ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, Vol. **1997**(1997), No. 16, pp. 1–7. ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp (login: ftp) 147.26.103.110 or 129.120.3.113

Asymptotic instability of nonlinear differential equations *

Rafael Avis & Raúl Naulin

Abstract

This article shows that the zero solution to the system

$$x' = A(t)x + f(t, x), \quad f(t, 0) = 0$$

is unstable. To show instability, we impose conditions on the nonlinear part f(t,x) and on the fundamental matrix of the linear system y' = A(t)y. Our results generalize the instability results obtained by J. M. Bownds, Hatvani-Pintér, and K. L. Chiou.

1 Introduction

Bownds [1] studied stability properties of the second order differential equations

$$y'' + a(t)y = 0, t \ge 0$$
 (1)

$$x'' + a(t)x = f(t, x, x'), \quad t \ge 0,$$
(2)

where a(t) is a continuous real-valued function. It is proved in [1] that, if (1) has a stable zero solution and has another solution with the property

$$\limsup_{t \to \infty} (|y(t)| + |y'(t)|) > 0, \qquad (3)$$

then, under suitable conditions on f, there exists a solution x to (2) which satisfies (3). Bownds [1] conjectured that this result is true without the stability assumption for (1), conjecture that was later proven in [6]. This result and some other ideas from [6] have opened interesting possibilities in the study of asymptotic instability, as shown in [7].

This article concerns the generalization of the results given in [2] for the systems

$$y'(t) = A(t)y(t), \quad t \ge 0 \tag{4}$$

$$x'(t) = A(t)x(t) + f(t, x(t)), \quad f(t, 0) = 0, \ t \ge 0$$
(5)

$$x'(t) = A(t)x(t) + b(t), \quad t \ge 0,$$
(6)

 $^{^*\,1991}$ Mathematics Subject Classifications: 39A11, 39A10.

Key words and phrases: Liapunov instability, h-stability.

 $[\]odot 1997$ Southwest Texas State University and University of North Texas.

Submitted July 9, 1997. Published October 15, 1997.

where A(t), f(t, x) and b(t) are continuous functions, and f(t, x) satisfies

$$|f(t,x)| \le \gamma(t)|x|^m, \qquad (7)$$

where m is a positive constant and γ is an integrable function. The following two theorems are proven in [2].

Theorem A [2] Assume that the fundamental matrix, Φ , of System (4) satisfies

$$|\Phi(t)\Phi^{-1}(s)| \le K \frac{h(t)}{h(s)}, \quad s \ge t \ge t_0,$$
(8)

for some constant K. If (7) is fulfilled with $\gamma \in L^1[0,\infty)$, and there exists a solution y(t) of (4) such that

$$\limsup_{t \to \infty} |y(t)|0, \qquad (9)$$

then there exists a nontrivial solution x(t) to (5) satisfying (9).

Theorem B [2] If the linear system (4) has a solution y such that,

$$0 < \limsup_{t \to \infty} |y(t)| \le \infty, \qquad (10)$$

then there exists a solution x(t) of (6) satisfying (10).

Our goal is to extend Theorems A and B for functions f(t, x) for which (7) holds more general functions γ . This generalization is obtained by using the notion of *h*-asymptotic instability.

2 Preliminaries

Let V^n denote one of the spaces \mathbb{R}^n or \mathbb{C}^n . In this space |x| denotes a fixed norm of a vector x, and |A| denotes the corresponding matrix-norm of matrix A. Throughout this article, the function h is assumed to be positive and continuous, the interval $[0, +\infty)$ is denoted by J, and we use the following notation:

- $|x|_h = \sup_{t \ge 0} \left| \frac{x(t)}{h(t)} \right|$
- $C_h = \{x : J \to V^n : x \text{ is continuous and } |x|_h < \infty\},\$
- $B_h[0,1] := \{x \in C_h : |x|_h \le 1\},\$

•
$$L_h^1 = \{x: J \to V^n: \int_0^\infty \frac{|x(t)|}{h(t)} ds < \infty\}.$$

The following definitions are taken from [8].

Definition 1 We say that the null solution to (5) is:

Rafael Avis & Raúl Naulin

h-Unstable on J iff there exist an $\varepsilon > 0$ and $t_0 \in J$, such that for each $\delta > 0$, there exist an initial condition ξ_{δ} and a $t_{\delta} > 0$, such that

$$|h(t_0)^{-1}\xi_{\delta}| < \delta$$
, and $|h(t_{\delta})^{-1}x(t_{\delta}, t_0, \xi_{\delta})| \ge \varepsilon$.

Asymptotically *h***-unstable** on J iff x = 0 is *h*-unstable or there exists a $t_0 \in J$, such that for any $\delta > 0$, there exists $\xi \in V^n$ such that

$$|h(t_0)^{-1}\xi_{\delta}| < \delta, \text{ and } \limsup_{t \to \infty} |h(t)^{-1}x(t,t_0,\xi_{\delta})| > 0.$$

3 h-Asymptotic instability

Theorem 1 Assume that the fundamental matrix of system (4) satisfies (8), and the function f(t,x) in (5) satisfies (7) with $\gamma \in L^1_{h^{1-m}}$. If there exists a solution of (4), such that

$$0 < \limsup_{t \to \infty} |\frac{y(t)}{h(t)}| < \infty, \tag{11}$$

then there exists a nontrivial solution x of (5) with Property (11).

Proof. From (11), we may assume that for a fixed ε , with $0 < \varepsilon < 1$,

$$|h(t)^{-1}y(t)| \le 1 - \varepsilon, \quad \forall t \ge 0.$$
(12)

Since $\gamma \in L^1_{h^{1-m}}$, there exists a positive t_0 , such that

$$K \int_{t}^{\infty} h(s)^{m-1} \gamma(s) \, ds < \varepsilon \,, \quad \forall t \ge t_0, \tag{13}$$

where K is the same constant that appears in (8). We find a solution to (5) by finding a solution to the integral equation

$$x(t) = y(t) - \Phi(t) \int_t^\infty \Phi^{-1}(s) f(s, x(s)) \, ds, \quad t \ge t_0 \, ,$$

on the set $B_h[0,1]$. For $x \in B_h[0,1]$, define

$$\mathcal{U}(x)(t) = y(t) - \int_{t}^{\infty} \Phi(t) \Phi^{-1}(s) f(s, x(s)) \, ds.$$
(14)

Using (7), (8), and (12), we obtain

$$|h(t)^{-1}\mathcal{U}(x)(t)| \le 1 - \varepsilon + \int_t^\infty |h(t)^{-1}\Phi(t)\Phi^{-1}(s)|\gamma(s)|x(s)|^m \, ds \, .$$

For $t \geq t_0$ we obtain

$$\begin{aligned} |h(t)^{-1}\mathcal{U}(x)(t)| &\leq 1 - \varepsilon + \int_t^\infty |h(t)^{-1}\Phi(t)\Phi^{-1}(s)|\gamma(s)|h(s)h^{-1}(s)x(s)|^m \, ds \\ &\leq 1 - \varepsilon + K \int_t^\infty h(s)^{m-1}\gamma(s) \, ds \\ &\leq 1 - \varepsilon + \varepsilon = 1 \,. \end{aligned}$$

Hence $\mathcal{U}: B_h[0,1] \to B_h[0,1].$

Now, we prove that \mathcal{U} is continuous in the following sense: Suppose that a sequence $\{x_n\}$ in C_h converges uniformly to x on each compact subinterval of J, then $\mathcal{U}(x_n)$ converges uniformly to $\mathcal{U}(x)$ on each compact subinterval of J.

For a fixed $T > t_0$, we will show the uniform convergence of $\{\mathcal{U}(x_n)\}$ on $[t_0, T]$. Choose $t_1 > T$, such that $t > t_1$ implies

$$K \int_{t}^{\infty} h(s)^{-1} \gamma(s) \, ds \le \frac{\varepsilon}{4} \,. \tag{15}$$

By the uniform convergence of $\{x_n\}$ on the interval $[t_0, t_1]$, there exists a positive integer $N = N(\varepsilon, t_1)$, such that $n \ge N$ implies

$$|f(s, x_n(s)) - f(s, x(s))| \le \varepsilon \left[2Kt_1 \sup_{[t_0, t_1]} |h(t)^{-1}| \right]^{-1}, \ \forall s \in [t_0, t_1].$$
(16)

For $t \in [t_0, T]$ we write

$$|h(t)^{-1} \left[\mathcal{U}(x_n)(t) - \mathcal{U}(x)(t) \right] | \le I_1 + I_2 + I_3, \tag{17}$$

where

$$I_{1} = \int_{t}^{t_{1}} |h(t)^{-1} \Phi(t) \Phi^{-1}(s)| |f(s, x_{n}(s)) - f(s, x(s))| ds$$

$$I_{2} = \int_{t_{1}}^{\infty} |h(t)^{-1} \Phi(t) \Phi^{-1}(s)| |f(s, x_{n}(s))| ds$$

$$I_{3} = \int_{t_{1}}^{\infty} |h(t)^{-1} \Phi(t) \Phi^{-1}(s)| |f(s, x(s))| ds.$$

From (7) and (13) we obtain $I_2 \leq \frac{\varepsilon}{4}$ and $I_3 \leq \frac{\varepsilon}{4}$. From (15) we have $I_1 \leq \frac{\varepsilon}{2}$. These estimates and (17) yield

$$|h(t)^{-1}[\mathcal{U}(x_n)(t) - \mathcal{U}(x)(t)]| \le \varepsilon, \ \forall t \in [t_0, T],$$

which proves the uniform convergence of $\mathcal{U}(x_n)$ to $\mathcal{U}(x)$ on $[t_0, T]$.

Now, we prove that the set of functions $\mathcal{U}(B_h[0,1])$ is equicontinuous at each point $t \in [t_0, \infty)$.

EJDE-1997/16

For each $x \in B_h[0, 1]$, the function $z(t) = \mathcal{U}(x)(t)$ is a solution of the non-homogeneous linear system

$$z'(t) = A(t)z(t) + f(t, x(t)).$$

Since

$$|h(t)^{-1}z(t)| = |h(t)^{-1}\mathcal{U}(x)(t)| \le 1$$

and |f(t, x(t))| is uniformly bounded on any finite t-interval, the set of all functions $z(t) = \mathcal{U}(x)(t)$, with $x \in B_h[0, 1]$, is equicontinuous at each point of $[t_0, \infty)$. In this manner all the hypotheses of the Schauder-Tychonoff theorem [5] are satisfied. Consequently, there exists $x \in B_h[0, 1]$ such that $x(t) = \mathcal{U}(x)(t)$, i.e. xsatisfies the integral equation

$$x(t) = y(t) - \Phi(t) \int_{t}^{\infty} \Phi^{-1}(s) f(s, x(s)) \, ds \, .$$

¿From (11) and

$$\lim_{t \to \infty} \int_t^\infty \Phi(t) \Phi^{-1}(s) f(s, x(s)) \, ds = 0 \,,$$

we obtain

$$\lim_{t \to \infty} |h(t)^{-1}[x(t) - y(t)]| = 0.$$
(18)

; From (11) and (18) we conclude that (11) is satisfied with y replaced by x, and this proof is complete.

Remarks Note that Theorem A follows from Theorem 1, by putting h(t) = 1. Also note that under the conditions of Theorem 1, if we assume that

$$\limsup_{t \to \infty} h(t) = \infty$$

then the trivial solution of (5) is unstable in the sense of Liapounov.

Let us consider Equation (5) with

$$A(t) = \left(\begin{array}{cc} -1 & 0\\ 0 & \frac{1}{t} \end{array}\right).$$

In this case the fundamental matrix Φ for system (4) satisfies

$$|\Phi(t)\Phi^{-1}(s)| \le t/s, \quad s \ge t.$$

Assume that f(t, x) satisfies (7) with $t^{m-1}\gamma \in L^1$. Then, according to Theorem 1, Equation (5) yields a solution x satisfying

$$\limsup_{t \to \infty} |t^{-1}x(t)| > 0.$$

This property implies instability in the sense of Liapounov. Note that this result cannot be obtained from Perron's theorem [3], from Coppel's instability theorem [4], or from Theorem A.

Our next goal is to generalize Theorem B.

Theorem 2 If there exists a solution y of (4) satisfying

$$0 < \limsup_{t \to \infty} |h(t)^{-1} y(t)| \le \infty, \qquad (19)$$

then there exists a solution x of (6) with the same property.

Proof. Note that every solution x(t) of (6) has the form

$$x(t) = \Phi(t)c + \Phi(t) \int_0^t \Phi^{-1}(t)b(s) \, ds \,.$$
(20)

Let $y(t) = \Phi(t)c$ be a solution that satisfies (19). If

$$\limsup_{t \to \infty} |h(t)^{-1} \Phi(t) \int_0^t h(s)^{-1} \Phi^{-1}(s) b(s) ds| = 0,$$
(21)

we multiply (20) by $h(t)^{-1}$ to obtain

$$\begin{split} \limsup_{t \to \infty} |h(t)^{-1} x(t)| \\ > \ \limsup_{t \to \infty} |h(t)^{-1} y(t)| - \limsup_{t \to \infty} |h(t)^{-1} \Phi(t) \int_0^t h(s)^{-1} \Phi^{-1}(s) b(s) \, ds| \, . \end{split}$$

¿From (19) and (21) it follows that $\limsup_{t\to\infty} |h(t)^{-1}x(t)|$ belongs to $(0,\infty]$. Therefore, (19) is satisfied with y replaced by x.

On the other hand, if

$$0 < \limsup_{t \to \infty} |h(t)^{-1} \Phi(t) \int_0^t h(s)^{-1} \Phi^{-1}(s) b(s) ds| \le \infty,$$
 (22)

 \diamond

the assertion of this theorem follows independently of (19).

Acknowledgments. The authors express their gratitude to Consejo de Investigación of Universidad de Oriente for the financial support of Proyecto CI-5-025-00730/95.

References

- Bownds J. M., Stability implications on the asymptotic between of second order differential equations, *Proc. Amer. Math. Soc.*, 39, 169-172 (1973).
- [2] Chiou K. L., Stability implications on asymptotic behavior of non linear systems, *Internat. J. Math and Math Sci.*, Vo. 5, No 1, 105-112 (1982).
- [3] Coddington E. A., and Levinson N., *Theory of Ordinary Differential Equation*, New York, McGraw-Hill (1955).

- [4] Coppel W.A., On the stability of ordinary differential equations, J. London Math. Soc., 39, 255-260 (1964).
- [5] Coppel W. A., Stability and Asymptotic Behavior of Differential Equations, D. C. Heath and Company, Boston (1965).
- [6] Hatvani L., Pintér L., On perturbation of unstable second order linear differential equations, Proc. Amer. Soc., 61, 36-38 (1976).
- [7] Naulin R., Instability of nonautonomous differential systems, to appear in *Differential Equations and Dynamical Systems* (1997).
- [8] Pinto M., Asymptotic integration of a system resulting from the perturbation of an h-system, J. Math. Anal. and App., 131, 194-216 (1988).

RAFAEL AVIS & RAÚL NAULIN DEPARTAMENTO DE MATEMÁTICAS, UNIVERSIDAD DE ORIENTE CUMANÁ 6101 A-285. VENEZUELA E-mail address: rnaulin@cumana.sucre.udo.edu.ve