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NUMERICAL SOLUTION OF A PARABOLIC EQUATION WITH

A WEAKLY SINGULAR POSITIVE-TYPE MEMORY TERM

Marián Slodička

Abstract. We find a numerical solution of an initial and boundary value problem.
This problem is a parabolic integro-differential equation whose integral is the convo-
lution product of a positive-definite weakly singular kernel with the time derivative
of the solution. The equation is discretized in space by linear finite elements, and
in time by the backward-Euler method. We prove existence and uniqueness of the
solution to the continuous problem, and demonstrate that some regularity is present.
In addition, convergence of the discrete sequence of iterations is shown.

1. Introduction

Physical processes, such as heat conduction in materials with memory, popu-
lation dynamics, and visco-elasticity can be described by one of the following par-
abolic integro-differential equations

∂tu+Au =

∫ t

0

K(t− s)Bu(s)ds+ f(t) in Ω, t > 0

or

∂tu+

∫ t

0

β(t− s)Au(s)ds = f(t) in Ω, t > 0

with homogenous Dirichlet conditions. Here A is a second-order selfadjoint positive-
definite differential operator; B is a general partial differential operator of second
order with smooth coefficients; K is weakly singular and β is a positive-definite
kernel (c.f. Chen-Thomée-Wahlbin [1], McLean-Thomée [6], Thomée [10], etc.).

Our aim is to describe a product integration method for the discretization of the
Volterra term in the equation

∂tu(t)−∆u(t) +

∫ t

0

a(t− s)∂su(s)ds = f(t, u(t)) in Ω, t > 0

u = 0 on ∂Ω, t > 0

u(0) = v in Ω .

(1.1)
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This problem arises in the application of homogenization techniques to diffusion
models for fractured media (cf. Hornung [4] and its references).

A fully discretized method for solving (1.1) (with f = f(t)) was presented in
Peszynska [7]. There the author establishes a rate of convergence using the strong
regularity assumptions

u ∈ C2((0, T ) × Ω), and utt ∈ L1((0, T ),H2(Ω) ∩
◦
H1(Ω)) .

Our main goal is to show a fully discretized numerical method for solving (1.1).
We use the backward Euler method for the discretization in time (also called Rothe
method; see, e.g., Kačur [5]), and finite elements for space-discretization. We use
a right rectangular quadrature rule, and some results for weakly singular positive-
definite kernels, for handling the Volterra term. The storage problem associated
with this convolution integral has been discussed by Peszynska [7].

We prove existence and uniqueness of a solution, and the convergence of our
approximation scheme to a solution u that satisfies

u ∈ C((0, T ), L2(Ω)) ∩ L∞((0, T ),
◦
H1(Ω)) and ut ∈ L2((0, T ), L2(Ω)).

We extend the results of Hornung-Showalter [3] (where f = f(t)), and of Peszynska
[7] (where f = f(t, u)).

Remark 1. The differential operator −∆ in (1.1) can be replaced by a general linear
elliptic differential operator.

Remark 2. The values C, ε,Cε are generic and positive constants independent of
the discretization parameter σ, to be introduced below. The value ε is small, and
Cε = C(ε−1).

Remark 3. The right-hand side f can depend on Volterra terms containing u, linear
terms depending on ∇u, and linear Volterra terms containing ∇u.

2. Assumptions

In this section we establish hypotheses on the data and state the continuous and
the fully discretized problem.

We assume that

Ω ⊂ Rd is a polyhedral with bounded domain and d ≥ 1. (2.1)

Let {Sh}h be a family of decompositions Sh = {Sk}
K
k=1 of Ω into closed d-

simplices such that Ω =
K
∪
k=1

Sk (h stands for the mesh size). We suppose that

{Sh}h is regular (c.f. Ciarlet [2]). (2.2)

Let Vh =
{
χ ∈ C

(
Ω
)

; χ is linear on Sk ∀k = 1, . . . ,K; χ = 0 on ∂Ω
}

be
the discrete space with which we shall work. We denote the scalar product in
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L2(Ω) by (·, ·) and 〈u, v〉 = (∇u,∇v). The corresponding discrete inner product
is defined by

(u, v)h =
K∑
k=1

∫
Sk

Πh(u, v)dx

=
K∑
k=1

meas Sk
d+ 1

d+1∑
l=1

u(Al)v(Al)

for any two piecewise continuous functions u, v. Πh stands for the local linear
interpolation operator and Al (l = 1, . . . , d+ 1) are the vertices of Sk. It is known
that (·, ·)h is the inner product in Vh for which

C1‖u‖
2 ≤ ‖u‖2h ≤ C2‖u‖

2 ∀u ∈ Vh, (2.3)

where ‖u‖2 = (u, u), ‖u‖2h = (u, u)h.
The well-known estimate

|(u, v) − (u, v)h| ≤ Ch
2‖u‖1‖v‖1 ∀u, v ∈ Vh, (2.4)

takes the effect of numerical integration into account, where ‖u‖21 = 〈u, u〉 =
(∇u,∇u).

Furthermore, we suppose that the inverse inequality holds for our discretization,
i.e.,

‖u‖1 ≤ Ch
−1‖u‖ ∀u ∈ Vh. (2.5)

Now we introduce the discrete H1 projection operator Ph , i.e., for z ∈
◦
H1(Ω)

we define Phz as follows

〈Phz, φ〉 = 〈z, φ〉 ∀φ ∈ Vh.

Concerning the time discretization, let the time interval be denoted by I =
(0, T0), and the time step by τ = T0

n
. For short notation let

ti = iτ, zi = z(ti), δzi =
zi − zi−1

τ
for i = 1, . . . , n (where n is a positive integer).

Assume that the right-hand side of (1.1) fulfills

|f(t, x)− f(s, y)| ≤ C[|t− s|(1 + |x|+ |y|) + |x− y|] ∀t, s, x, y ∈ R, (2.6)

and the initial data satisfies

v ∈
◦
H1(Ω). (2.7)

The integral kernel a satisfies

(−1)ja(j)(t) ≥ 0 ∀t > 0; j = 0, 1, 2; a′ 6= 0. (2.8)

These hypotheses are physical and imply the strong positiveness of the kernel a
(c.f. Staffans [9]), i.e.,∫ T

0

∫ t

0

a(t− s)φ(s)φ(t) ds dt ≥ 0 ∀T > 0, φ ∈ C (〈0, T 〉) . (2.9)

We assume that all occurring functions are real-valued. Moreover we assume that

a(t) ≤ Ct−α α ∈ 〈0, 1), t > 0. (2.10)

Now we can state the variational formulation of (1.1):
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Problem C. Find u ∈ C(I, L2(Ω)) ∩ L∞(I,
◦
H1(Ω)) with du

dt
∈ L2(I, L2(Ω)), such

that (
du(t)

dt
, φ

)
+ 〈u(t), φ〉 +

(∫ t

0

a(t− s)
du(s)

ds
ds, φ

)
= (f(t, u(t)), φ)

u(0) = v

(2.11)

holds for any φ ∈
◦
H1(Ω) and a.e. t ∈ I.

In order to solve our continuous problem we shall start with:

Problem D. Find uhi ∈ Vh (i = 1, . . . , n), such that

(
δuhi , φ

)
h

+ 〈uhi , φ〉+

 i∑
j=1

ai+1−jδu
h
j τ, φ


h

=
(
f(ti, u

h
i−1), φ

)
h

uh0 = Phv

(2.12)

holds for any φ ∈ Vh.

3. Stability

According to (2.10) we have a ∈ L1(I) and τa(τ) → 0 for τ → 0. Since the
matrix of the linear system (corresponding to the Problem D) is symmetric and
positive-definite, the solution uhi exists and is unique. Thus we can solve this
system successively for i = 1, . . . , n.

We show that a similar inequality to (2.9) holds in a discrete form. Denoting
bj = aj+1τ for j ∈ {0, . . . , n} and bj = 0 for j /∈ {0, . . . , n}, one can easily check
that {bj}∞j=0 ∈ l∞ is positive, convex and then (c.f. Zygmund [11])

b0
2

+
∞∑
j=1

bj cos(jΘ) ≥ 0 ∀Θ ∈ R. (3.1)

Hence, applying McLean-Thomée [6, L4.1], we get

Bm(φ) =
m∑
i=1

i∑
j=1

bi−jφ
jφi ≥ 0 ∀φ = (φ1, . . . , φm) ∈ Rm, m ≥ 1.

This can be rewritten as follows

τ2
m∑
i=1

i∑
j=1

ai+1−jφ
jφi ≥ 0 ∀φ = (φ1, . . . , φm) ∈ Rm, m ≥ 1. (3.2)

Remark 4. The non negativity of the term Bm(φ) can be proved using Fourier
transform. Let us denote

b̂(Θ) =
∞∑
j=0

bje
ijΘ.
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A simple calculation with φj = 0 for j /∈ {1, . . . ,m} gives

Bm(φ) =
1

2π

∫ 2π

0

b̂(Θ)|φ̂(Θ)|2dΘ =
1

2π

∫ 2π

0

Re b̂(Θ)|φ̂(Θ)|2dΘ,

since Bm(φ) is real-valued. Further we can write

Re b̂(Θ) =
∞∑
j=0

bj cos(jΘ) ≥ 0.

�
Now we establish a-priori estimates for energy norms.

Lemma 1. Let (2.1)-(2.8) and (2.10) be satisfied. Then

m∑
i=1

‖δuhi ‖
2
hτ + ‖um‖

2
1 +

m∑
i=1

‖uhi − u
h
i−1‖

2
1 ≤ C

for m = 1, . . . , n.

Proof. Setting φ = δuhi τ into (2.12) and adding together the identities for i =
1, . . . ,m, we can write

m∑
i=1

‖δuhi ‖
2
hτ +

m∑
i=1

〈uhi , u
h
i − u

h
i−1〉+

m∑
i=1

 i∑
j=1

ai+1−jδu
h
j τ, δu

h
i


h

τ

=
m∑
i=1

(
f(ti, u

h
i−1), δuhi

)
h
τ.

Using integration by parts in the second term, we have

2
m∑
i=1

〈uhi , u
h
i − u

h
i−1〉 = ‖uhm‖

2
1 − ‖u

h
0‖

2
1 +

m∑
i=1

‖uhi − u
h
i−1‖

2
1.

The third term on the left is nonnegative because of (3.2). For the right-hand side
we put

m∑
i=1

(
f(ti, u

h
i−1), δuhi

)
h
τ ≤ε

m∑
i=1

‖δuhi ‖
2
hτ + Cε

m∑
i=1

‖f(ti, u
h
i−1)‖2hτ

≤ε
m∑
i=1

‖δuhi ‖
2
hτ + Cε

1 +
m∑
i=1

i∑
j=1

‖δuj‖
2
hτ

2

 .

Thus setting ε sufficiently small, we get

m∑
i=1

‖δuhi ‖
2
hτ + ‖uhm‖

2
1 +

m∑
i=1

‖uhi − u
h
i−1‖

2
1

≤ C

1 +
m∑
i=1

i∑
j=1

‖δuhj ‖
2
hτ

2

 .
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The rest of the proof is a trivial consequence of the Gronwall lemma. �

It would be useful to have an a-priori estimate for the δuhi in the H−1(Ω) norm.
We are working in discrete spaces, thus we are only able to prove the following
Lemma.

Lemma 2. Let (2.1)-(2.8) and (2.10) be satisfied. Then∣∣(δuhi , φ)h
∣∣ ≤ C‖φ‖1

for all φ ∈ Vh and i = 1, . . . , n.

Proof. This is a simple consequence of Lemma 1. In fact one can write (∀φ ∈ Vh)

(δuhi , φ)h = −〈uhi , φ〉 −

 i∑
j=1

ai+1−jδu
h
j τ, φ


h

+ (f(ti, u
h
i−1), φ)h.

Hence ∣∣(δuhi , φ)h
∣∣ ≤ C‖φ‖1 +

i∑
j=1

ai+1−j |(δu
h
j , φ)h|τ + C‖φ‖h

≤ C‖φ‖1 +
i∑

j=1

ai+1−j|(δu
h
j , φ)h|τ.

The integral kernel a is weakly singular and τa(τ)→ 0 for τ → 0. Thus

∣∣(δuhi , φ)h
∣∣ ≤ C

‖φ‖1 +
i−1∑
j=1

(ti − tj)
−α |(δuhj , φ)h|τ

 .
Now we apply the following discrete analogue of the Gronwall lemma (c.f. Slo-

dička [8]):
Let {An}, {wn} be sequences of nonnegative real numbers satisfying

wn ≤ An + C

n−1∑
k=1

(tn − tk)
β−1

wkτ

for 0 < τ < 1, 0 < β ≤ 1, C > 0, tn = nτ ≤ T. Then

wn ≤ C

[
An +

n−1∑
k=1

Akτ +
n−1∑
k=1

(tn − tk)
β−1

Akτ

]
,

where C = C(β, T ).
This discrete version of the Gronwall lemma implies∣∣(δuhi , φ)h

∣∣ ≤ C‖φ‖1
which concludes the proof. �
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4. Main results

Let us first introduce some notation. We denote for t ∈ (ti−1, ti〉, σ = (τ, h)

fτ (t, ξ) = f(ti, ξ), aτ (tk − t) = a(tk − ti) for k > i,

uσ(t) = uhi , uσ(0) = uh0 = Phv, uσ(t) = uhi−1 + (t− ti−1)δuhi .

Hence we rewrite (2.12) as follows

(
duσ(t)

dt
, φ

)
h

+ 〈uσ(t), φ〉+

(∫ ti

0

aτ (ti + τ − s)
duσ(s)

ds
ds, φ

)
h

= (fτ (t, uσ(t− τ)), φ)h

(4.1)

for all φ ∈ Vh and t ∈ (ti−1, ti〉.
First of all, we show the uniqueness of a solution of the Problem C.

Theorem 1. Let u1 and u2 be two solutions of the Problem C. Then u1 = u2.

Proof. Using (2.11), we can write

(
d(u1(t)− u2(t))

dt
, φ

)
+ 〈u1(t)− u2(t), φ〉 +

(∫ t

0

a(t− s)
d(u1(s)− u2(s))

ds
ds, φ

)
= (f(t, u1(t))− f(t, u2(t)), φ) .

Now, setting φ = u1(t) − u2(t) and integrating the whole equation over (0, T ) for
any T ∈ I, we obtain

∫ T

0

(
d(u1(t)− u2(t))

dt
, u1(t)− u2(t)

)
dt+

∫ T

0

〈u1(t)− u2(t), u1(t)− u2(t)〉dt

+

∫ T

0

(∫ t

0

a(t− s)
d(u1(s)− u2(s))

ds
ds, u1(t)− u2(t)

)
dt

=

∫ T

0

(f(t, u1(t))− f(t, u2(t)), u1(t)− u2(t)) dt.

Due to (2.9) and (2.6) we arrive at

||u1(T )− u2(T )||2 +

∫ T

0

||u1(t)− u2(t)||21dt ≤ C

∫ T

0

||u1(t)− u2(t)||2dt.

The Gronwall lemma implies ||u1(T )− u2(T )||2 ≤ 0. This is valid for an arbitrary
T ∈ I, thus u1 = u2. �

Now, we are in the position to prove our main result.
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Theorem 2. Let (2.1)-(2.8) and (2.10) be satisfied. Then there exists a solution u
of the Problem C such that as σ → 0,

uσ →u in C(I, L2(Ω)) ,

uσ ⇀u in L2(I,
◦
H1(Ω))

duσ
dt

⇀
du

dt
in L2(I, L2(Ω)) .

Proof. Lemma 1 and the reflexivity of L2(I,
◦
H1(Ω)) imply the existence of a sub-

sequence of uσ (we denote it by uσ again) for which

uσ ⇀ u in L2(I,
◦
H1(Ω)),

and ∫
I

‖uσ − uσ‖
2
1 ≤ Cτ.

This implies (for a subsequence of uσ)

uσ ⇀ u in L2(I,
◦
H1(Ω)),

and
uσ → u in L2(I, L2(Ω)),

because of L2(I,
◦
H1(Ω)) 		 L2(I, L2(Ω)). Lemma 1 yields

∫
I

∥∥∥∥duσdt
∥∥∥∥2

≤ C.

L2(I, L2(Ω)) is a reflexive Banach space, thus

duσ
dt

⇀ w in L2(I, L2(Ω)).

Now for arbitrary t ∈ I and ψ ∈ H−1(Ω) (dual space to
◦
H1(Ω)), as σ → 0 we get

(uσ(t)− u(0), ψ) =

(∫ t

0

duσ
ds

, ψ

)
↓ ↓

(u(t)− u(0), ψ) =

(∫ t

0

w,ψ

)
,

where the differentiation with respect to t gives w =
du

dt
.
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Due to Arzela-Ascoli theorem, the convergence

uσ → u in L2(I, L2(Ω)),

and the estimate ∫
I

∥∥∥∥duσdt
∥∥∥∥2

+

∫
I

∥∥∥∥dudt
∥∥∥∥2

≤ C

imply that there is a subsequence for which

uσ → u in C(I, L2(Ω)).

Collecting all considerations above, we have proved that there exist a function u
and a subsequence of uσ (denote again by uσ) for which we have (as σ → 0)

uσ →u in C(I, L2(Ω)) ,

uσ ⇀u in L2(I,
◦
H1(Ω))

duσ
dt

⇀
du

dt
in L2(I, L2(Ω)) ..

(4.2)

Now, we have to prove that u is the solution of the Problem C. To do this, we
integrate (4.1) on (0, T ) and then we pass to the limit as σ → 0. We will demonstrate
this on each term of (4.1) separately. Let us fix such a µ > 0 for which Vµ ⊂ Vh ∀h.

Now we set φ = φµ = Pµψ ∈ Vµ for any ψ ∈
◦
H1(Ω). For such a φµ (4.1) holds

true. Hence we can write (t ∈ (ti−1, ti〉, T ∈ I)∫ T

0

(
duσ(t)

dt
, φµ

)
h

dt+

∫ T

0

〈uσ(t), φµ〉 dt+

∫ T

0

∫ ti

0

aτ (ti + τ − s)

(
duσ(s)

ds
, φµ

)
h

ds dt

=

∫ T

0

(fτ (t, uσ(t− τ)), φµ)h dt.

(4.3)
Now, one can easily see that∫ T

0

(
duσ(t)

dt
, φµ

)
h

dt = (uσ(T )− uσ(0), φµ)
h
.

According to (2.4) we get

|(uσ(t), φµ)h − (uσ(t), φµ)| ≤ C‖φµ‖1h
2

and (4.2) yields

(uσ(t), φµ)→ (u(t), φµ) for t ∈ 〈0, T 〉 as σ → 0 .

Thus, we have shown∫ T

0

(
duσ(t)

dt
, φµ

)
dt→ (u(T )− v, φµ) as σ → 0 . (4.4)
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For the second term we put (T ∈ (tm−1, tm〉)∫ T

0

〈uσ(t), φµ〉 dt =

∫ T

0

〈uσ(t), φµ〉dt+

∫ T

tm

〈uσ(t)− uσ(t), φµ〉dt

+

∫ tm

0

〈uσ(t)− uσ(t), φµ〉dt

=I1 + I2 + I3.

Lemma 1 yields

|I3| ≤C
m∑
i=1

‖φµ‖1‖u
h
i − u

h
i−1‖1τ ≤ C‖φµ‖1

√
τ

|I2| ≤C

∫ tm

T

(‖uσ(t)‖1 + ‖uσ(t)‖1) ‖φµ‖1dt ≤ C‖φµ‖1τ .

Thus, these estimates together with (4.2) give∫ T

0

〈uσ(t), φµ〉dt→

∫ T

0

〈u(t), φµ〉dt as σ → 0. (4.5)

The situation with the third term is more delicate. Let t ∈ (ti−1, ti〉. Then
Lemma 2 implies∣∣∣∣∫ ti

t

aτ (ti + τ − s)

(
duσ(s)

ds
, φµ

)
h

ds

∣∣∣∣ ≤ C‖φµ‖1τa(τ)→ 0 as σ → 0.

Further
aτ (ti + τ − s)→ a(t− s) as τ → 0

and Lemma 2 together with the Lebesgue theorem give∣∣∣∣∫ t

0

(aτ (ti + τ − s)− a(t− s))

(
duσ(s)

ds
, φµ

)
h

ds

∣∣∣∣
≤ C‖φµ‖1

∫ t

0

|aτ (ti + τ − s)− a(t− s)|ds → 0 as σ → 0 .

According to these facts it is sufficient to pass to the limit as σ → 0 in the term∫ T

0

∫ t

0

a(t− s)

(
duσ(s)

ds
, φµ

)
h

ds dt

instead of the third term of (4.3).
One can write∫ T

0

∫ t

0

a(t− s)

(
duσ(s)

ds
, φµ

)
h

ds dt

=

∫ T

0

∫ t

0

a(t− s)

(
duσ(s)

ds
, φµ

)
ds dt

+

∫ T

0

∫ t

0

a(t− s)

{(
duσ(s)

ds
, φµ

)
h

−

(
duσ(s)

ds
, φµ

)}
ds dt

=R1 +R2 .
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Using a change of order of integration, (2.4) and (2.5), we estimate

|R2| =

∣∣∣∣∣
∫ T

0

{(
duσ(s)

ds
, φµ

)
h

−

(
duσ(s)

ds
, φµ

)}∫ T−s

0

a(t) dt ds

∣∣∣∣∣
≤Ch

∫ T

0

∥∥∥∥duσ(s)

ds

∥∥∥∥ ‖φµ‖1 ds
≤Ch‖φµ‖1 → 0 as σ → 0.

According to (4.2) we have

R1 =

∫ T

0

(
duσ(s)

ds
, φµ

)∫ T−s

0

a(t) dt ds

→

∫ T

0

(
du(s)

ds
, φµ

)∫ T−s

0

a(t) dt ds

=

∫ T

0

∫ t

0

a(t− s)

(
du(s)

ds
, φµ

)
ds dt as σ → 0 .

Summarizing the previous facts, we arrive at (t ∈ (ti−1, ti))∫ T

0

∫ ti

0

aτ (ti + τ − s)

(
duσ(s)

ds
, φµ

)
h

ds dt

→

∫ T

0

∫ t

0

a(t− s)

(
du(s)

ds
, φµ

)
ds dt as σ → 0 .

(4.6)

For the right-hand side we write∫ T

0

(fτ (t, uσ(t− τ)), φµ)hdt

=

∫ T

0

[(fτ (t, uσ(t− τ)), φµ)h − (fτ (t, uσ(t− τ)), φµ)] dt

+

∫ T

0

[(fτ (t, uσ(t− τ)), φµ)− (f(t, uσ(t− τ)), φµ)] dt

+

∫ T

0

[(f(t, uσ(t− τ)), φµ)− (f(t, uσ(t)), φµ)] dt

+

∫ T

0

(f(t, uσ(t)), φµ) dt = F1 + F2 + F3 + F4 .

Now, we proceed in a standard way

|F1| ≤Ch

∫ T

0

‖fτ (t, uσ(t− τ))‖ ‖φµ‖1dt ≤ Ch‖φµ‖1,

|F2| ≤Cτ‖φµ‖,

|F3| ≤C

∫ T

0

‖uσ(t− τ)− uσ(t)‖ ‖φµ‖ dt ≤ Cτ‖φµ‖,
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and according to (4.2) we obtain

F4 →

∫ T

0

(f(t, u(t)), φµ)dt as σ → 0 .

Thus we have proved∫ T

0

(fτ (t, uσ(t− τ)), φµ)hdt →

∫ T

0

(f(t, u(t), φµ) dt as σ → 0 . (4.7)

Finally, (4.3)-(4.7) imply∫ T

o

(
du(t)

dt
, φµ

)
dt+

∫ T

0

〈u(t), φµ〉 dt+

∫ T

0

∫ t

0

a(t− s)

(
du(s)

ds
, φµ

)
ds dt

=

∫ T

0

f(t, u(t)), φµ) dt .

This is true for any φµ ∈ Vµ and for any T from our time interval.

By virtue of the fact that φµ → ψ in L2(Ω) and φµ ⇀ ψ in
◦
H1(Ω), passing to

the limit as µ → 0, and then differentiating the identity with respect to T , we see
that u is a solution of Problem C. Due to Lemma 1, Lemma 2 and Theorem 1, we
see that the whole sequence uσ converges to u. �

References

1. C. Chen, V. Thomée, L.B. Wahlbin, Finite element approximation of a parabolic integro-
differential equation with a weakly singular kernel, Math. Comp. 58 (1992), 587–602.

2. P.G. Ciarlet, The finite element method for elliptic problems, Studies in Math. and its Appl.,
Vol. 4, North-Holland Pub. Comp., Amsterdam, 1978.

3. U. Hornung, R.E. Showalter, Diffusion models for fractured media, J. Math. Anal. and Appl.
147 (1990), 69–80.

4. U. Hornung, Homogenization and Porous Media, Springer, 1996.
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