)}$.

We assume that

$$
\begin{equation*}
\beta \geq \frac{n}{2 \alpha_{0} \mu_{0}} \tag{2.1}
\end{equation*}
$$

To obtain the strong solution and consequently weak solution for system (1.1)(1.6), we need the following results.

Proposition 2.1 Let $u_{1} \in V \cap H^{2}(\Omega), u_{2} \in V$ and $\theta \in V \cap H^{2}(\Omega)$ satisfy

$$
\begin{equation*}
\frac{\partial u_{1}}{\partial \nu}+\alpha(x) u_{2}=0 \quad \text { on } \Gamma_{1} \quad \text { and } \quad \frac{\partial \theta}{\partial \nu}+\beta \theta=0 \quad \text { on } \Gamma_{1} . \tag{2.2}
\end{equation*}
$$

Then, for each $\varepsilon>0$, there exist w, y and z in $V \cap H^{2}(\Omega)$, such that

$$
\left\|w-u_{1}\right\|_{V \cap H^{2}(\Omega)}<\varepsilon,\left\|z-u_{2}\right\|<\varepsilon,\|y-\theta\|_{V \cap H^{2}(\Omega)}<\varepsilon
$$

with

$$
\frac{\partial w}{\partial \nu}+\alpha(x) z=0 \quad \text { on } \Gamma_{1} \quad \text { and } \quad \frac{\partial y}{\partial \nu}+\beta y=0 \quad \text { on } \Gamma_{1} .
$$

Proof. We assume the conclusion of Proposition 3 in [8]. So, it suffices to prove the existence of y.

By the hypothesis $\Delta \theta \in L^{2}(\Omega)$, for each $\varepsilon>0$ there exists $y \in \mathcal{D}(\Omega)$ such that $|y-\Delta \theta|<\varepsilon$. Let q be solution of the elliptic problem

$$
\begin{gathered}
-\Delta q=-y \quad \text { in } \Omega \\
q=0 \quad \text { on } \Gamma_{0} \\
\frac{\partial q}{\partial \nu}+\beta q=0 \quad \text { on } \Gamma_{1} .
\end{gathered}
$$

On the other hand, we observe that θ is the solution of the above problem with $y=\Delta \theta$. Using results of elliptic regularity, cf. H. Brezis [1], we conclude that $q-\theta \in V \cap H^{2}(\Omega)$ and that there exists a positive constant C such that

$$
\|q-\theta\|_{V \cap H^{2}(\Omega)} \leq C|y-\Delta \theta|
$$

Proposition 2.2 If $\theta \in V$, then for each $\varepsilon>0$ there exists $q \in V \cap H^{2}(\Omega)$ satisfying $\frac{\partial q}{\partial \nu}+\beta q=0$ on Γ_{1} such that $\|\theta-q\|<\varepsilon$.

Proof. Observe that the set

$$
W=\left\{q \in V \cap H^{2}(\Omega) ; \frac{\partial q}{\partial \nu}+\beta q=0 \quad \text { on } \Gamma_{1}\right\}
$$

is dense in V. This is so because W is the domain of the operator $A=-\Delta$ determined by the triplet $\left\{V, L^{2}(\Omega), a(u, v)\right\}$, where

$$
a(u, v)=((u, v))+(\beta u, v)_{L^{2}\left(\Gamma_{1}\right)} .
$$

See for example J. L. Lions [5]. Hence, the result follows.

3 Strong Solutions

In this section, we prove existence and uniqueness of a solution to (1.1)-(1.6) when u^{0}, u^{1} and θ^{0} are smooth. First, we have the following result.

Theorem 3.1 Suppose that $u^{0} \in V \cap H^{2}(\Omega), u^{1} \in V$, and $\theta^{0} \in V \cap H^{2}(\Omega)$ satisfy

$$
\frac{\partial u^{0}}{\partial \nu}+\alpha(x) u^{1}=0 \quad \text { on } \Gamma_{1} \quad \text { and } \quad \frac{\partial \theta^{0}}{\partial \nu}+\beta \theta^{0}=0 \quad \text { on } \Gamma_{1}
$$

Then there exists a unique pair of real functions $\{u, \theta\}$ such that

$$
\begin{gather*}
u \in L_{\mathrm{loc}}^{\infty}\left(0, \infty ; V \cap H^{2}(\Omega)\right), u^{\prime} \in L_{\mathrm{loc}}^{\infty}(0, \infty ; V) \tag{3.1}\\
u^{\prime \prime} \in L_{\mathrm{loc}}^{\infty}\left(0, \infty ; L^{2}(\Omega)\right) \tag{3.2}\\
\theta \in L_{\mathrm{loc}}^{\infty}\left(0, \infty ; V \cap H^{2}(\Omega)\right), \quad \theta^{\prime} \in L_{\mathrm{loc}}^{\infty}(0, \infty ; V) \tag{3.3}
\end{gather*}
$$

$$
\begin{gather*}
u^{\prime \prime}-\mu \Delta u+\sum_{i=1}^{n} \frac{\partial \theta}{\partial x_{i}}=0 \quad \text { in } \quad L_{\mathrm{loc}}^{\infty}\left(0, \infty ; L^{2}(\Omega)\right) \tag{3.4}\\
\frac{\partial u}{\partial \nu}+\alpha u^{\prime}=0 \quad \text { in } \quad L_{\mathrm{loc}}^{\infty}\left(0, \infty ; H^{1 / 2}\left(\Gamma_{1}\right)\right) \tag{3.5}\\
\theta^{\prime}-\Delta \theta+\sum_{i=1}^{n} \frac{\partial u^{\prime}}{\partial x_{i}}=0 \quad \text { in } \quad L_{\mathrm{loc}}^{\infty}\left(0, \infty ; L^{2}(\Omega)\right) \tag{3.6}\\
\frac{\partial \theta}{\partial \nu}+\beta \theta=0 \quad \text { in } L_{\mathrm{loc}}^{\infty}\left(0, \infty ; H^{1 / 2}\left(\Gamma_{1}\right)\right) \tag{3.7}\\
u(0)=u^{0}, \quad u^{\prime}(0)=u^{1}, \quad \theta(0)=\theta^{0} \tag{3.8}
\end{gather*}
$$

Proof. We use the Galerkin method with a special basis in $V \cap H^{2}(\Omega)$. Recall that from Proposition 2.1 there exist sequences $\left(u_{\ell}^{0}\right)_{\ell \in \mathbb{N}},\left(u_{\ell}^{1}\right)_{\ell \in \mathbb{N}}$ and $\left(\theta_{\ell}^{0}\right)_{\ell \in \mathbb{N}}$ of vectors in $V \cap H^{2}(\Omega)$ such that:

$$
\begin{gather*}
u_{\ell}^{0} \longrightarrow u^{0} \text { strongly in } V \cap H^{2}(\Omega) \tag{3.9}\\
u_{\ell}^{1} \longrightarrow u^{1} \text { strongly in } V \tag{3.10}\\
\theta_{\ell}^{0} \longrightarrow \theta_{0} \text { strongly in } V \cap H^{2}(\Omega) \tag{3.11}\\
\frac{\partial u_{\ell}^{0}}{\partial \nu}+\alpha u_{\ell}^{1}=0 \text { on } \Gamma_{1} \tag{3.12}\\
\frac{\partial \theta_{\ell}^{0}}{\partial \nu}+\beta \theta_{\ell}^{0}=0 \text { on } \Gamma_{1} . \tag{3.13}
\end{gather*}
$$

For each $\ell \in \mathbb{N}$ pick $u_{\ell}^{0}, u_{\ell}^{1}$ and θ_{ℓ}^{0} linearly independent, then define the vectors $w_{1}^{\ell}=u_{\ell}^{0}, w_{2}^{\ell}=u_{\ell}^{1}$ and $w_{3}^{\ell}=\theta_{\ell}^{0}$, and then construct an orthonormal basis in $V \cap H^{2}(\Omega)$,

$$
\left\{w_{1}^{\ell}, w_{2}^{\ell}, \ldots, w_{j}^{\ell}, \ldots\right\} \text { for each } \ell \in \mathbb{N}
$$

For ℓ fixed and each $m \in \mathbb{N}$, we consider the subspace $W_{m}^{\ell}=\left[w_{1}^{\ell}, w_{2}^{\ell}, \ldots, w_{m}^{\ell}\right]$ generated by the m-first vectors of the basis. Thus for $u_{\ell m}(t), \theta_{\ell m}(t) \in W_{m}^{\ell}$ we have

$$
u_{\ell m}(t)=\sum_{j=1}^{m} g_{\ell j m}(t) w_{j}^{\ell}(x) \quad \text { and } \quad \theta_{\ell m}(t)=\sum_{j=1}^{m} h_{\ell j m}(t) w_{j}^{\ell}(x)
$$

For each $m \in \mathbb{N}$, we find pair of functions $\left\{u_{\ell m}(t), \theta_{\ell m}(t)\right\}$ in $W_{m}^{\ell} \times W_{m}^{\ell}$, such that for all $v \in W_{m}^{\ell}$ and all $w \in W_{m}^{\ell}$,

$$
\begin{gather*}
\left(u_{\ell m}^{\prime \prime}(t), v\right)+\mu(t)\left(\left(u_{\ell m}(t), v\right)\right)+\mu(t) \int_{\Gamma_{1}} \alpha(x) u_{\ell m}^{\prime}(t) v d \Gamma \\
+\sum_{i=1}^{n}\left(\frac{\partial \theta_{\ell m}}{\partial x_{i}}(t), v\right)=0 \tag{3.14}\\
\left(\theta_{\ell m}^{\prime}(t), w\right)+\left(\left(\theta_{\ell m}(t), w\right)\right)+\beta \int_{\Gamma_{1}} \theta_{\ell m}(t) w d \Gamma+\sum_{i=1}^{n}\left(\frac{\partial u_{\ell m}^{\prime}}{\partial x_{i}}(t), w\right)=0 \\
u_{\ell m}(0)=u_{\ell}^{0}, \quad u_{\ell m}^{\prime}(0)=u_{\ell}^{1} \quad \text { and } \quad \theta_{\ell m}(0)=\theta^{0} .
\end{gather*}
$$

The solution $\left\{u_{\ell m}(t), \theta_{\ell m}(t)\right\}$ is defined on a certain interval $\left[0, t_{m}[\right.$. This interval will be extended to any interval $[0, T]$, with $T>0$, by the use of the following a priori estimate.

Estimate I. In (3.14) we replace v by $u_{\ell m}^{\prime}(t)$ and w by $\theta_{\ell m}(t)$. Thus

$$
\begin{gathered}
\frac{1}{2} \frac{d}{d t}\left|u_{\ell m}^{\prime}(t)\right|^{2}+\frac{1}{2} \frac{d}{d t}\left\{\mu(t)\left\|u_{\ell m}(t)\right\|^{2}\right\}+\mu(t) \int_{\Gamma_{1}} \alpha(x)\left(u_{\ell m}^{\prime}(t)\right)^{2} d \Gamma \\
+\sum_{i=1}^{n}\left(\frac{\partial \theta_{\ell m}}{\partial x_{i}}(t), u_{\ell m}^{\prime}(t)\right) \leq\left|\mu^{\prime}(t)\right|\left\|u_{\ell m}(t)\right\|^{2} \\
\frac{1}{2} \frac{d}{d t}\left|\theta_{\ell m}(t)\right|^{2}+\left\|\theta_{\ell m}(t)\right\|^{2}+\beta \int_{\Gamma_{1}}\left(\theta_{\ell m}(t)\right)^{2} d \Gamma+\sum_{i=1}^{n}\left(\frac{\partial u_{\ell m}^{\prime}}{\partial x_{i}}(t), \theta_{\ell m}(t)\right)=0 .
\end{gathered}
$$

Define

$$
E_{1}(t)=\frac{1}{2}\left\{\left|u_{\ell m}^{\prime}(t)\right|^{2}+\mu(t)\left\|u_{\ell m}(t)\right\|^{2}+\left|\theta_{\ell m}(t)\right|^{2}\right\}
$$

and we make use of the Gauss identity

$$
\sum_{i=1}^{n}\left(\frac{\partial u_{\ell m}^{\prime}}{\partial x_{i}}(t), \theta_{\ell m}(t)\right)=-\sum_{i=1}^{n}\left(u_{\ell m}^{\prime}(t), \frac{\partial \theta_{\ell m}}{\partial x_{i}}(t)\right)+\sum_{i=1}^{n} \int_{\Gamma_{1}} u_{\ell m}^{\prime}(t) \theta_{\ell m}(t) \nu_{i} d \Gamma
$$

to obtain

$$
\begin{aligned}
& \frac{d}{d t} E_{1}(t)+\left\|\theta_{\ell m}(t)\right\|^{2}+\mu(t) \int_{\Gamma_{1}} \alpha(x)\left(u_{\ell m}^{\prime}(t)\right)^{2} d \Gamma \\
& +\sum_{i=1}^{n}\left(\frac{\partial \theta_{\ell m}}{\partial x_{i}}(t), u_{\ell m}^{\prime}(t)\right)+\beta \int_{\Gamma_{1}}\left(\theta_{\ell m}(t)\right)^{2} d \Gamma \\
& \quad \leq \sum_{i=1}^{n} \int_{\Gamma_{1}} u_{\ell m}^{\prime}(t) \theta_{\ell m}(t) \nu_{i} d \Gamma+\frac{\left|\mu^{\prime}(t)\right|}{\mu(t)} E_{1}(t)
\end{aligned}
$$

By the Cauchy-Schwarz inequality it follows that

$$
\sum_{i=1}^{n} \int_{\Gamma_{1}} u_{\ell m}^{\prime}(t) \theta_{\ell m}(t) \nu_{i} d \Gamma \leq \frac{n}{2 \alpha_{0} \mu_{0}} \int_{\Gamma_{1}}\left(\theta_{\ell m}(t)\right)^{2} d \Gamma+\frac{\alpha_{0} \mu(t)}{2} \int_{\Gamma_{1}}\left(u_{\ell m}^{\prime}(t)\right)^{2} d \Gamma
$$

and this yields

$$
\begin{gather*}
\frac{d}{d t} E_{1}(t)+\left\|\theta_{\ell m}(t)\right\|^{2}+\mu(t) \frac{\alpha_{0}}{2} \int_{\Gamma_{1}}\left(u_{\ell m}^{\prime}(t)\right)^{2} d \Gamma+\left(\beta-\frac{n}{2 \alpha_{0} \mu_{0}}\right) \int_{\Gamma_{1}}\left(\theta_{\ell m}(t)\right)^{2} d \Gamma \\
\leq \frac{\left|\mu^{\prime}(t)\right|}{\mu(t)} E_{1}(t) \tag{3.15}
\end{gather*}
$$

Integrating (3.15) over $\left[0, \mathrm{t}\left[, 0 \leq t \leq t_{m}\right.\right.$, using (2.1) and applying Gronwall inequality, we conclude that there is a positive constant $C>0$, independent of ℓ and m, such that

$$
\begin{equation*}
E_{1}(t)+\int_{0}^{t}\left\|\theta_{\ell m}(s)\right\|^{2} d s \leq C \tag{3.16}
\end{equation*}
$$

Then there exists a subsequence still denoted by $\left(u_{\ell m}\right)_{m \in \mathbb{N}}$ and a subsequence still denoted by $\left(\theta_{\ell m}\right)_{m \in \mathbb{N}}$, such that

$$
\begin{align*}
& \left(u_{\ell m}\right)_{m \in \mathbb{N}} \text { is bounded in } L_{l o c}^{\infty}(0, \infty ; V) \tag{3.17}\\
& \left(u_{\ell m}^{\prime}\right)_{m \in \mathbb{N}} \text { is bounded in } L_{l o c}^{\infty}\left(0, \infty ; L^{2}(\Omega)\right) \tag{3.18}\\
& \left(\theta_{\ell m}\right)_{m \in \mathbb{N}} \text { is bounded in } L_{l o c}^{2}(0, \infty ; V) \tag{3.19}
\end{align*}
$$

Estimate II. Differentiating in (3.14) with respect to t, taking $v=u_{\ell m}^{\prime \prime}(t)$ and $w=\theta_{\ell m}^{\prime}(t)$, we obtain

$$
\begin{align*}
& \frac{d}{d t} E_{2}(t)+\mu(t) \int_{\Gamma_{1}} \alpha(x)\left(u_{\ell m}^{\prime \prime}(t)\right)^{2} d \Gamma+\mu^{\prime}(t) \int_{\Gamma_{1}} \alpha(x) u_{\ell m}^{\prime}(t) u_{\ell m}^{\prime \prime}(t) d \Gamma \\
& +\left\|\theta_{\ell m}^{\prime}(t)\right\|^{2}+\beta \int_{\Gamma_{1}}\left(\theta_{\ell m}^{\prime}(t)\right)^{2} d \Gamma \tag{3.20}\\
& \quad=\frac{1}{2} \mu^{\prime}(t)\left\|u_{\ell m}^{\prime}(t)\right\|^{2}-\mu^{\prime}(t)\left(\left(u_{\ell m}(t), u_{\ell m}^{\prime \prime}(t)\right)\right)+\sum_{i=1}^{n} \int_{\Gamma_{1}} \theta_{\ell m}^{\prime}(t) u_{\ell m}^{\prime \prime}(t) \nu_{i} d \Gamma,
\end{align*}
$$

where

$$
E_{2}(t)=\frac{1}{2}\left\{\left|u_{\ell m}^{\prime \prime}(t)\right|^{2}+\mu(t)\left\|u_{\ell m}^{\prime}(t)\right\|^{2}+\left|\theta_{\ell m}^{\prime}(t)\right|^{2}\right\} .
$$

Put $v=\frac{\mu^{\prime}(t)}{\mu(t)} u_{\ell m}^{\prime \prime}(t)$ in (3.14) ${ }_{1}$, to obtain

$$
\begin{aligned}
\mu^{\prime}(t)\left(\left(u_{\ell m}(t), u_{\ell m}^{\prime \prime}(t)\right)\right)= & -\frac{\mu^{\prime}(t)}{\mu(t)}\left|u_{\ell m}^{\prime \prime}(t)\right|^{2}+\mu^{\prime}(t) \int_{\Gamma_{1}} \alpha(x) u_{\ell m}^{\prime}(t) u_{\ell m}^{\prime \prime}(t) d \Gamma \\
& -\frac{\mu^{\prime}(t)}{\mu(t)} \sum_{i=1}^{n}\left(\frac{\partial \theta_{\ell m}}{\partial x_{i}}(t), u_{\ell m}^{\prime \prime}(t)\right) .
\end{aligned}
$$

Replacing this last expression in (3.20) we obtain

$$
\begin{align*}
& \frac{d}{d t} E_{2}(t)+\mu(t) \int_{\Gamma_{1}} \alpha(x)\left(u_{l m}^{\prime \prime}(t)\right)^{2} d \Gamma+\left\|\theta_{\ell m}^{\prime}(t)\right\|^{2}+\beta \int_{\Gamma_{1}}\left(\theta_{\ell m}^{\prime}(t)\right)^{2} d \Gamma \\
& =\frac{1}{2} \mu^{\prime}(t)\left\|u_{\ell m}^{\prime}(t)\right\|^{2}+\frac{\mu^{\prime}(t)}{\mu(t)}\left|u_{\ell m}^{\prime \prime}(t)\right|^{2}+\frac{\mu^{\prime}(t)}{\mu(t)} \sum_{i=1}^{n}\left(\frac{\partial \theta_{\ell m}}{\partial x_{i}}(t), u_{\ell m}^{\prime \prime}(t)\right) \\
& \quad+\sum_{i=1}^{n} \int_{\Gamma_{1}} \theta_{\ell m}^{\prime}(t) u_{\ell m}^{\prime \prime}(t) \nu_{i} d \Gamma . \tag{3.21}
\end{align*}
$$

Making use of the Cauchy-Schwarz inequality in the last two terms of the right-hand-side of (3.21), we obtain

$$
\begin{equation*}
\frac{\mu^{\prime}(t)}{\mu(t)} \sum_{i=1}^{n}\left|\left(\frac{\partial \theta_{\ell m}}{\partial x_{i}}(t), u_{\ell m}^{\prime \prime}(t)\right)\right| \leq \frac{1}{2} \frac{\left|\mu^{\prime}(t)\right|}{\mu(t)}\left|u_{\ell m}^{\prime \prime}(t)\right|^{2}+\frac{n}{2} \frac{\left|\mu^{\prime}(t)\right|}{\mu(t)}\left\|\theta_{\ell m}(t)\right\|^{2} \tag{3.22}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{n} \int_{\Gamma_{1}} \theta_{\ell m}^{\prime}(t) u_{\ell m}^{\prime \prime}(t) \nu_{i} d \Gamma \leq \frac{\mu_{0} \alpha_{0}}{2} \int_{\Gamma_{1}}\left(u_{\ell m}^{\prime \prime \prime}(t)\right)^{2} d \Gamma+\frac{n}{2 \mu_{0} \alpha_{0}} \int_{\Gamma_{1}}\left(\theta_{\ell m}^{\prime}(t)\right)^{2} d \Gamma \tag{3.23}
\end{equation*}
$$

Combining (3.21), (3.22) and (3.23) we obtain

$$
\begin{align*}
& \frac{d}{d t} E_{2}(t)+\mu(t) \frac{\alpha_{0}}{2} \int_{\Gamma_{1}}\left(u_{\ell m}^{\prime \prime}(t)\right)^{2} d \Gamma+\left\|\theta_{\ell m}^{\prime}(t)\right\|^{2}+\left(\beta-\frac{n}{2 \mu_{0} \alpha_{0}}\right) \int_{\Gamma_{1}}\left(\theta_{\ell m}^{\prime}(t)\right)^{2} d \Gamma \\
& \leq \quad \frac{1}{2} \frac{\left|\mu^{\prime}(t)\right|}{\mu_{0}} \mu(t)\left\|u^{\prime}(t)\right\|^{2}+\frac{3}{2} \frac{\left|\mu^{\prime}(t)\right|}{\mu_{0}}\left|u_{\ell m}^{\prime \prime \prime}(t)\right|^{2}+\frac{n\left|\mu^{\prime}(t)\right|}{2 \mu_{0}}\left\|\theta_{\ell m}(t)\right\|^{2} . \tag{3.24}
\end{align*}
$$

From (2.1) it follows that

$$
\frac{d}{d t} E_{2}(t)+\left\|\theta_{\ell m}^{\prime}(t)\right\|^{2}+\leq 4 \frac{\left|\mu^{\prime}(t)\right|}{\mu_{0}} E_{2}(t)+\frac{n\left|\mu^{\prime}(t)\right|}{2 \mu_{0}}\left\|\theta_{\ell m}(t)\right\|^{2}
$$

To complete this estimate, we integrate the above inequality over $[0, \mathrm{t}], t \leq T$. Now we show that $u_{\ell m}^{\prime \prime}(0)$ and $\theta_{\ell m}^{\prime}(0)$ are bounded in $L^{2}(\Omega)$. For this end put $v=u_{\ell m}^{\prime \prime}(t), w=\theta_{\ell m}^{\prime}(t)$, and $t=0$. Because of the choice of basis we have

$$
\begin{aligned}
& \left|u_{\ell m}^{\prime \prime}(0)\right|^{2} \\
& \quad \leq\left(\mu(0)\left|\Delta u_{\ell}^{0}\right|+\sum_{i=1}^{n}\left|\frac{\partial \theta_{\ell}^{0}}{\partial x_{i}}\right|\right)\left|u_{\ell m}^{\prime \prime}(0)\right|+\mu(0) \int_{\Gamma_{1}}\left(\frac{\partial u_{\ell}^{0}}{\partial \nu}+\alpha(x) u_{\ell}^{1}\right) u_{\ell m}^{\prime \prime}(0) d \Gamma
\end{aligned}
$$

and

$$
\left|\theta_{\ell m}^{\prime}(0)\right|^{2} \leq\left(\left|\Delta \theta_{\ell}^{0}\right|+\sum_{i=1}^{n}\left|\frac{\partial u_{\ell}^{1}}{\partial x_{i}}\right|\right)\left|\theta_{\ell m}^{\prime}(0)\right|+\int_{\Gamma_{1}}\left(\frac{\partial \theta_{\ell}^{0}}{\partial \nu}+\beta \theta_{\ell}^{0}\right) \theta_{\ell m}^{\prime}(0) d \Gamma
$$

Since by hypothesis $\frac{\partial u_{\ell}^{0}}{\partial \nu}+\alpha(x) u_{\ell}^{1}=0$ and $\frac{\partial \theta_{\ell}^{0}}{\partial \nu}+\beta \theta_{\ell}^{0}=0$ in Γ_{1}, it follows that $\left(u_{\ell m}^{\prime \prime}(0)\right)_{m \in \mathbb{N}}$ and $\left(\theta_{\ell m}^{\prime}(0)\right)_{m \in \mathbb{N}}$ are bounded in $L^{2}(\Omega)$. Consequently for a fixed ℓ,

$$
\begin{gather*}
\left(u_{\ell m}^{\prime}\right)_{m \in \mathbb{N}} \text { is bounded in } L_{\mathrm{loc}}^{\infty}(0, \infty ; V), \tag{3.25}\\
\left(u_{\ell m}^{\prime \prime}\right)_{m \in \mathbb{N}} \text { is bounded in } L_{\mathrm{loc}}^{\infty}\left(0, \infty ; L^{2}(\Omega)\right), \tag{3.26}\\
\left(\theta_{\ell m}^{\prime}\right)_{m \in \mathbb{N}} \text { is bounded in } L_{\mathrm{loc}}^{\infty}\left(0, \infty ; L^{2}(\Omega)\right) \tag{3.27}\\
\left(\theta_{\ell m}^{\prime}\right)_{m \in \mathbb{N}} \text { is bounded in } L_{\mathrm{loc}}^{2}(0, \infty ; V) \tag{3.28}
\end{gather*}
$$

From (3.17)-(3.19) and (3.25)-(3.28), by induction and the diagonal process, we obtain subsequences, denoted with the same symbol as the original sequences, $\left(u_{\ell m_{n}}\right)_{n \in \mathbb{N}}$ and $\left(\theta_{\ell m_{n}}\right)_{n \in \mathbb{N}}$; and functions $\left.u_{\ell}: \Omega \times\right] 0, \infty[\longrightarrow \mathbb{R}$ and $\left.\theta_{\ell}: \Omega \times\right] 0, \infty[\longrightarrow \mathbb{R}$ such that:

$$
\begin{align*}
& u_{\ell m} \longrightarrow u_{\ell} \text { weak star in } L_{\mathrm{loc}}^{\infty}(0, \infty ; V) \tag{3.29}\\
& u_{\ell m}^{\prime} \longrightarrow u_{\ell}^{\prime} \text { weak star in } L_{\mathrm{loc}}^{\infty}(0, \infty ; V) \tag{3.30}\\
& u_{\ell m}^{\prime \prime} \longrightarrow u_{\ell}^{\prime \prime} \text { weak star in } L_{\mathrm{loc}}^{\infty}\left(0, \infty ; L^{2}(\Omega)\right) \tag{3.31}\\
& u_{\ell m}^{\prime} \longrightarrow u_{\ell}^{\prime} \text { weak star in } L_{\mathrm{loc}}^{\infty}\left(0, \infty ; H^{1 / 2}\left(\Gamma_{1}\right)\right) \tag{3.32}\\
& \theta_{\ell m} \longrightarrow \theta_{\ell} \text { weakly in } L_{\mathrm{loc}}^{2}(0, \infty ; V) \tag{3.33}\\
& \theta_{\ell m}^{\prime} \longrightarrow \theta_{\ell}^{\prime} \text { weak star in } L_{\mathrm{loc}}^{\infty}\left(0, \infty ; L^{2}(\Omega)\right) \tag{3.34}\\
& \theta_{\ell m} \longrightarrow \theta_{\ell} \text { weak star in } L_{\mathrm{loc}}^{2}\left(0, \infty ; H^{1 / 2}\left(\Gamma_{1}\right)\right) . \tag{3.35}
\end{align*}
$$

Next, we multiply both sides of (3.14) by $\psi \in \mathcal{D}(0, \infty)$ and integrate with respect to t. From (3.29)-(3.35), for all $v, w \in V_{m}^{\ell}$ we obtain

$$
\begin{equation*}
\int_{0}^{\infty}\left(u_{\ell}^{\prime \prime}(t), v\right) \psi(t) d t+\int_{0}^{\infty} \mu(t)\left(\left(u_{\ell}(t), v\right)\right) \psi(t) d t \tag{3.36}
\end{equation*}
$$

$$
\begin{align*}
& +\int_{0}^{\infty} \int_{\Gamma_{1}} \alpha(x) u_{\ell}^{\prime}(t) v \psi(t) d \Gamma d t+\sum_{i=1}^{n} \int_{0}^{\infty}\left(\frac{\partial \theta_{\ell}}{\partial x_{i}}(t), v\right) \psi(t) d t=0 \\
& \int_{0}^{\infty}\left(\theta_{\ell}^{\prime}, w\right) \psi(t) d t+\int_{0}^{\infty}\left(\left(\theta_{\ell}(t), w\right)\right) \psi(t) d t \tag{3.37}\\
& +\beta \int_{0}^{\infty} \int_{\Gamma_{1}} \theta_{\ell}(t) w \psi(t) d \Gamma+\sum_{i=1}^{n} \int_{0}^{\infty}\left(\frac{\partial u_{\ell}^{\prime}}{\partial x_{i}}(t), w\right) \psi(t) d t=0 .
\end{align*}
$$

Since $\left\{w_{1}^{\ell}, w_{2}^{\ell}, \ldots\right\}$ is a basis of $V \cap H^{2}(\Omega)$, then by denseness it follows that the last two equalities are true for all v and w in $V \cap H^{2}(\Omega)$. Also notice that (3.17)-(3.19) and (3.25)-(3.28) hold for all $\ell \in \mathbb{N}$. Then by the same process used in obtaining of (3.29)-(3.35), we find diagonal subsequences denoted as the original sequences, $\left(u_{\ell}\right)_{\ell \in \mathbb{N}}$ and $\left.\theta_{\ell_{\ell}}\right)_{\ell \in \mathbb{N}}$, and functions $\left.u: \Omega \times\right] 0, \infty[\longrightarrow \mathbb{R}, \theta$: $\Omega \times] 0, \infty[\longrightarrow \mathbb{R}$ such that:

$$
\begin{align*}
& u_{\ell} \longrightarrow u \text { weak star in } L_{\mathrm{loc}}^{\infty}(0, \infty ; V) \tag{3.38}\\
& u_{\ell}^{\prime} \longrightarrow u^{\prime} \text { weak star in } L_{\mathrm{loc}}^{\infty}(0, \infty ; V) \tag{3.39}\\
& u_{\ell}^{\prime \prime} \longrightarrow u^{\prime \prime} \text { weak star in } L_{\mathrm{loc}}^{\infty}\left(0, \infty ; L^{2}(\Omega)\right) \tag{3.40}\\
& u_{\ell}^{\prime} \longrightarrow u^{\prime} \text { weak star in } L_{\mathrm{loc}}^{\infty}\left(0, \infty ; H^{1 / 2}\left(\Gamma_{1}\right)\right) \tag{3.41}\\
& \theta_{\ell} \longrightarrow \theta \text { weakly in } L_{\mathrm{loc}}^{2}(0, \infty ; V) \tag{3.42}\\
& \theta_{\ell}^{\prime} \longrightarrow \theta^{\prime} \text { weak star in } L_{\mathrm{loc}}^{\infty}\left(0, \infty ; L^{2}(\Omega)\right) \tag{3.43}\\
& \theta_{\ell} \longrightarrow \theta \text { weak star in } L_{\mathrm{loc}}^{2}\left(0, \infty ; H^{1 / 2}\left(\Gamma_{1}\right)\right) \tag{3.44}
\end{align*}
$$

Taking limits in (3.36) and in (3.37), using the convergences showed in (3.38)-(3.44), and using the fact that $V \cap H^{2}(\Omega)$ is dense in V , we obtain that for all ψ in $\mathcal{D}(0, \infty)$ and $v, w \in V$,

$$
\begin{align*}
& \int_{0}^{\infty}\left(u^{\prime \prime}(t), v\right) \psi(t) d t+\int_{0}^{\infty} \mu(t)((u(t), v)) \psi(t) d t \tag{3.45}\\
& +\int_{0}^{\infty} \int_{\Gamma_{1}} \alpha(x) u^{\prime}(t) v \psi(t) d \Gamma d t+\sum_{i=1}^{n} \int_{0}^{\infty}\left(\frac{\partial \theta}{\partial x_{i}}(t), v\right) \psi(t) d t=0 \\
& \int_{0}^{\infty}\left(\theta^{\prime}(t), w\right) \psi(t) d t+\int_{0}^{\infty}((\theta(t), w)) \psi(t) d t \tag{3.46}\\
& +\beta \int_{0}^{\infty} \int_{\Gamma_{1}} \theta(t) w \psi(t) d \Gamma d t+\sum_{i=1}^{n} \int_{0}^{\infty}\left(\frac{\partial u^{\prime}}{\partial x_{i}}(t), w\right) \psi(t) d t=0
\end{align*}
$$

Since $\mathcal{D}(\Omega) \subset V$, by (3.45) and (3.46) it follows that

$$
\begin{gather*}
u^{\prime \prime}-\mu \Delta u+\sum_{i=1}^{n} \frac{\partial \theta}{\partial x_{i}}=0 \text { in } L_{\mathrm{loc}}^{2}\left(0, \infty ; L^{2}(\Omega)\right) \tag{3.47}\\
\theta^{\prime}-\Delta \theta+\sum_{i=1}^{n} \frac{\partial u^{\prime}}{\partial x_{i}}=0 \text { in } L_{\mathrm{loc}}^{\infty}\left(0, \infty ; L^{2}(\Omega)\right) \tag{3.48}
\end{gather*}
$$

Since $u \in L_{\text {loc }}^{\infty}(0, \infty ; V)$ and $\theta \in L_{\text {loc }}^{2}(0, \infty ; V)$, we take into account (3.47) and (3.48) to deduce that $\Delta u, \Delta \theta \in L_{\text {loc }}^{2}\left(0, \infty ; L^{2}(\Omega)\right)$. Therefore

$$
\begin{equation*}
\frac{\partial u}{\partial \nu}, \frac{\partial \theta}{\partial \nu} \in L_{\mathrm{loc}}^{2}\left(0, \infty ; H^{-1 / 2}\left(\Gamma_{1}\right)\right) \tag{3.49}
\end{equation*}
$$

Multiply (3.47) by $v \psi$ and (3.48) by $w \psi$ with $v, w \in V$ and $\psi \in \mathcal{D}(0, \infty)$. By integration and use of the Green's formula, we obtain

$$
\begin{align*}
& \int_{0}^{\infty}\left(u^{\prime \prime}(t), v\right) \psi(t) d t+\int_{0}^{\infty} \mu(t)((u(t), v)) \psi(t) d t \tag{3.50}\\
& -\int_{0}^{\infty}\left\langle\mu(t) \frac{\partial u}{\partial \nu}(t), v\right\rangle \psi(t) d t+\sum_{i=1}^{n} \int_{0}^{\infty}\left(\frac{\partial \theta}{\partial x_{i}}(t), v\right) \psi(t) d t=0 \\
& \int_{0}^{\infty}\left(\theta^{\prime}(t), w\right) \psi(t) d t+\int_{0}^{\infty}((\theta(t), w)) \psi(t) d t \tag{3.51}\\
& -\int_{0}^{\infty}\left\langle\frac{\partial \theta}{\partial \nu}(t), w\right\rangle \psi(t) d t+\sum_{i=1}^{n} \int_{0}^{\infty}\left(\frac{\partial u^{\prime}}{\partial x_{i}}(t), w\right) \psi(t) d t=0
\end{align*}
$$

where $\langle.,$.$\rangle denotes the duality pairing of H^{-1 / 2}\left(\Gamma_{1}\right) \times H^{1 / 2}\left(\Gamma_{1}\right)$.
Comparing (3.45) with (3.50) and (3.46) with (3.51), we obtain that for all ψ in $\mathcal{D}(0, \infty)$ and for all $v, w \in V$,

$$
\int_{0}^{\infty}\left\langle\frac{\partial u}{\partial \nu}(t)+\alpha(x) u^{\prime}(t), v\right\rangle \psi(t) d t=0, \quad \int_{0}^{\infty}\left\langle\frac{\partial \theta}{\partial \nu}(t)+\beta \theta(t), w\right\rangle \psi(t) d t=0
$$

From (3.39), (3.44) and (3.49) it follows that

$$
\begin{aligned}
& \frac{\partial u}{\partial \nu}+\alpha u^{\prime}=0 \text { in } L_{\mathrm{loc}}^{\infty}\left(0, \infty ; H^{-1 / 2}\left(\Gamma_{1}\right)\right) \\
& \frac{\partial \theta}{\partial \nu}+\beta \theta=0 \text { in } L_{\mathrm{loc}}^{2}\left(0, \infty ; H^{-1 / 2}\left(\Gamma_{1}\right)\right)
\end{aligned}
$$

Since $\alpha u^{\prime} \in L_{\text {loc }}^{\infty}\left(0, \infty ; H^{1 / 2}\left(\Gamma_{1}\right)\right)$ and $\beta \theta \in L_{\text {loc }}^{2}\left(0, \infty ; H^{1 / 2}\left(\Gamma_{1}\right)\right)$, it follows that

$$
\begin{align*}
& \frac{\partial u}{\partial \nu}+\alpha u^{\prime}=0 \quad \text { in } \quad L_{\mathrm{loc}}^{2}\left(0, \infty ; H^{1 / 2}\left(\Gamma_{1}\right)\right) \tag{3.52}\\
& \frac{\partial \theta}{\partial \nu}+\beta \theta=0 \text { in } L_{\mathrm{loc}}^{2}\left(0, \infty ; H^{1 / 2}\left(\Gamma_{1}\right)\right) \tag{3.53}
\end{align*}
$$

To complete the proof of the Theorem 3.1, we shall show that u and θ are in $L_{\text {loc }}^{\infty}\left(0, \infty ; H^{2}(\Omega)\right)$. In fact, for all $T>0$ the pair $\{u, \theta\}$ is the solution to

$$
\begin{gather*}
\left.-\Delta u=-\frac{1}{\mu}\left(u^{\prime \prime}+\sum_{i=1}^{n} \frac{\partial \theta}{\partial x_{i}}\right) \quad \text { in } \quad \Omega \times\right] 0, T[\\
\left.-\Delta \theta=-\theta^{\prime}-\frac{\partial u^{\prime}}{\partial x_{i}} \quad \text { in } \quad \Omega \times\right] 0, T[\\
u=\theta=0 \quad \text { on } \\
\left.\Gamma_{0} \times\right] 0, T[\tag{3.54}\\
\frac{\partial u}{\partial \nu}=-\alpha u^{\prime} \quad \text { on } \\
\left.\Gamma_{1} \times\right] 0, T[\\
\frac{\partial \theta}{\partial \nu}=-\beta \theta \quad \text { on } \\
\left.\Gamma_{1} \times\right] 0, T[
\end{gather*}
$$

In view of (3.40), (3.42) and (3.39) we have $u^{\prime \prime}$ and $\frac{\partial \theta}{\partial x_{i}}$ are in $L_{\text {loc }}^{\infty}\left(0, \infty ; L^{2}(\Omega)\right)$ and αu^{\prime} is in $L_{\text {loc }}^{\infty}\left(0, \infty ; H^{1 / 2}\left(\Gamma_{1}\right)\right)$. Thus by results on elliptic regularity, it follows that $u \in L_{\text {loc }}^{\infty}\left(0, \infty ; V \cap H^{2}(\Omega)\right)$. In the same manner it follows that $\theta \in L_{\text {loc }}^{\infty}\left(0, \infty ; H^{2}(\Omega)\right)$.

Uniqueness of the solution $\{u, \theta\}$ is showed by the standard energy method. The verification of the initial conditions is done through the convergences in (3.38)-(3.44).

Next, we establish a result on existence and uniqueness of global solutions.
Corollary 3.1 Under the supplementary hypothesis $\mu^{\prime} \in L^{1}(0, \infty)$, the pair of functions $\{u, \theta\}$ obtained by Theorem 3.1 satisfies

$$
\begin{gathered}
u \in L^{\infty}\left(0, \infty ; V \cap H^{2}(\Omega)\right), \quad u^{\prime} \in L^{\infty}(0, \infty ; V), \quad \theta \in L^{\infty}\left(0, \infty ; V \cap H^{2}(\Omega)\right) \\
\frac{\partial u}{\partial \nu}+\alpha u^{\prime}=0 \text { and } \frac{\partial \theta}{\partial \nu}+\beta \theta=0 \text { in } L^{2}\left(0, \infty ; L^{2}\left(\Gamma_{1}\right)\right) \\
u(0)=u^{0}, \quad u^{\prime}(0)=u^{1} \text { and } \theta(0)=\theta^{0}
\end{gathered}
$$

4 Weak Solutions

In this section, we find a solution for the system (1.1)-(1.6) with initial data $u^{0} \in V, u^{1} \in L^{2}(\Omega)$ and $\theta^{0} \in V$. To reach this goal we approximate u^{0}, u^{1} and θ^{0} by sequences of vectors in $V \cap H^{2}(\Omega)$, and we use the Theorem 3.1.

Theorem 4.1 If $\left\{u^{0}, u^{1}, \theta^{0}\right\} \in V \times L^{2}(\Omega) \times V$, then for each real number $T>0$ there exists a unique pair of real functions $\{u, \theta\}$ such that:

$$
\begin{gather*}
u \in C([0, T] ; V) \cap C^{1}\left([0, T] ; L^{2}(\Omega)\right), \quad \theta \in C\left([0, T] ; L^{2}(\Omega)\right) \tag{4.1}\\
u^{\prime \prime}-\mu \Delta u+\sum_{i=1}^{n} \frac{\partial \theta}{\partial x_{i}}=0 \quad \text { in } \quad L^{2}\left(0, T ; V^{\prime}\right) \tag{4.2}\\
\theta^{\prime}-\Delta \theta+\sum_{i=1}^{n} \frac{\partial u^{\prime}}{\partial x_{i}}=0 \quad \text { in } L^{2}\left(0, T ; V^{\prime}\right) \tag{4.3}\\
\frac{\partial u}{\partial \nu}+\alpha u^{\prime}=0 \quad \text { in } L^{2}\left(0, T ; L^{2}\left(\Gamma_{1}\right)\right) \tag{4.4}\\
\frac{\partial \theta}{\partial \nu}+\beta \theta=0 \quad \text { in } L^{2}\left(0, T ; L^{2}\left(\Gamma_{1}\right)\right) \tag{4.5}\\
u(0)=u^{0}, \quad u^{\prime}(0)=u^{1}, \quad \text { and } \theta(0)=\theta^{0} \tag{4.6}
\end{gather*}
$$

Proof. Let $\left(u_{p}^{0}\right)_{p \in \mathbb{N}},\left(u_{p}^{1}\right)_{p \in \mathbb{N}},\left(\theta_{p}^{0}\right)_{p \in \mathbb{N}}$ be sequences in $V \cap H^{2}(\Omega)$ such that

$$
u_{p}^{0} \longrightarrow u^{0} \text { in } V, u_{p}^{1} \longrightarrow u^{1} \text { in } L^{2}(\Omega) \text { and } \theta_{p}^{0} \longrightarrow \theta^{0} \text { in } V
$$

with

$$
\frac{\partial u_{p}^{0}}{\partial \nu}+\alpha(x) u_{p}^{1}=0 \text { on } \Gamma_{1} \text { and } \frac{\partial \theta_{p}^{0}}{\partial \nu}+\beta \theta_{p}^{0}=0 \text { on } \Gamma_{1}
$$

Let $\left\{u_{p}, \theta_{p}\right\}_{p \in \mathbb{N}}$ be a sequence of strong solutions to (1.1)-(1.6) with initial data $\left\{u_{p}^{0}, u_{p}^{1}, \theta_{p}^{0}\right\}_{p \in \mathbb{N}}$. Using the same arguments as in the preceding section, we obtain the following estimates

$$
\begin{gather*}
\left(u_{p}\right)_{p \in \mathbb{N}} \text { is bounded in } L_{\mathrm{loc}}^{\infty}(0, \infty ; V) \tag{4.7}\\
\left(u_{p}^{\prime}\right)_{p \in \mathbb{N}} \text { is bounded in } L_{\mathrm{loc}}^{\infty}(0, \infty ; V) \tag{4.8}\\
\left(u_{p}^{\prime}\right)_{p \in \mathbb{N}} \text { is bounded in } L_{\mathrm{loc}}^{\infty}\left(0, \infty ; H^{1 / 2}\left(\Gamma_{1}\right)\right) \tag{4.9}
\end{gather*}
$$

$$
\begin{align*}
& \left(\frac{\partial u_{p}}{\partial \nu}\right)_{p \in \mathbb{N}} \text { is bounded in } L_{\mathrm{loc}}^{\infty}\left(0, \infty ; H^{1 / 2}\left(\Gamma_{1}\right)\right) \tag{4.10}\\
& \left(\theta_{p}\right)_{p \in \mathbb{N}} \text { is bounded in } L_{\mathrm{loc}}^{2}(0, \infty ; V) \tag{4.11}\\
& \left(\theta_{p}\right)_{p \in \mathbb{N}} \text { is bounded in } L_{\mathrm{loc}}^{\infty}\left(0, \infty ; H^{1 / 2}\left(\Gamma_{1}\right)\right) \tag{4.12}\\
& \left(\frac{\partial \theta_{p}}{\partial \nu}\right)_{p \in \mathbb{N}} \text { is bounded in } L_{\mathrm{loc}}^{2}\left(0, \infty ; H^{1 / 2}\left(\Gamma_{1}\right)\right) . \tag{4.13}
\end{align*}
$$

Note that (4.10) and (4.13) follow as a consequence of

$$
\begin{align*}
& \frac{\partial u_{p}}{\partial \nu}+\alpha u_{p}^{\prime}=0 \text { in } L^{\infty}\left(0, \infty ; H^{1 / 2}\left(\Gamma_{1}\right)\right) \\
& \frac{\partial \theta_{p}}{\partial \nu}+\beta \theta_{p}=0 \text { in } L^{\infty}\left(0, \infty ; H^{1 / 2}\left(\Gamma_{1}\right)\right) . \tag{4.14}
\end{align*}
$$

From (4.7)-(4.13) there exist subsequences of $\left(u_{p}\right)_{p \in \mathbb{N}}$ and $\left(\theta_{p}\right)_{p \in \mathbb{N}}$, still denoted as the original sequences, and functions $u: \Omega \times] 0, \infty[\rightarrow \mathbb{R}, \theta: \Omega \times] 0, \infty[\rightarrow$ $\left.\mathbb{R}, \varphi_{1}: \Gamma_{1} \times\right] 0, \infty\left[\rightarrow \mathbb{R}, \varphi_{2}: \Gamma_{1} \times\right] 0, \infty\left[\rightarrow \mathbb{R}, \chi_{1}: \Gamma_{1} \times\right] 0, \infty\left[\rightarrow \mathbb{R}\right.$, and $\chi_{2}:$ $\left.\Gamma_{1} \times\right] 0, \infty[\rightarrow \mathbb{R}$, such that

$$
\begin{align*}
& u_{p} \rightarrow u \text { weak star in } L_{\mathrm{loc}}^{\infty}(0, \infty ; V) \tag{4.15}\\
& u_{p}^{\prime} \rightarrow u^{\prime} \text { weak star in } L_{\mathrm{loc}}^{\infty}\left(0, \infty ; L^{2}(\Omega)\right) \tag{4.16}\\
& u_{p}^{\prime} \rightarrow \varphi_{1} \text { weakly in } L_{\mathrm{loc}}^{2}\left(0, \infty ; H^{1 / 2}\left(\Gamma_{1}\right)\right) \tag{4.17}\\
& \frac{\partial u_{p}}{\partial \nu} \rightarrow \varphi_{2} \text { weakly in } L_{\mathrm{loc}}^{2}\left(0, \infty ; H^{1 / 2}\left(\Gamma_{1}\right)\right) \tag{4.18}\\
& \theta_{p} \rightarrow \theta \text { weakly in } L_{\mathrm{loc}}^{2}(0, \infty ; V) \tag{4.19}\\
& \theta_{p} \rightarrow \chi_{1} \text { weakly in } L_{\mathrm{loc}}^{2}\left(0, \infty ; H^{1 / 2}\left(\Gamma_{1}\right)\right) \tag{4.20}\\
& \frac{\partial \theta_{p}}{\partial \nu} \rightarrow \chi_{2} \text { weakly in } L_{\mathrm{loc}}^{2}\left(0, \infty ; H^{1 / 2}\left(\Gamma_{1}\right)\right) \tag{4.21}
\end{align*}
$$

Moreover, from Theorem 3.1,

$$
\begin{align*}
& u_{p}^{\prime \prime}-\mu \Delta u_{p}+\sum_{i=1}^{n} \frac{\partial \theta_{p}}{\partial x_{i}}=0 \text { in } L_{l o c}^{\infty}\left(0, \infty ; L^{2}(\Omega)\right), \tag{4.22}\\
& \theta_{p}^{\prime}-\Delta \theta_{p}+\sum_{i=1}^{n} \frac{\partial u_{p}^{\prime}}{\partial x_{i}}=0 \text { in } L_{l o c}^{\infty}\left(0, \infty ; L^{2}(\Omega)\right) . \tag{4.23}
\end{align*}
$$

Multiplying (4.22) and (4.23) by $v \psi$ and $w \phi$ respectively, with v and w in V and ϕ in $\mathcal{D}(0, \infty)$, we deduce the equalities

$$
\begin{aligned}
& -\int_{0}^{\infty}\left(u_{p}^{\prime}(t), v\right) \phi^{\prime}(t) d t+\int_{0}^{\infty} \mu(t)\left(\left(u_{p}(t), v\right)\right) \phi(t) d t \\
& +\int_{0}^{\infty} \int_{\Gamma_{1}} \alpha(x) u_{p}^{\prime}(t) v \phi(t) d \Gamma d t+\sum_{i=1}^{n} \int_{0}^{\infty}\left(\frac{\partial \theta_{p}}{\partial x_{i}}(t), v\right) \phi d t=0 \\
& -\int_{0}^{\infty}\left(\theta_{p}(t), w\right) \phi^{\prime}(t) d t+\int_{0}^{\infty}\left(\left(\theta_{p}(t), w\right)\right) d t \\
& +\beta \int_{0}^{\infty} \int_{\Gamma_{1}} \theta_{p}(t) w \phi(t) d \Gamma d t+\sum_{i=1}^{n} \int_{0}^{\infty}\left(\frac{\partial u_{p}^{\prime}}{\partial x_{i}}(t), w\right) \phi(t) d t=0
\end{aligned}
$$

Taking the limit, as $p \longrightarrow \infty$, from (4.15)-(4.21) we conclude that

$$
\begin{align*}
& -\int_{0}^{\infty}\left(u^{\prime}(t), v\right) \phi^{\prime}(t) d t+\int_{0}^{\infty} \mu(t)((u(t), v)) \phi(t) \tag{4.24}\\
& +\int_{0}^{\infty} \int_{\Gamma_{1}} \alpha(x) u^{\prime}(t) v \phi(t) d \Gamma d t+\sum_{i=1}^{n} \int_{0}^{\infty}\left(\frac{\partial \theta}{\partial \nu}(t), v\right) \phi(t) d t=0 \\
& -\int_{0}^{\infty}(\theta(t), w) \phi^{\prime}(t) d t+\int_{0}^{\infty}((\theta(t), w)) \phi(t) d t \tag{4.25}\\
& +\beta \int_{0}^{\infty} \int_{\Gamma_{1}} \theta(t) w \phi(t) d \Gamma d t+\sum_{i=1}^{n} \int_{0}^{\infty}\left(\frac{\partial u^{\prime}}{\partial x_{i}}, w\right) \phi(t) d t=0
\end{align*}
$$

In view of (4.24) and (4.25), for v and $w \in \mathcal{D}(\Omega)$, we obtain

$$
\begin{gather*}
u^{\prime \prime}-\mu \Delta u+\sum_{i=1}^{n} \frac{\partial \theta}{\partial x_{i}}=0 \text { in } H_{l o c}^{-1}\left(0, \infty ; L^{2}(\Omega)\right) \\
\theta^{\prime}-\Delta \theta+\sum_{i=1}^{n} \frac{\partial u^{\prime}}{\partial x_{i}}=0 \text { in } H_{l o c}^{-1}\left(0, \infty ; L^{2}(\Omega)\right) \tag{4.26}
\end{gather*}
$$

As shown in M. Milla Miranda [7], from (4.8) follows that for $T>0$

$$
\begin{equation*}
u_{p}^{\prime \prime} \longrightarrow u^{\prime \prime} \text { weakly in } H^{-1}\left(0, T ; L^{2}(\Omega)\right) \tag{4.27}
\end{equation*}
$$

Thus, from (4.19), (4.22) and (4.27) we conclude that

$$
\begin{equation*}
\Delta u_{p} \longrightarrow \Delta u \text { weakly in } H^{-1}\left(0, T ; L^{2}(\Omega)\right) \tag{4.28}
\end{equation*}
$$

Furthermore, from (4.15) and (4.28) we obtain $\frac{\partial u}{\partial \nu}$ in $H^{-1}\left(0, T ; H^{-1 / 2}\left(\Gamma_{1}\right)\right)$ and

$$
\begin{equation*}
\frac{\partial u_{p}}{\partial \nu} \rightarrow \frac{\partial u}{\partial \nu} \text { weakly in } H^{-1}\left(0, T ; H^{-1 / 2}\left(\Gamma_{1}\right)\right) \tag{4.29}
\end{equation*}
$$

To prove that $\varphi_{1}=u^{\prime}$ and $\varphi_{2}=\frac{\partial u}{\partial \nu}$, we use (4.18) and the fact that

$$
\begin{equation*}
\frac{\partial u_{p}}{\partial \nu} \rightarrow \varphi_{2} \text { weakly in } H^{-1}\left(0, T ; H^{1 / 2}\left(\Gamma_{1}\right)\right) \tag{4.30}
\end{equation*}
$$

Whence we conclude that $\varphi_{2}=\frac{\partial u}{\partial \nu}$ is in $L^{2}\left(0, T ; L^{2}\left(\Gamma_{1}\right)\right)$, for all $T>0$. Also from (4.15), cf. M. Milla Miranda [7], we get

$$
\begin{equation*}
u_{p}^{\prime} \longrightarrow u^{\prime} \text { weakly in } H^{-1}\left(0, T ; H^{1 / 2}\left(\Gamma_{1}\right)\right) \tag{4.31}
\end{equation*}
$$

and from (4.17) and (4.31) we have $u^{\prime}=\varphi_{1}$ in $L^{\infty}\left(0, T ; H^{1 / 2}\left(\Gamma_{1}\right)\right)$.
Next, we shall prove that $\chi_{1}=\theta$ and $\chi_{2}=\frac{\partial \theta}{\partial \nu}$. In fact, from

$$
\begin{align*}
& \frac{\partial u_{p}^{\prime}}{\partial x_{i}} \rightarrow \frac{\partial u}{\partial x_{i}} \text { weakly in } H^{-1}\left(0, T ; L^{2}(\Omega)\right) \tag{4.32}\\
& \theta_{p}^{\prime} \rightarrow \theta^{\prime} \text { weakly in } H^{-1}(0, T ; V)
\end{align*}
$$

and (4.30) it follows that

$$
\begin{equation*}
\Delta \theta_{p} \longrightarrow \Delta \theta \text { weakly in } H^{-1}\left(0, T ; L^{2}(\Omega)\right) \tag{4.33}
\end{equation*}
$$

From (4.19) and (4.33) it results that

$$
\frac{\partial \theta_{p}}{\partial \nu} \longrightarrow \frac{\partial \theta}{\partial \nu} \text { weakly in } H^{-1}\left(0, T ; H^{-1 / 2}\left(\Gamma_{1}\right)\right)
$$

On the other hand, by (4.21)

$$
\frac{\partial \theta_{p}}{\partial \nu} \longrightarrow \chi_{2} \text { weakly in } H^{-1}\left(0, T ; H^{-1 / 2}\left(\Gamma_{1}\right)\right)
$$

whence we conclude that $\frac{\partial \theta}{\partial \nu}=\chi_{2}$. We deduce that $\chi_{1}=\theta$ in $L^{2}\left(0, T ; H^{1 / 2}\left(\Gamma_{1}\right)\right)$ through of the convergences showed in (4.19) and (4.20). Therefore we obtain

$$
\begin{align*}
& \frac{\partial u}{\partial \nu}+\alpha u^{\prime}=0 \text { in } L^{2}\left(0, T ; L^{2}\left(\Gamma_{1}\right)\right) \\
& \frac{\partial \theta}{\partial \nu}+\beta \theta=0 \text { in } L^{2}\left(0, T ; L^{2}\left(\Gamma_{1}\right)\right) \tag{4.34}
\end{align*}
$$

To prove (4.2) and (4.3) we remark that for all $v, w \in V$,

$$
\begin{aligned}
& |\langle-\Delta u, v\rangle| \leq\|u\| \cdot\|v\|+\left\|\frac{\partial u}{\partial \nu}\right\|_{H^{-1 / 2}\left(\Gamma_{1}\right)} \cdot\|v\|_{H^{1 / 2}\left(\Gamma_{1}\right)} \\
& |\langle-\Delta \theta, v\rangle| \leq\|\theta\| \cdot\|w\|+\left\|\frac{\partial \theta}{\partial \nu}\right\|_{H^{-1 / 2}\left(\Gamma_{1}\right)} \cdot\|w\|_{H^{1 / 2}\left(\Gamma_{1}\right)}
\end{aligned}
$$

and by continuity of the trace operator we deduce to inequalities:

$$
|\langle-\Delta u, v\rangle| \leq C(u)\|v\| \text { and }|\langle-\Delta \theta, w\rangle| \leq C(\theta)\|w\|
$$

whence for all $T>0$ we obtain that

$$
\begin{equation*}
-\Delta u \in L^{2}\left(0, T ; V^{\prime}\right) \quad \text { and } \quad-\Delta \theta \in L^{2}\left(0, T ; V^{\prime}\right) \tag{4.35}
\end{equation*}
$$

So, by (4.24), (4.25), (4.35) and Green's formula, for all ψ in $\mathcal{D}(0, T)$, for all v and w in V we get

$$
\begin{aligned}
& -\int_{0}^{T}\left(u^{\prime}(t), v\right) \psi^{\prime}(t) d t+\int_{0}^{T} \mu(t)\langle-\Delta u(t), v\rangle \psi(t) d t \\
& +\sum_{i=1}^{n} \int_{0}^{T}\left(\frac{\partial \theta}{\partial x_{i}}(t), v\right) \psi(t) d t=0 \\
& -\int_{0}^{T}(\theta(t), w) \phi^{\prime}(t) d t+\int_{0}^{T}\langle-\Delta \theta(t), w\rangle \psi(t) d t \\
& +\sum_{i=1}^{n} \int_{0}^{T}\left(\frac{\partial u^{\prime}}{\partial x_{i}}(t), w\right) \psi(t) d t=0 .
\end{aligned}
$$

From these two inequalities and (4.35), we obtain that for each $T>0$

$$
\begin{gathered}
u^{\prime \prime}-\mu \Delta u+\sum_{i=1}^{n} \frac{\partial \theta}{\partial x_{i}}=0 \text { in } L^{2}\left(0, T ; V^{\prime}\right) \\
\theta^{\prime}-\Delta \theta+\sum_{i=1}^{n} \frac{\partial u^{\prime}}{\partial x_{i}}=0 \text { in } L^{2}\left(0, T ; V^{\prime}\right)
\end{gathered}
$$

The regularity in (4.1) follows from $\left\{u_{p}, \theta_{p}\right\}$ being a Cauchy sequence. The initial data considerations follow from the analysis of the Galerkin approximation. The uniqueness of the weak solution is proved by the method of Lions Magenes [6], see also Visik-Ladyzhenskaya [11].

Now, we give a result which assures the existence and uniqueness of a weak global solution for (1.1)-(1.6).

Corollary 4.1 Under the supplementary hypothesis $\mu^{\prime} \in L^{1}(0, \infty)$, the pair of functions $\{u, \theta\}$ obtained by Theorem 4.1 satisfies the following properties:

$$
\begin{gathered}
u \in L^{\infty}(0, \infty ; V), \quad \theta \in L^{\infty}\left(0, \infty ; L^{2}(\Omega)\right) \\
\frac{\partial u}{\partial \nu}+\alpha u^{\prime}=0 \quad \text { and } \frac{\partial \theta}{\partial \nu}+\beta \theta=0 \quad \text { in } L^{2}\left(0, \infty ; L^{2}\left(\Gamma_{1}\right)\right) \\
u(0)=u^{0}, \quad u^{\prime}(0)=u^{1} \quad \text { and } \quad \theta(0)=\theta^{0}
\end{gathered}
$$

5 Asymptotic Behavior

This section concerns the behavior of the solutions obtained in the preceding sections, as $t \rightarrow+\infty$. First note that for strong solutions and weak solutions to (1.1)-(1.6), the energy

$$
\begin{equation*}
E(t)=\frac{1}{2}\left\{\mu(t)\|u(t)\|^{2}+\left|u^{\prime}(t)\right|^{2}+|\theta(t)|^{2}\right\} . \tag{5.1}
\end{equation*}
$$

does not increase. In fact, we can easily see that

$$
\begin{aligned}
E^{\prime}(t)= & \frac{\mu^{\prime}(t)}{2}\|u(t)\|^{2}-\mu(t) \int_{\Gamma_{1}} \alpha(x)\left(u^{\prime}(t)\right)^{2} d \Gamma-\|\theta(t)\|^{2} \\
& -\beta \int_{\Gamma_{1}}(\theta(t))^{2} d \Gamma-\sum_{i=1}^{n} \int_{\Gamma_{1}} u^{\prime}(t) \theta(t) \nu_{i} d \Gamma
\end{aligned}
$$

Also observe that

$$
-\sum_{i=1}^{n} \int_{\Gamma_{1}} u^{\prime}(t) \theta(t) \nu_{i} d \Gamma \leq \frac{\mu(t)}{2} \int_{\Gamma_{1}} \alpha(x)\left(u^{\prime}(t)\right)^{2} d \Gamma+\frac{n}{2 \mu(t)} \int_{\Gamma_{1}} \frac{1}{\alpha(x)}(\theta(t))^{2} d \Gamma
$$

Because $\mu^{\prime}(t) \leq 0$ and the hypothesis (2.1), we can conclude that

$$
\begin{equation*}
E^{\prime}(t) \leq-\frac{\mu(t)}{2} \int_{\Gamma_{1}} \alpha(x)\left(u^{\prime}(t)\right)^{2} d \Gamma-\|\theta(t)\|^{2} \tag{5.2}
\end{equation*}
$$

To estimate $E(t)$ we put $\alpha(x)=m(x) . \nu(x)$ and use the representation

$$
\Gamma_{0}=\{x \in \Gamma ; m(x) \cdot \nu(x) \leq 0\}, \quad \Gamma_{1}=\{x \in \Gamma ; m(x) \cdot \nu(x)>0\}
$$

where $m(x)$ is the vectorial function $x-x^{0}$, for $x \in \mathbb{R}^{n}$ and "." denotes scalar product in \mathbb{R}^{n}. We also use

$$
\begin{equation*}
R\left(x^{0}\right)=\|m\|_{L^{\infty}(\Omega)} \tag{5.3}
\end{equation*}
$$

and positive constants $\delta_{0}, \delta_{1}, k$ such that

$$
\begin{gather*}
|v|^{2} \leq \delta_{0}\|v\|^{2}, \quad \text { for all } v \in V \tag{5.4}\\
\|v\|^{2} \leq \delta_{1}\|v\|_{V \cap H^{2}(\Omega)}^{2}, \quad \text { for all } v \in V \cap H^{2}(\Omega) \tag{5.5}\\
\int_{\Gamma_{1}}(m . \nu) v^{2} d \Gamma \leq k\|v\|^{2}, \quad \text { for all } v \in V \tag{5.6}
\end{gather*}
$$

Theorem 5.1 If $\left\{u^{0}, u^{1}, \theta^{0}\right\} \in V \times L^{2}(\Omega) \times V, \mu \in W^{1, \infty}(0, \infty)$ with $\mu^{\prime}(t) \leq 0$ on $] 0, \infty[$, then there exists a positive constant ω such that

$$
\begin{equation*}
E(t) \leq 3 E(0) e^{-\omega t}, \quad \text { for all } t \geq 0 \tag{5.7}
\end{equation*}
$$

Proof. As a first step, we consider the strong solution. Let

$$
\begin{equation*}
\rho(t)=2\left(u^{\prime}(t), m \cdot \nabla u(t)\right)+(n-1)\left(u^{\prime}(t), u(t)\right) \tag{5.8}
\end{equation*}
$$

Then

$$
\begin{equation*}
|\rho(t)| \leq(n-1)|u(t)|^{2}+n\left|u^{\prime}(t)\right|^{2}+R^{2}\left(x^{0}\right)\|u(t)\|^{2} . \tag{5.9}
\end{equation*}
$$

Let $\varepsilon_{1}, \varepsilon_{2}, \varepsilon$ be positive real numbers such that

$$
\begin{gather*}
\varepsilon_{1} \leq \min \left\{\frac{1}{4 n}, \frac{\mu_{0}}{12 n R^{2}\left(x^{0}\right)+12 n^{3} \delta_{0}}\right\} \tag{5.10}\\
\varepsilon_{2} \leq \min \left\{\frac{1}{2\left(R^{2}\left(x^{0}\right)+\frac{1}{\mu_{0}}+6 k n^{2}\right)}, \frac{2}{\delta_{0}}\right\} \tag{5.11}\\
\varepsilon \leq \min \left\{\varepsilon_{1}, \varepsilon_{2}\right\} \tag{5.12}
\end{gather*}
$$

Also let the perturbed energy given by

$$
\begin{equation*}
E_{\varepsilon}(t)=E(t)+\varepsilon \rho(t) . \tag{5.13}
\end{equation*}
$$

Then from (5.13), (5.4), and (5.9) we get

$$
E_{\varepsilon}(t) \leq E(t)+\left(\varepsilon n \delta_{0}+\varepsilon R^{2}\left(x^{0}\right)\right)\|u(t)\|^{2}+\varepsilon n\left|u^{\prime}(t)\right|^{2}
$$

whence by (5.12) it follows that

$$
E_{\varepsilon}(t) \leq E(t)+\varepsilon_{1}\left(n \delta_{0}+R^{2}\left(x^{0}\right)\right)\|u(t)\|^{2}+\varepsilon_{1} n\left|u^{\prime}(t)\right|^{2}
$$

By (5.1) and (5.10) we obtain $E_{\varepsilon} \leq \frac{3}{2} E(t)$. On the other hand, using similar arguments, from (5.9) and (5.13) we deduce that $\frac{1}{2} E(t) \leq E_{\varepsilon}$. In summary,

$$
\begin{equation*}
\frac{1}{2} E(t) \leq E_{\varepsilon} \leq \frac{3}{2} E(t), \quad \text { for all } t \geq 0 \tag{5.14}
\end{equation*}
$$

To estimate $E_{\varepsilon}^{\prime}(t)$ we differentiate $\rho(t)$,

$$
\begin{align*}
\rho^{\prime}(t)= & 2\left(u^{\prime \prime}(t), m \cdot \nabla(t)\right)+2\left(u^{\prime}(t), m \cdot \nabla u^{\prime}(t)\right) \tag{5.15}\\
& +(n-1)\left(u^{\prime \prime}(t), u(t)\right)+(n-1)\left|u^{\prime}(t)\right|^{2} .
\end{align*}
$$

Since $u^{\prime \prime}=\mu \Delta u-\sum_{i=1}^{n} \frac{\partial \theta}{\partial x_{i}}(t)$ we have

$$
\begin{align*}
\rho^{\prime}(t)= & 2 \mu(t)(\Delta u(t), m \cdot \nabla u(t))-2 \sum_{i=1}^{n}\left(\frac{\partial \theta}{\partial x_{i}}(t), m \cdot \nabla u(t)\right) \\
& +2\left(u^{\prime}(t), m \cdot \nabla u^{\prime}(t)\right)+(n-1) \mu(t)(\Delta u(t), u(t)) \tag{5.16}\\
& -(n-1) \sum_{i=1}^{n}\left(\frac{\partial \theta}{\partial x_{i}}(t), u(t)\right)+(n-1)\left|u^{\prime}(t)\right|^{2} .
\end{align*}
$$

our next objective is to find bounds for the right-hand-side terms of the equation above.

Remark 5.1 For all $v \in V \cap H^{2}(\Omega)$,

$$
\begin{equation*}
2(\Delta v, m \cdot \nabla v) \leq(n-2)\|v\|^{2}+R^{2}\left(x^{0}\right) \int_{\Gamma_{1}} \frac{1}{m \cdot \nu}\left|\frac{\partial v}{\partial \nu}\right|^{2} d \Gamma . \tag{5.17}
\end{equation*}
$$

In fact, the Rellich's identity, see V. Komornik and E. Zuazua [4], gives

$$
\begin{equation*}
2(\Delta v, m . \nabla v)=(n-2)\|v\|^{2}-\int_{\Gamma}(m . \nu)|\nabla v|^{2} d \Gamma+2 \int_{\Gamma} \frac{\partial v}{\partial \nu} m . \nabla v d \Gamma . \tag{5.18}
\end{equation*}
$$

Note that

$$
\begin{align*}
-\int_{\Gamma}(m \cdot \nu)|\nabla v|^{2} d \Gamma & =-\int_{\Gamma_{0}}(m \cdot \nu)\left(\frac{\partial v}{\partial \nu}\right)^{2} d \Gamma-\int_{\Gamma_{1}}(m \cdot \nu)|\nabla v|^{2} d \Gamma \\
& \leq-\int_{\Gamma_{0}}(m \cdot \nu)\left(\frac{\partial v}{\partial \nu}\right)^{2} d \Gamma \tag{5.19}
\end{align*}
$$

because $\frac{\partial v}{\partial x_{i}}=\nu_{i} \frac{\partial v}{\partial \nu}$ on Γ_{0} and $m . \nu>0$ on Γ_{1}. Also note that

$$
\begin{equation*}
2 \int_{\Gamma} \frac{\partial v}{\partial \nu} m . \nabla v d \Gamma=2 \int_{\Gamma_{0}}(m . \nu)\left(\frac{\partial v}{\partial \nu}\right)^{2} d \Gamma+2 \int_{\Gamma_{1}} \frac{\partial v}{\partial \nu} m . \nabla v d \Gamma \tag{5.20}
\end{equation*}
$$

and by (5.3)

$$
\begin{aligned}
2 \int_{\Gamma_{1}} \frac{\partial v}{\partial \nu} m . \nabla v d \Gamma & \leq 2 \int_{\Gamma_{1}}\left|\frac{\partial v}{\partial \nu}\right| R\left(x^{0}\right)|\nabla v| d \Gamma \\
& \leq R^{2}\left(x^{0}\right) \int_{\Gamma_{1}} \frac{1}{m \cdot \nu}\left(\frac{\partial v}{\partial \nu}\right)^{2} d \Gamma+\int_{\Gamma_{1}}(m . \nu)|\nabla v|^{2} d \Gamma .
\end{aligned}
$$

This inequality with (5.20) yields

$$
\begin{align*}
& 2 \int_{\Gamma} \frac{\partial v}{\partial \nu} m \cdot \nabla v d \Gamma \tag{5.21}\\
& \quad \leq 2 \int_{\Gamma_{0}}(m \cdot \nu)\left(\frac{\partial v}{\partial \nu}\right)^{2} d \Gamma+R^{2}\left(x^{0}\right) \int_{\Gamma_{1}} \frac{1}{m \cdot \nu}\left(\frac{\partial v}{\partial \nu}\right)^{2} d \Gamma+\int_{\Gamma_{1}}(m \cdot \nu)|\nabla v|^{2} d \Gamma .
\end{align*}
$$

Combining (5.18), (5.19), and (5.21), we come to the inequality

$$
\begin{aligned}
2(\Delta v, m \cdot \nabla v) \leq & (n-2)\|v\|^{2}+\int_{\Gamma_{0}}(m \cdot \nu)\left(\frac{\partial v}{\partial \nu}\right)^{2} d \Gamma \\
& +R^{2}\left(x^{0}\right) \int_{\Gamma_{1}} \frac{1}{m \cdot \nu}\left(\frac{\partial v}{\partial \nu}\right)^{2} d \Gamma .
\end{aligned}
$$

Recall that $m . \nu \leq 0$ on Γ_{0}; therefore, (5.17) follows. Now, we shall analyze each term in (5.17).

Analysis of $2 \mu(t)(\Delta u(t), m . \nabla u(t))$: Thanks to Remark 5.1 and (3.5) we have

$$
\begin{equation*}
2 \mu(t)(\Delta u(t), m . \nabla u(t)) \leq \mu(t)(n-2)\|u(t)\|^{2}+\mu(t) R^{2}\left(x^{0}\right) \int_{\Gamma_{1}}(m . \nu)\left(u^{\prime}(t)\right)^{2} d \Gamma \tag{5.22}
\end{equation*}
$$

Analysis of $-2 \sum_{i=1}^{n}\left(\frac{\partial \theta}{\partial x_{i}}(t), m \cdot \nabla u(t)\right)$:

$$
\begin{aligned}
-2 \sum_{i=1}^{n}\left(\frac{\partial \theta}{\partial x_{i}}(t), m \cdot \nabla u(t)\right) & \leq 2 \sum_{i=1}^{n}\left|\frac{\partial \theta}{\partial x_{i}}(t)\right| R\left(x^{0}\right)\|u(t)\| \\
& \leq \sum_{i=1}^{n} \frac{6 n R^{2}\left(x^{0}\right)}{\mu_{0}}\left|\frac{\partial \theta}{\partial x_{i}}(t)\right|^{2}+\sum_{i=1}^{n} \frac{1}{6 n} \mu_{0}\|u(t)\|^{2}
\end{aligned}
$$

Thus

$$
\begin{equation*}
-2 \sum_{i=1}^{n}\left(\frac{\partial \theta}{\partial x_{i}}(t), m \cdot \nabla u(t)\right) \leq \frac{6 n R^{2}\left(x^{0}\right)}{\mu_{0}}\|\theta(t)\|^{2}+\frac{\mu(t)}{6}\|u(t)\|^{2} \tag{5.23}
\end{equation*}
$$

Analysis of $2\left(u^{\prime}(t), m . \nabla u^{\prime}(t)\right)$:

$$
\begin{aligned}
2\left(u^{\prime}(t), m . \nabla u^{\prime}(t)\right) & =2 \int_{\Omega} u^{\prime}(t) m_{j} \frac{\partial u^{\prime}}{\partial x_{j}}(t) d x \\
& =\int_{\Omega} m_{j} \frac{\partial\left(u^{\prime}\right)^{2}}{\partial x_{j}}(t) d x \\
& =-\int_{\Omega} \frac{\partial m_{j}}{\partial x_{j}}\left(u^{\prime}(t)\right)^{2} d x+\int_{\Gamma_{1}}\left(m_{j} \nu_{j}\right)\left(u^{\prime}(t)\right)^{2} d \Gamma(5.24) \\
& =-n\left|u^{\prime}(t)\right|^{2}+\int_{\Gamma_{1}}(m \cdot \nu)\left(u^{\prime}(t)\right)^{2} d \Gamma .
\end{aligned}
$$

Analysis of $\mu(t)(n-1)(\Delta u(t), u(t))$: Applying Green's theorem and (3.5), we get

$$
\mu(t)(n-1)(\Delta u(t), u(t))=-\mu(t)(n-1)\left[\|u(t)\|^{2}+\int_{\Gamma_{1}}(m \cdot \nu) u^{\prime}(t) u(t) d \Gamma\right]
$$

By the Cauchy-Schwarz inequality

$$
\begin{aligned}
\mu(t)(n-1)(\Delta u(t), u(t)) \leq & -\mu(t)(n-1)\|u(t)\|^{2} \\
& +6 k \mu(t)(n-1)^{2} \int_{\Gamma_{1}}(m \cdot \nu)\left(u^{\prime}(t)\right)^{2} d \Gamma \\
& +\frac{\mu(t)}{6 k} \int_{\Gamma_{1}}(m \cdot \nu)(u(t))^{2} d \Gamma
\end{aligned}
$$

and by (5.6)

$$
\begin{aligned}
\mu(t)(n-1)(\Delta u(t), u(t)) \leq & -\mu(t)(n-1)\|u(t)\|^{2} \\
& +6 k \mu(t)(n-1)^{2} \int_{\Gamma_{1}}(m \cdot \nu)\left(u^{\prime}(t)\right)^{2} d \Gamma+\frac{\mu(t)}{6}\|u(t)\|^{2}
\end{aligned}
$$

Hence

$$
\begin{align*}
\mu(t)(n-1)(\Delta u(t), u(t)) \leq & -\mu(t)\left(n-\frac{7}{6}\right)\|u(t)\|^{2} \tag{5.25}\\
& +6 k \mu(t)(n-1)^{2} \int_{\Gamma_{1}}(m \cdot \nu)\left(u^{\prime}(t)^{2} d \Gamma\right.
\end{align*}
$$

Analysis of $-(n-1)\left(\sum_{i=1}^{n} \frac{\partial \theta}{\partial x_{i}}, u(t)\right)$:

$$
\begin{aligned}
-(n-1) \sum_{i=1}^{n}\left(\frac{\partial \theta}{\partial x_{i}}(t), u(t)\right) & \leq(n-1) \sum_{i=1}^{n}\left|\frac{\partial \theta}{\partial x_{i}}(t)\right||u(t)| \\
& \leq \frac{6 n \delta_{0}(n-1)^{2}}{\mu_{0}}\|\theta(t)\|^{2}+\sum_{i=1}^{n} \frac{\mu_{0}}{6 n \delta_{0}}|u(t)|^{2}
\end{aligned}
$$

whence by (5.4)

$$
\begin{equation*}
-(n-1) \sum_{i=1}^{n}\left(\frac{\partial \theta}{\partial x_{i}}(t), u(t)\right) \leq \frac{6 n \delta_{0}(n-1)^{2}}{\mu_{0}}\|\theta(t)\|^{2}+\frac{\mu(t)}{6}\|u(t)\|^{2} \tag{5.26}
\end{equation*}
$$

Using (5.22)-(5.6) in (5.17) we conclude that

$$
\begin{align*}
\rho^{\prime}(t) \leq & -\frac{\mu(t)}{2}\|u(t)\|^{2}+\left[\frac{6 n R^{2}\left(x^{0}\right)+6 n^{3} \delta_{0}}{\mu_{0}}\right]\|\theta(t)\|^{2}-\left|u^{\prime}(t)\right|^{2} \\
& +\mu(t)\left[R^{2}\left(x^{0}\right)+\frac{1}{\mu_{0}}+6 k n^{2}\right] \int_{\Gamma_{1}}(m \cdot \nu)\left(u^{\prime}(t)\right)^{2} d \Gamma \tag{5.27}
\end{align*}
$$

Combining (5.2), (5.13) and (5.27), we get

$$
\begin{aligned}
E_{\varepsilon}^{\prime}(t) \leq & -\|\theta(t)\|^{2}-\frac{\mu(t)}{2} \int_{\Gamma_{1}}(m \cdot \nu)\left(u^{\prime}(t)\right)^{2} d \Gamma \\
& -\frac{\varepsilon}{2} \mu(t)\|u(t)\|^{2}+\varepsilon\left[\frac{6 n R^{2}\left(x^{0}\right)+6 n^{3} \delta_{0}}{\mu_{0}}\right]\|\theta(t)\|^{2}-\varepsilon\left|u^{\prime}(t)\right|^{2} \\
& +\varepsilon \mu(t)\left[R^{2}\left(x^{0}\right)+\frac{1}{\mu_{0}}+6 k n^{2}\right] \int_{\Gamma_{1}}(m \cdot \nu)\left(u^{\prime}(t)\right)^{2} d \Gamma .
\end{aligned}
$$

Then, by (5.4) and (5.12), it results that

$$
\begin{aligned}
E_{\varepsilon}^{\prime}(t) \leq & -\|\theta(t)\|^{2}-\frac{\mu(t)}{2} \int_{\Gamma_{1}}(m \cdot \nu)\left(u^{\prime}(t)\right)^{2} d \Gamma \\
& -\frac{\varepsilon}{2} \mu(t)\|u(t)\|^{2}+\varepsilon_{1}\left[\frac{6 n R^{2}\left(x^{0}\right)+6 n^{3} \delta_{0}}{\mu_{0}}\right]\|\theta(t)\|^{2}-\varepsilon\left|u^{\prime}(t)\right|^{2} \\
& +\varepsilon_{2} \mu(t)\left[R^{2}\left(x^{0}\right)+\frac{1}{\mu_{0}}+6 k n^{2}\right] \int_{\Gamma_{1}}(m \cdot \nu)\left(u^{\prime}(t)\right)^{2} d \Gamma .
\end{aligned}
$$

Using (5.10) and (5.11) we obtain

$$
E_{\varepsilon}^{\prime}(t) \leq-\frac{1}{2}\|\theta(t)\|^{2}-\frac{\varepsilon}{2} \mu(t)\|u(t)\|^{2}-\frac{\varepsilon}{2}\left|u^{\prime}(t)\right|^{2}
$$

Also, from (5.4), (5.11) and (5.12) we obtained

$$
E_{\varepsilon}^{\prime}(t) \leq-\frac{1}{\delta_{0}}|\theta(t)|^{2}-\frac{\varepsilon}{2} \mu(t)\|u(t)\|^{2}-\frac{\varepsilon}{2}\left|u^{\prime}(t)\right|^{2}
$$

By (5.11) and (5.12) we have $-\frac{\varepsilon}{2} \geq-\frac{1}{\delta_{0}}$, then

$$
\begin{align*}
E_{\varepsilon}^{\prime}(t) & \leq-\frac{\varepsilon}{2}|\theta(t)|^{2}-\frac{\varepsilon}{2} \mu(t)\|u(t)\|^{2}-\frac{\varepsilon}{2}\left|u^{\prime}(t)\right|^{2} \\
& =-\frac{\varepsilon}{2} E(t) \tag{5.28}
\end{align*}
$$

From (5.14), we obtain $E_{\varepsilon}^{\prime}(t) \leq-\frac{2 \varepsilon}{3} E_{\varepsilon}(t)$. In turn this inequality implies $E_{\varepsilon}(t) \leq E_{\varepsilon}(0) e^{-\frac{2}{3} \varepsilon t}$. From (5.14), we obtain exponential decay for strong solutions

$$
E(t) \leq 3 E(0) e^{-\frac{2}{3} \varepsilon t}, \quad \text { for all } t \geq 0
$$

Remark Using a denseness argument, we prove the same behavior for weak solutions.

Acknowledgments. The authors would like to thank Professor Luiz Adauto Medeiros for his suggestions and comments.

References

[1] Brezis, H., Analyse Fonctionelle (Théorie et Applications), Masson, Paris, 1983.
[2] Henry, D., Lopes, O., Perisinotto, A., Linear thermoelasticity: asymptotic stability and essential spectrum, Nonlinear Analysis, Theory \& Applications, vol. 21, 1(1993), 65-75.
[3] Komornik, V., Exact Controllability and Stabilization. The Multiplier Method, John Wiley and Sons, Masson, 1994.
[4] Komornik, V., Zuazua, E., A direct method for boundary stabilization of the wave equation, J. Math. Pure et Appl., 69(1990), 33-54.
[5] Lions, J. L., Problèmes aux Limites dans les Équations aux Dérivées Partielles, Les Presses de l'Université de Montreal, Montreal, Canada, 1965.
[6] Lions, J. L., Magenes, E., Problèmes aux Limites non Homogènes, Applications 1, Dunod, Paris, 1968.
[7] Milla Miranda, M., Traço para o Dual dos Espaços de Sobolev, Bol. Soc. Paran. Matemática ($2 \underline{\underline{a}}$ série), $11,2(1990), 131-157$.
[8] Milla Miranda, M., Medeiros, L. A., On a Boundary Value Problem for Wave Equations: Existence, Uniqueness-Asymptotic Behavior, Revista de Matemticas Aplicadas, Univerdidade de Chile, 17(1996), 47-73.
[9] Muñoz Rivera, J. E., Energy decay rate in linear thermoelasticity, Funkcialaj Ekvacioj, 35(1992), 19-30.
[10] Scott Hansen, W., Exponential energy decay in linear thermoelastic rod, Journal of Math. Analysis and Applications, 167(1992), 429-442.
[11] Visik, M. I., Ladyzhenskaia, O. A., Boundary Value Problems for Partial Differential Equations and Certain Classes of Operator Equations, A.M.S. Translations Series 2 10,(1958), 223-281.
H. R. Clark

Universidade Federal Fluminense, RJ, Brazil
E-mail address: ganhrc@vm.uff.br
L. P. San Gil Jutuca

Universidade do Rio de Janeiro, RJ, Brazil
E-mail address: rsangil@iq.ufrj.br
M. Milla Miranda

Universidade Federal do Rio de Janeiro, RJ, Brazil
Instituto de Matemática CP 68530-CEP 21949-900

[^0]: * 1991 Mathematics Subject Classifications: 35F15, 35N10, 35B40.

 Key words and phrases: Mixed problem, Boundary damping, Exponential stability.
 © 1998 Southwest Texas State University and University of North Texas.
 Submitted August 24, 1997. Published February 13, 1998.

