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Linearization via the Lie Derivative ∗

Carmen Chicone & Richard Swanson

Abstract

The standard proof of the Grobman–Hartman linearization theorem
for a flow at a hyperbolic rest point proceeds by first establishing the
analogous result for hyperbolic fixed points of local diffeomorphisms. In
this exposition we present a simple direct proof that avoids the discrete
case altogether. We give new proofs for Hartman’s smoothness results:
A C2 flow is C1 linearizable at a hyperbolic sink, and a C2 flow in the
plane is C1 linearizable at a hyperbolic rest point. Also, we formulate
and prove some new results on smooth linearization for special classes of
quasi-linear vector fields where either the nonlinear part is restricted or
additional conditions on the spectrum of the linear part (not related to
resonance conditions) are imposed.
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2 Linearization via the Lie Derivative

1 Introduction

This paper is divided into three parts. In the first part, a new proof is presented
for the Grobman–Hartman linearization theorem: A C1 flow is C0 linearizable
at a hyperbolic rest point. The second part is a discussion of Hartman’s results
on smooth linearization where smoothness of the linearizing transformation is
proved in those cases where resonance conditions are not required. For example,
we will use the theory of ordinary differential equations to prove two main
theorems: A C2 vector field is C1 linearizable at a hyperbolic sink; and, a C2

vector field in the plane is C1 linearizable at a hyperbolic rest point. In the third
part, we will study a special class of vector fields where the smoothness of the
linearizing transformation can be improved.

The proof of the existence of a smooth linearizing transformation at a hyper-
bolic sink is delicate. It uses a version of the stable manifold theorem, consider-
ation of the gaps in the spectrum of the linearized vector field at the rest point,
carefully constructed Gronwall type estimates, and an induction argument. The
main lemma is a result about partial linearization by near-identity transforma-
tions that are continuously differentiable with Hölder derivatives. The method
of the proof requires the Hölder exponent of these derivatives to be less than a
certain number, called the Hölder spectral exponent, that is defined for linear
maps as follows. Suppose that {−b1,−b2, · · ·− bN} is the set of real parts of the
eigenvalues of the linear transformation A : Rn → Rn and

−bN < −bN−1 < · · · < −b1 < 0. (1.1)

The Hölder spectral exponent of A is the number

b1(bj+1 − bj)
b1(bj+1 − bj) + bj+1bj

where

bj+1 − bj
bj+1bj

= min
i∈{1,2,··· ,N−1}

bi+1 − bi
bi+1bi

in case N > 1; it is the number one in case N = 1. The Hölder spectral exponent
of a linear transformation B whose eigenvalues all have positive real parts is the
Hölder spectral exponent of −B.

Although a C2 flow in the plane is always C1 linearizable at a hyperbolic rest
point, a C2 flow in R3 may not be C1 linearizable at a hyperbolic saddle point.
For example, the flow of the system

ẋ = 2x, ẏ = y + xz, ż = −z (1.2)

is not C1 linearizable at the origin (see Hartman’s example (3.1)). We will
prove that a flow in Rn can be smoothly linearized at a hyperbolic saddle if the
spectrum of the corresponding linearized system at the saddle point satisfies
the following condition introduced by Hartman in [H60M]. Note first that the
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real parts of the eigenvalues of the system matrix of the linearized system at a
hyperbolic saddle lie in the union of two intervals, say [−aL,−aR] and [bL, bR]
where aL, aR, bL, and bR are all positive real numbers. Thus, the system matrix
can be written as a direct sum A⊕B where the real parts of the eigenvalues of A
are in [−aL,−aR] and the real parts of the eigenvalues of B are in [bL, bR]. Let
µ denote the Hölder spectral exponent of A and ν the Hölder spectral exponent
of B. If Hartman’s spectral condition

aL − aR < µbL, bR − bL < νaR

is satisfied, then the C2 nonlinear system is C1 linearizable at the hyperbolic
saddle point. It follows that, unlike system (1.2), the flow of

ẋ = 2x, ẏ = y + xz, ż = −4z

is C1 linearizable at the origin.
In the case of hyperbolic saddles where one of the Hölder spectral exponents

is small, Hartman’s spectral condition is satisfied only if the corresponding real
parts of the eigenvalues of the linear part of the field are contained in an ac-
cordingly small interval. Although the situation cannot be improved for general
vector fields, stronger results (in the spirit of Hartman) are possible for a re-
stricted class of vector fields. There are at least two ways to proceed: additional
conditions can be imposed on the spectrum of the linearization, or restrictions
can be imposed on the nonlinear part of the vector field. We will show that
a C3 vector field in “triangular form” with a hyperbolic saddle point at the
origin can be C1 linearized if Hartman’s spectral condition is replaced by the
inequalities aL − aR < bL and bR − bL < aR (see Theorem 4.6). Also, we will
prove the following result: Suppose that X = A+F is a quasi-linear C3 vector
field with a hyperbolic saddle at the origin, the set of negative real parts of
eigenvalues of A is given by {−λ1, . . . ,−λp}, the set of positive real parts is
given by {σ1, . . . , σq}, and

−λ1 < −λ2 < · · · < −λp < 0 < σq < σq−1 < · · · < σ1.

If λi−1/λi > 3, for i ∈ {2, 3, . . . , p}, and σi−1/σi > 3, for i ∈ {2, 3, . . . , q}, and
if λ1 − λp < σq and σ1 − σq < λp, then X is C1 linearizable (see Theorem 4.7).

The important dynamical behavior of a nonlinear system associated with a
hyperbolic sink is local: there is an open basin of attraction and every trajec-
tory that enters this set is asymptotically attracted to the sink. This behavior
is adequately explained by using a linearizing homeomorphism, that is, by using
the Grobman–Hartman theorem. On the other hand, the interesting dynamical
behavior associated with saddles is global; for example, limit cycles are pro-
duced by homoclinic loop bifurcations and chaotic invariant sets are found near
transversal intersections of homoclinic manifolds. Smooth linearizations at hy-
perbolic saddle points are used to analyze these global phenomena. It turns out
that results on the smooth linearization at hyperbolic sinks are key lemmas re-
quired to prove the existence of smooth linearization for hyperbolic saddles. In
fact, this is the main reason to study smooth linearization at hyperbolic sinks.
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We treat only the case of rest points here, but we expect that our method
can be applied to the problem of linearization near general invariant manifolds
of differential equations.

Hartman’s article [H60M] is the main reference for our results on smooth-
ness of linearizations. Other primary sources are the papers [G59], [H60],
[H63], and [St57]. For historical remarks, additional references, and later work
see [CL88], [CLL91], [KP90], [Se85], [St89], and [T99].

2 Continuous Conjugacy

A C1 vector field X on Rn such that X(0) = 0 is called locally topologically
conjugate to its linearization A := DX(0) at the origin if there is a homeomor-
phism h : U → V of neighborhoods of the origin such that the flows of X and
A are locally conjugated by h; that is,

h(etAx) = Xt(h(x)) (2.1)

whenever x ∈ U , t ∈ Rn, and both sides of the conjugacy equation are defined.
A matrix is infinitesimally hyperbolic if every one of its eigenvalues has a nonzero
real part.

Theorem 2.1 (Grobman–Hartman). Let X be a C1 vector field on Rn such
that X(0) = 0. If the linearization A of X at the origin is infinitesimally
hyperbolic, then X is locally topologically conjugate to A at the origin.

Proof. For each r > 0 there is a smooth bump function ρ : Rn → [0, 1] with the
following properties: ρ(x) ≡ 1 for |x| < r/2, ρ(x) ≡ 0 for |x| > r, and |dρ(x)| <
4/r for x ∈ Rn. The vector field Y = A + ξ where ξ(x) := ρ(x)(X(x) − Ax)
is equal to X on the open ball of radius r/2 at the origin. Thus, it suffices to
prove that Y is locally conjugate to A at the origin.

Suppose that in equation (2.1) h = id+ η and η : Rn → Rn is differentiable
in the direction A. Rewrite equation (2.1) in the form

e−tAh(etAx) = e−tAXt(h(x)) (2.2)

and differentiate both sides with respect to t at t = 0 to obtain the infinitesimal
conjugacy equation

LAη = ξ ◦ (id +η) (2.3)

where

LAη :=
d

dt
(e−tAη(etA))

∣∣
t=0

(2.4)

is the Lie derivative of η along A. (We note that if h is a conjugacy, then
the right-hand-side of equation (2.2) is differentiable; and therefore, the Lie
derivative of h in the direction A is defined.)
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We will show that if r > 0 is sufficiently small, then the infinitesimal conju-
gacy equation has a bounded continuous solution η : Rn → Rn (differentiable
along A) such that h := id +η is a homeomorphism of Rn whose restriction to
the ball of radius r/2 at the origin is a local conjugacy as in equation (2.1).

Since A is infinitesimally hyperbolic, A = A+ ⊕ A− having spectra, respec-
tively, to the left and to the right of the imaginary axis. Put E− = Range(A−)
and E+ = Range(A+). There are positive constants C and λ such that

|etAv+| ≤ Ce−λt|v+|, |e−tAv−| ≤ Ce−λt|v−| (2.5)

for t ≥ 0. The Banach space B of bounded (in the supremum norm) continuous
vector fields on Rn splits into the complementary subspaces B+ and B− of vector
fields with ranges, respectively, in E+ or E−. In particular, a vector field η ∈ B
has a unique representation η = η+ + η− where η+ ∈ B+ and η− ∈ B−.

The function G on B defined by

Gη(x) =
∫ ∞

0

etAη+(e−tAx) dt−
∫ ∞

0

e−tAη−(etAx) dt (2.6)

is a bounded linear operator G : B → B. The boundedness of G follows from
the hyperbolic estimates (2.5). The continuity of the function x 7→ Gη(x) is
an immediate consequence of the following lemma from advanced calculus—
essentially the Weierstrass M -test—and the hyperbolic estimates.

Lemma 2.2. Suppose that f : [0,∞) × Rn → Rm, given by (t, x) 7→ f(t, x),
is continuous (respectively, the partial derivative fx is continuous). If for each
y ∈ Rn there is an open set S ⊂ Rn with compact closure S̄ and a function M :
[0,∞) → R such that y ∈ S, the integral

∫∞
0
M(t) dt converges, and |f(t, x)| ≤

M(t) (respectively, |fx(t, x)| ≤ M(t) ) whenever t ∈ [0,∞) and x is in S̄, then
F : Rn → Rm given by F (x) =

∫∞
0
f(t, x) dt is continuous (respectively, F is

continuously differentiable and DF (x) =
∫∞

0
fx(t, x) dt ).

Using the definition of LA in display (2.4) and the fundamental theorem of
calculus, we have the identity LAG = idB. As a consequence, if

η = G(ξ ◦ (id +η)) := F (η), (2.7)

then η is a solution of the infinitesimal conjugacy equation (2.3).
Clearly, F : B → B and for η1 and η2 in B we have that

‖F (η1)− F (η2)‖ ≤ ‖G‖ ‖ξ ◦ (id +η1)− ξ ◦ (id +η2)‖
≤ ‖G‖ ‖Dξ‖ ‖η1 − η2‖.

Using the definitions of ξ and the properties of the bump function ρ, we have
that

‖Dξ‖ ≤ sup
|x|≤r
‖DX(x)−A‖+

4
r

sup
|x|≤r
|X(x)−Ax|.
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By the continuity of DX, there is some positive number r such that ‖DX(x)−
A‖ < 1/(10‖G‖) whenever |x| ≤ r. By Taylor’s theorem (applied to the C1

function X) and the obvious estimate of the integral form of the remainder, if
|x| ≤ r, then |X(x) − Ax| < r/(10‖G‖). For the number r > 0 just chosen,
we have the estimate ‖G‖‖Dξ‖ < 1/2; and therefore, F is a contraction on
B. By the contraction mapping theorem applied to the restriction of F on the
closed subspace B0 of B consisting of those elements that vanish at the origin, the
equation (2.7) has a unique solution η ∈ B0, which also satisfies the infinitesimal
conjugacy equation (2.3).

We will show that h := id +η is a local conjugacy. To do this recall the
following elementary fact about Lie differentiation: If U , V , and W are vector
fields, φt is the flow of U , and LUV = W , then

d

dt
Dφ−t(φt(x))V (φt(x)) = Dφ−t(φt(x))W (φt(x)).

Apply this result to the infinitesimal conjugacy equation (2.3) to obtain the
identity

d

dt
(e−tAη(etAx)) = e−tAξ(h(etAx)).

Using the definitions of h and Y , it follows immediately that

d

dt
(e−tAh(etAx)) = −e−tAAh(etAx) + e−tAY (h(etAx))

and (by the product rule)

e−tA
d

dt
h(etAx) = e−tAY (h(etAx)).

Therefore, the function given by t 7→ h(etAx) is the integral curve of Y starting
at the point h(x). But, by the definition of the flow Yt of Y , this integral curve
is the function t 7→ Yt(h(x)). By uniqueness, h(etAx) = Yt(h(x)). Because Y is
linear on the complement of a compact set, Gronwall’s inequality can be used
to show that the flow of Y is complete. Hence, the conjugacy equation holds
for all t ∈ R.

It remains to show that the continuous function h : Rn → Rn given by
h(x) = x + η(x) is a homeomorphism. Since η is bounded on Rn, the map
h = id +η is surjective. To see this, choose y ∈ Rn, note that the equation
h(x) = y has a solution of the form x = y + z if z = −η(y + z), and apply
Brouwer’s fixed point theorem to the map z 7→ −η(y + z) on the ball of radius
‖η‖ centered at the origin. (Using this idea, it is also easy to prove that h
is proper; that is, the inverse image under h of every compact subset of Rn is
compact.) We will show that h is injective. If x and y are in Rn and h(x) = h(y),
then Yt(h(x)) = Yt(h(y)) and, by the conjugacy relation, Atx+ η(Atx) = Aty+
η(Aty). By the linearity of At, we have that

|At(x− y)| = |η(Aty)− η(Atx)|. (2.8)
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For each nonzero u in Rn, the function t 7→ Atu = etAu is unbounded on
R. Hence, either x = y or the left side of equation (2.8) is unbounded for
t ∈ R. Since η is bounded, x = y; and therefore, the map h is injective. By
Brouwer’s theorem on invariance of domain, the bijective continuous map h is
a homeomorphism. (Brouwer’s theorem can be avoided by using instead the
following elementary fact: A continuous, proper, bijective map from Rn to Rn
is a homeomorphism.)

3 Smooth Conjugacy

In the classic paper [H60M], Hartman shows that if a > b > 0 and c 6= 0, then
there is no C1 linearizing conjugacy at the origin for the analytic differential
equation

ẋ = ax, ẏ = (a− b)y + cxz, ż = −bz. (3.1)

On the other hand, he proved the following two important results. (1) If a C2

vector field has a rest point such that either all eigenvalues of its linearization
have negative real parts or all eigenvalues have positive real parts, then the
vector field is locally C1 conjugate to its linearization. (2) If a C2 planar vector
field has a hyperbolic rest point, then the vector field is locally C1 conjugate
to its linearization. Hartman proves the analogs of these theorems for maps
and then derives the corresponding theorems for vector fields as corollaries. We
will work directly with vector fields and thereby use standard methods from the
theory of ordinary differential equations to obtain these results. We also note
that S. Sternberg proved that the analytic planar system

ẋ = −x, ẏ = −2y + x2 (3.2)

is not C2 linearizable. Hence, it should be clear that the proofs of Hartman’s
results on the existence of (maximally) smooth linearizations will require some
delicate estimates. Nevertheless, as we will soon see, the strategy used in these
proofs is easy to understand.

Although the starting point for the proof of Theorem 2.1, namely, the dif-
ferentiation with respect to t of the desired conjugacy relation (2.1) and the
inversion of the operator LA as in display (2.6), leads to the simple proof of
the existence of a conjugating homeomorphism given in Section 2, it turns out
this strategy does not produce smooth conjugaces. This fact is illustrated by
linearizing the scalar vector field given by X(x) = −ax+f(x) where a > 0. Sup-
pose that f vanishes outside a sufficiently small open subset of the origin with
radius r > 0 so that h(x) = x+η(x) is the continuous linearizing transformation
where

η(x) =
∫ ∞

0

e−atf(eatx+ η(eatx)) dt
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as in the proof of Theorem 2.1. With F := f ◦ (id +η), u := eat, and x 6= 0, the
function η is given by

η(x) =
1
a

∫ r/|x|

1

F (ux)
u2

du.

Moreover, if x > 0, then (with w = ux)

η(x) =
x

a

∫ r

x

F (w)
w2

dw,

and if x < 0, then

η(x) = −x
a

∫ x

−r

F (w)
w2

dw.

If η were continuously differentiable in a neighborhood of the origin, then we
would have the identity

η′(x) =
1
a

∫ r

x

F (w)
w2

dw − F (x)
ax

for x > 0 and the identity

η′(x) = −1
a

∫ x

−r

F (w)
w2

dw − F (x)
ax

for x < 0. Because the left-hand and right-hand derivatives agree at x = 0, it
would follow that ∫ r

−r

F (w)
w2

dw = 0.

But this equality is not true in general. For example, it is not true if f(x) =
ρ(x)x2 where ρ is a bump function as in the proof of Theorem 2.1. In this case,
the integrand is nonnegative and not identically zero.

There are at least two ways to avoid the difficulty just described. First, note
that the operator LA, for the case Ax = −ax, is formally inverted by running
time forward instead of backward. This leads to the formal inverse given by

(Gη)(x) := −
∫ ∞

0

eatη(e−atx) dt

and the fixed point equation

η(x) = −
∫ ∞

0

eatf(e−atx+ η(e−atx)) dt.

In this case, no inconsistency arises from the assumption that η′(0) exists. In
fact, in the last chapter of this paper, we will show that this method does
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produce a smooth conjucacy for certain “special vector fields”, for example, the
scalar vector fields under consideration here (see Theorem 3.8).

Another idea that can be used to avoid the difficulty with smoothness is to
differentiate both sides of the conjugacy relation

etAh(x) = h(Xt(x)) (3.3)

with respect to t, or equivalently for the scalar differential equation, to use the
change of coordinates u = x + η(x). With this starting point, it is easy to see
that η determines a linearizing transformation if it is a solution of the first order
partial differential equation

Dη(x)X(x) + aη(x) = −f(x).

To solve it, replace x by the integral curve t 7→ φt(x) where φt denotes the flow
of X, and note that (along this characteristic curve)

d

dt
η(φt(x)) + aη(φt(x)) = −f(φt(x)).

By variation of constants, we have the identity

d

dt
eatη(φt(x)) = −eatf(φt(x)),

and (after integration on the interval [0, t]) it follows that the function η given
by

η(x) =
∫ ∞

0

eatf(φt(x)) dt (3.4)

determines a linearizing transformation h = id +η if the improper integral con-
verges on some open interval containing the origin. The required convergence
is not obvious in general because the integrand of this integral contains the ex-
ponential growth factor eat. In fact, to prove that η is continuous, a uniform
estimate is required for the growth rate of the family of functions t 7→ |f(φt(x))|,
and to show that η is continuously differentiable, a uniform growth rate estimate
is required for their derivatives. The required estimates will be obtained in the
next section where we will show that η is smooth for a hyperbolic sinks. For
the scalar case as in equation (3.4), f(x) is less than a constant times x2 near
the origin, and the solution φt(x) is approaching the origin like e−atx. Because
this quantity is squared by the function f , the integral converges.

To test the validity of this method, consider the example ẋ = −ax+x2 where
the flow can be computed explicitly and the integral (3.4) can be evaluated to
obtain the smooth near-identity linearizing transformation h : (−a, a) → R
given by

h(x) = x+
x2

a− x
.
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3.1 Hyperbolic Sinks

The main result of this section is the following theorem.

Theorem 3.1 (Hartman). Let X be a C2 vector field on Rn such that X(0) =
0. If every eigenvalue of DX(0) has negative real part, then X is locally C1

conjugate to its linearization at the origin.

The full strength of the natural hypothesis that X is C2 is not used in the
proof; rather, we will use only the weaker hypothesis that X is C1 and certain
of its partial derivatives are Hölder on some fixed neighborhood of the origin.
A function h is Hölder on a subset U of its domain if there is some (Hölder
exponent) µ with 0 < µ ≤ 1 and some constant M > 0 such that

|h(x)− h(y)| ≤M |x− y|µ

whenever x and y are in U . In the special case where µ = 1, the function h is
also called Lipschitz. As a convenient notation, let C1,µ denote the class of C1

functions whose first partial derivatives are all Hölder with Hölder exponent µ.
Recall the definition of Hölder spectral exponents given in Section 1. We

will prove the following generalization of Theorem 3.1.

Theorem 3.2 (Hartman). Let X be a C1,1 vector field on Rn such that X(0) =
0. If every eigenvalue of DX(0) has negative real part and µ > 0 is smaller than
the Hölder spectral exponent, then there is a near-identity C1,µ-diffeomorphism
defined on some neighborhood of the origin that conjugates X to its linearization
at the origin.

The strategy for the proof of Theorem 3.2 is simple; in fact, the proof is
by a finite induction. By a linear change of coordinates, the linear part of the
vector field at the origin is transformed to a real Jordan canonical form where
the diagonal blocks are ordered according to the real parts of the corresponding
eigenvalues, and the vector field is decomposed into (vector) components cor-
responding to these blocks. A theorem from invariant manifold theory is used
to “flatten” the invariant manifold corresponding to the block whose eigenval-
ues have the largest real part onto the corresponding linear subspace. This
transforms the original vector field into a special form which is then “partially
linearized” by a near-identity diffeomorphism; that is, the flattened—but still
nonlinear—component of the vector field is linearized by the transformation.
This reduces the dimension of the linearization problem by the dimension of
the flattened manifold. The process is continued until the system is completely
linearized. Finally, the inverse of the linear transformation to Jordan form is
applied to return to the original coordinates so that the composition of all the
coordinate transformations is a near-identity map.

We will show that the nonlinear part of each near-identity partially lineariz-
ing transformation is given explicitly by an integral transform∫ ∞

0

e−tBg(ϕt(x)) dt
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where g is given by the nonlinear terms of the component function of the vector
field corresponding to the linear block B and ϕt is the nonlinear flow. The
technical part of the proof is to demonstrate that these transformations maintain
the required smoothness. This is done by repeated applications of Lemma 2.2
to prove that “differentiation under the integral sign” is permitted. Because
maximal smoothness is obtained, it is perhaps not surprising that some of the
estimates required to majorize the integrand of the integral transform are rather
delicate. In fact, the main difficulty is to prove that the exponential rate of decay
toward zero of the functions t 7→ g(ϕt(x)) and t 7→ gx(ϕt(x)), defined on some
open neighborhood of x = 0, is faster than the exponential rate at which the
linear flow etB moves points away from the origin in reverse time.

As in Section 2, the original vector field X can be expressed in the “almost
linear” form X(x) = Ax+ (X(x)−Ax). There is a linear change of coordinates
in Rn such that X, in the new coordinates, is the almost linear vector field
Y (x) = Bx+ (Y (x)−Bx) where the matrix B is in real Jordan canonical form
with diagonal blocks B1 and B2, every eigenvalue of B2 has the same negative
real part −b2, and every eigenvalue of B1 has its real part strictly smaller than
−b2. The corresponding ODE has the form

ẋ1 = B1 x1 + P1(x1, x2),
ẋ2 = B2 x1 + P2(x1, x2) (3.5)

where x = (x1, x2) and (P1(x1, x2), P2(x1, x2)) = (Y (x)− Bx). Let c be a real
number such that −b < −c < 0, and note that if the augmented system

ẋ1 = B1 x1 + P1(x1, x2),
ẋ2 = B2 x1 + P2(x1, x2),
ẋ3 = −cx3

is linearized by a near-identity transformation of the form

u1 = x1 + α1(x1, x2, x3),
u2 = x2 + α2(x1, x2, x3),
u3 = x3,

then the ODE (3.5) is linearized by the transformation

u1 = x1 + α1(x1, x2, 0), u2 = x2 + α2(x1, x2, 0).

More generally, let C1,L,µ denote the class of all systems of the form

ẋ = Ax+ f(x, y, z),
ẏ = By + g(x, y, z),
ż = Cz (3.6)

where x ∈ Rk, y ∈ R`, and z ∈ Rm; where A, B, and C are square matrices of
the corresponding dimensions; B is in real Jordan canonical form;
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• every eigenvalue of B has real part −b < 0;

• every eigenvalue of A has real part less than −b;

• every eigenvalue of C has real part in an interval [−c,−d] where
−b < −c and −d < 0;

and F : (x, y, z) 7→ (f(x, y, z), g(x, y, z)) is a C1 function defined in a bounded
product neighborhood

Ω = Ωxy × Ωz (3.7)

of the origin in (Rk × R`)× Rm such that

• F (0, 0, 0) = 0 and DF (0, 0, 0) = 0,

• the partial derivatives Fx and Fy are Lipschitz in Ω, and

• the partial derivative Fz is Lipschitz in Ωxy uniformly with respect to
z ∈ Ωz and Hölder in Ωz uniformly with respect to (x, y) ∈ Ωxy with
Hölder exponent µ.

System (3.6) satisfies the (1, µ) spectral gap condition if (1 + µ)c < b.
We will show that system (3.6) can be linearized by a C1 near-identity trans-

formation of the form

u = x+ α(x, y, z),
v = y + β(x, y, z),
w = z. (3.8)

The proof of this result is given in three main steps: an invariant manifold
theorem for a system with a spectral gap is used to find a preliminary near-
identity C1 map, as in display (3.8), that transforms system (3.6) into a system
of the same form but with the new function F = (f, g) “flattened” along the
coordinate subspace corresponding to the invariant manifold. Next, for the
main part of the proof, a second near-identity transformation of the same form
is constructed that transforms the flattened system to the partially linearized
form

ẋ = Ax+ p(x, y, z),
ẏ = By,

ż = Cz (3.9)

where A, B, and C are the matrices in system (3.6) and the function p has the
following properties:

• p is C1 on an open neighborhood Ω = Ωx×Ωyz of the origin in Rk× (R`×
Rm);
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• p(0, 0, 0) = 0 and Dp(0, 0, 0) = 0;

• The partial derivative px is Lipschitz in Ω;

• The partial derivatives py and pz are Lipschitz in Ωx uniformly with re-
spect to (y, z) ∈ Ωyz and Hölder in Ωyz uniformly with respect to x ∈ Ωx.

The final step of the proof consists of three observations: The composition of
C1 near-identity transformations of the form considered here is again a C1 near-
identity transformation; the dimension of the “unlinearized” part of the system
is made strictly smaller after applying the partially linearizing transformation,
and the argument can be repeated as long as the system is not linearized. In
other words, the proof is completed by a finite induction.

The required version of the invariant manifold theorem is a special case of a
more general theorem (see, for example, Yu. Latushkin and B. Layton [LL99]).
For completeness, we will formulate and prove this special case. Our proof can
be modified to obtain the general result.

For notational convenience, let us view system (3.6) in the compact form

Ẋ = AX + F (X , z),
ż = Cz (3.10)

where X = (x, y), A =
(
A 0
0 B

)
, and F := (f, g). Hyperbolic estimates for

the corresponding linearized equations are used repeatedly. In particular, in
view of the hypotheses about the eigenvalues of A, B, and C, it follows that if
ε > 0 and

0 < λ < d,

then there is a constant K > 1 such that

‖etA‖ ≤ Ke−(b−ε)t, ‖etC‖ ≤ Ke−λt ‖e−tC‖ ≤ Ke(c+ε)t (3.11)

for all t ≥ 0.

Theorem 3.3. If the (1, µ) spectral gap condition holds for system (3.10), then
there is an open set Ωz ⊂ Rm containing z = 0 and a C1,µ function γ : Ωz →
Rk+` such that γ(0) = Dγ(0) = 0 whose graph (the set {(X , z) ∈ Rk+` × Rm :
X = γ(z)}) is forward invariant.

As a remark, we mention that the smoothness of γ cannot in general be
improved by simply requiring additional smoothness of the vector field. Rather,
the smoothness of the invariant manifold can be improved only if additional
requirements are made on the smoothness of the vector field and on the length
of the spectral gap (see [LL99] and the references therein). For these reasons,
it seems that the technical burden imposed by working with Hölder functions
cannot be avoided by simply requiring additional smoothness of the vector field
unless additional hypotheses are made on the eigenvalues of the linearization at
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the origin as well. Also, we mention that our proof illustrates the full power of
the fiber contraction principle introduced by M. Hirsch and C. Pugh in [HP70]
as a method for proving the smoothness of functions obtained as fixed points of
contractions.

To describe the fiber contraction method in our setting, let us consider a
metric subspace D of a Banach space of continuous functions defined on Ω ⊂ Rm
with values in Rp, and let us suppose that Γ : D → D is a contraction (on the
complete metric space D) with fixed point γ. (In the analysis to follow, Γ is given
by an integral transform operator.) We wish to show that γ is differentiable.
Naturally, we start by formally differentiating both sides of the identity η(z) =
Γ(η)(z) with respect to z to obtain the identity Dγ(z) = ∆(γ,Dγ)(z) where the
map Φ 7→ ∆(γ,Φ) is a linear operator on a metric—not necessarily complete—
subspace J of continuous functions from Ω to the bounded linear maps from
Rm to Rp. We expect the derivative Dη, if it exists, to satisfy the equation

Φ = ∆(η,Φ).

Hence, J is a space of “candidates for the derivative of γ”.
The next step is to show that the bundle map Λ : D × J → D × J defined

by

Λ(γ,Φ) = (Γ(γ),∆(γ,Φ))

is a fiber contraction; that is, for each γ ∈ D, the map Φ → ∆(γ,Φ) is a
contraction on J with respect to a contraction constant that does not depend
on the choice of γ ∈ D. The fiber contraction theorem (see [HP70] or, for more
details, [C99]) states that if γ is the globally attracting fixed point of Γ and if Φ
is a fixed point of the map Φ → ∆(γ,Φ), then (γ,Φ) is the globally attracting
fixed point of Λ. The fiber contraction theorem does not require J to be a
complete metric space. This leaves open the possibility to prove the existence
of a fixed point in the fiber over γ by using, for example, Schauder’s theorem.
But, for our applications, the space J will be chosen to be complete so that
the existence of the fixed point Φ follows from an application of the contraction
mapping theorem.

