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NONLINEAR ELLIPTIC PROBLEMS INVOLVING THE
n-LAPLACIAN WITH MAXIMAL GROWTH

ABDERRAHIM EL ATTAR, SAID EL MANOUNI, OMAR SIDKI

Abstract. In this article, we study the limit case of some elliptic problems
involving nonlinearities having the maximal growth with Dirichlet boundary

conditions. We apply a result by Ricceri [12] to prove the existence of multiple
nontrivial solutions using Trudinger-Moser estimates.

1. Introduction

In this article, we study the limit case of the following two nonlinear problems
with Dirichlet boundary condition:

− div(m(|∇u|2)∇u) = λβ(x)(uqe
ηu2

ln(|u|+3) + γ|u|u) + µ|u|s−2u in Ω ⊂ R2

u = 0 on ∂Ω,
(1.1)

and
−div(a(|∇u|n)|∇u|n−2∇u) = λFu(x, u, v) + µGu(x, u, v) in Ω ⊂ Rn

−div(a(|∇v|n)|∇v|n−2∇v) = λFv(x, u, v) + µGv(x, u, v) in Ω ⊂ Rn

u = v = 0 on ∂Ω,

(1.2)

where Ω is a bounded domain with C1-boundary ∂Ω, λ, µ ∈ R are parameters,
0 < γ ≤ η, q > 1, s > 1, β : Ω → R be a bounded measurable function and
m, a : R+ → R are continuous functions satisfying some assumptions to be specified
in next sections. Fu, Fv are continuous nonlinearities having a maximal growth and
Gu, Gv are Carathéodory functions satisfying polynomial growth conditions.

Note that the maximal growth is motivated by the Trudinger-Moser inequality
[11, 18] which will be introduced in sections 3 and 4. Recall that Trudinger-Moser
type inequalities have a wide variety of applications to the study of nonlinear elliptic
partial differential equations involving the limiting case of Sobolev inequalities.

Since the appearance of the abstract result proved by Ricceri in [15] and its revis-
ited note established in [13] dealing with variational equations with both Dirichlet
and Neumann conditions, they have extensively been investigated and have widely
been applied for the study of the existence of multiple nontrivial solutions and in
recent years a lot of papers has been appeared in the scalar case and systems of
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elliptic equations. We can cite, among others, the articles [1, 2, 3, 4, 5] and the
references therein. In [12], Ricceri obtained a general three critical points theorem,
that has been applied for a class of elliptic operators involving nonlinearities of
polynomial growth. We will not mention such applications here since the reader
can easily access such works.

Concerning the limit case of Dirichlet problems involving n-Laplacian with non-
linearities having exponential growth in bounded domains in Rn, n ≥ 2, let us
mention here that several studies have been devoted to the investigation of related
problems in the scalar case and a lot of papers have appeared in the last years; see
for example [6, 8] and the references therein. The solvability of nonlinear boundary
value problems in the presence of an exponential nonlinearity has been considered
by several authors with the purpose to generalize to a wider class of nonlinearities,
classical results from the critical point theory.

Let us point out that El Manouni and Faraci [4] applied the result given in [12]
and obtained three weak solutions for a class of variational perturbed problems
involving n-Laplacian with nonlinearities having maximal growths, while in [6, 8],
by using standard variational approach, the authors prove existence results.

The purpose in this article is to investigate the limiting case for some weighted
differential operators, consider nonlinearities with exponential growth and prove
multiple nontrivial solutions to Dirichlet boundary value problems. Precisely, we
are interested in extending some results to a more general class of elliptic equations
and systems by making also use of the variational principle of Ricceri [12].

This article is organized as follows. In section 2 we recall some important defini-
tions and the crucial result of Ricceri [12], as the basis for the study of the existence
of at least three weak solutions for the given problems. In section 3 we treat the
limit case of a weighted elliptic equation involving n-Laplacian (n = 2) and we will
prove multiple results by applying Ricceri’s principle in [12]. Finally, in section 4,
we extend the result of the last section to general elliptic systems of two second or-
der nonlinear partial differential equations governed essentially by the n-Laplacian
operator with n > 2 and use again Ricceri’s principle to prove the multiplicity of
solutions.

2. Preliminaries

Let us denote by A the class of the Carathéodory functions h : Ω × R → R
satisfying the following conditions:

• for every M > 0, sup|t|≤M |h(x, t)| ∈ L∞(Ω);
• for every δ > 0,

lim
|u|→∞

sup
x∈Ω

|h(x, u)|
eδ|u|2

= 0. (2.1)

Before recalling the result proved in [12], which will be the key for the study of
the existence of at least three weak solutions for problems (1.1) and (1.2) when the
nonlinearities have a maximal growth, let us first recall that if X is a real Banach
space, we denote by WX the class of all functionals Φ : X → R, possessing the
following property: if {un} is a sequence in X converging weakly to u ∈ X and
lim infn→∞Φ(un) ≤ Φ(u), then {un} has a subsequence converging strongly to u.

Theorem 2.1. Let X be a separable and reflexive real Banach space; Φ : X → R, a
coercive, sequentially weakly lower semicontinuous C1 functional, belonging to WX ,
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bounded on each bounded subset of X, and whose derivative admits a continuous
inverse on X∗; J : X → R a C1 functional with compact derivative. Assume that
Φ has a strict local minimum x0 with Φ(x0) = J(x0) = 0. Finally, set

α = max
{

0, lim sup
‖x‖→+∞

J(x)
Φ(x)

, lim sup
x→x0

J(x)
Φ(x)

}
,

β = sup
x∈Φ−1(]0,+∞[)

J(x)
Φ(x)

,

and assume that α < β. Then, for each compact interval [a, b] ⊂]1/β, 1/α[ (with the
conventions 1/0 = +∞, 1/∞ = 0) there exists r > 0 with the following property:
for every λ ∈ [a, b], and every C1 functional Ψ : X → R with compact derivative,
there exists σ > 0 such that for each µ ∈ [0, σ], the equation

Φ′(x) = λJ ′(x) + µΨ′(x)

has at least three solutions in X whose norms are less than r.

3. Weighted Laplace equations

Consider the Dirichlet problem

−div(m(|∇u|2)∇u) = λβ(x)(uqe
ηu2

ln(|u|+3) + γ|u|u) + µ|u|s−2u in Ω
u = 0 on ∂Ω,

(3.1)

where Ω is a bounded domain of R2 with C1-boundary ∂Ω, q > 1, s > 1, β : Ω→ R
be a bounded measurable function and m : R+ → R is a continuous function
satisfying the following assumption.

There exist positive constants p ∈]1, 2], b1, b2, c1, c2 such that

c1 + b1|u|2−p ≤ |u|2−pm(u2) ≤ c2 + b2|u|2−p ∀u ∈ R. (3.2)

Remark 3.1. (1) The function f(x, t) = tqe
ηt2

ln(|t|+3) + γ|t|t, with q > 1 and
0 < γ ≤ η, and the function g(x, t) = |t|s−2t with s > 1 belong to the class
A.

(2) The operator considered here has been studied by Hirano [7] and by Ubilla
[19] with nonlinearities having a polynomial growth.

(3) If m(u) = 1 + u
p−2
2 , p ≤ 2, then (3.2) holds and −div(m(|∇u|2)∇u) in

(3.1) becomes −∆u−∆pu, where ∆p ≡ div(|∇u|p−2∇u) is the p-Laplacian
operator.

To study the Dirichlet problem (3.1), we use the space W = W 1,2
0 (Ω) endowed

with the norm

‖u‖ =
(∫

Ω

|∇u|2 dx
)1/2

.

Motivated by the following result due to Trudinger-Moser (cf. [11, 18]), problem
(3.1) can be treated variationally in W since W is embedded in the class of Orlicz-
Lebesgue space Lφ(Ω) generated by the function φ(t) = exp

(
t2
)
− 1, i.e.,

Lφ(Ω) = {u : Ω→ R, measurable :
∫

Ω

|φ(u)| dx <∞},
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equipped with the norm

‖u‖φ = inf
{
λ > 0 :

∫
Ω

φ
(u(x)
λ

)
dx ≤ 1

}
.

Moreover,

exp
(
δ|u|2

)
∈ L1(Ω), ∀u ∈W, ∀δ > 0,

sup
‖u‖≤1

∫
Ω

exp
(
δ|u|2

)
dx ≤ C if δ ≤ α2,

where α2 = 2ω1 and ω1 is the 1-dimensional surface of the unit disk in R2.

Now we state the main result of this section.

Theorem 3.2. Assume that m : R+ → R is a continuous function satisfying
(3.2) such that the function k(u) = m(|u|2)u is strictly uniformly monotone and
k(u) → 0 as u → 0+. Furthermore, assume that there exists a constant C ′ > 0
such that

( ∫
Ω
eδu

2
dx
)1/2 ≤ C ′‖u‖ for all u ∈ W and all δ > 0, and that there

exists u0 ∈W such that∫
Ω

β(x)
∫ u0(x)

0

(ξqe
ηξ2

ln(|ξ|+3) + γ|ξ|ξ) dξ dx > 0.

Then, if we set

ω =
1
2

inf
{ ∫

Ω
M(|∇u|2) dx∫

Ω
β(x)

∫ u
0

(ξqe
ηξ2

ln(|ξ|+3) + γ|ξ|ξ) dξ dx
,

u ∈W,
∫

Ω

β(x)
∫ u

0

(ξqe
ηξ2

ln(|ξ|+3) + γ|ξ|ξ) dξ dx > 0
}
,

(3.3)

with M(ξ) =
∫ ξ

0
m(t) dt, for each compact interval [a, b] ⊂]ω,+∞[, there exists

r > 0 with the following property: for every λ ∈ [a, b], there exists σ > 0 such that
for each µ ∈ [0, σ], problem (3.1) has at least three solutions in W whose norms are
less than r.

Remark 3.3. The Trudinger-Moser inequality [11, 18] implies that exp(δ|u|2) ∈
L1(Ω) for all u ∈ W and all δ > 0, so that the condition

( ∫
Ω
eδu

2
dx
)1/2 ≤ C ′‖u‖,

given in Theorem 3.2, makes sense since the quantity
∫

Ω
eδu

2
dx depends on u.

Recall that a weak solution of the problem (3.1) is any u ∈W such that∫
Ω

m(|∇u|2)∇u∇v dx =
∫

Ω

(λβ(x)(uqe
ηu2

ln(|u|+3) + γ|u|u) + µ|u|s−2u)v dx ∀v ∈W.

Remark 3.4. (1) The maximal growth (2.1) guarantees that integrals given
in the right side are well defined.

(2) The exponential growth condition (2.1) covers a general class of functions
where particularly polynomials are taken.

Now we state and prove the following lemma which will be needed later.

Lemma 3.5. If h ∈ A, then the functional N : W → R defined by N(u) =∫
Ω
H(x, u(x)) dx, where H(x, ξ) =

∫ ξ
0
h(x, t) dt, is continuously differentiable with

compact derivative.
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Proof. Since h belongs to A, for δ > 0, there exists C1 > 0 such that

|h(x, u)| ≤ C1e
δ|u|2 , ∀(x, u) ∈ Ω× R.

Hence, it follows that for every u ∈W , and almost every x ∈ Ω,

|H(x, u(x))| ≤ C2|u(x)| exp(δ|u(x)|2).

Then, using Trudinger-Moser inequality [11, 18] and Hölder inequality, we see that
N is well defined on W . Further, Lebesgue Theorem implies that

N ′(u)v = lim
t→0+

N(u+ tv)−N(u)
t

=
∫

Ω

h(x, u(x))v(x) dx.

Hence, N is Gâteaux differentiable with derivative given by

N ′(u)v =
∫

Ω

h(x, u)v dx

for all u, v ∈ W . Let us now show that N ′ is continuous from W to its dual W ∗.
Indeed, let {uk} be a sequence converging to some u in W .

On one hand, there exists a subsequence, denoted again by {uk} such that

uk → u strongly in Lp1(Ω),

as k →∞ for all p1 > 1. Hence uk → u a.e. in Ω.
On the other hand, we have∫

Ω

|h(x, uk)|p1 dx ≤ C3

∫
Ω

exp(p1δ|uk|2) dx

≤ C3

∫
Ω

exp
(
p1δ‖uk‖2

( |uk|
‖uk‖

)2)
dx,

for some constant C3 > 0. Since {uk} is a bounded sequence, we may choose δ
sufficiently small such that p1δ‖uk‖2 < α2. Then one has

sup
k

∫
Ω

|h(x, uk)|p1 dx ≤ C4,

for some constant C4 > 0. Similarly there exists C5 > 0 such that∫
Ω

|h(x, u)|p1 dx ≤ C5.

Let E be a measurable subset of Ω and let ε > 0, we have∫
E

|h(x, uk)− h(x, u)|p1 dx ≤
(

meas(E)
)1/ζ′( ∫

Ω

|h(x, uk)− h(x, u)|p1ζ dx
)1/ζ

≤ K
(

meas(E)
)1/ζ′

,

where K is a positive constant which is independent of k and 1
ζ + 1

ζ′ = 1. Then,
for meas(E) sufficiently small, we obtain∫

E

|h(x, uk)− h(x, u)|p1 dx ≤ ε.

Since uk → u a.e. in Ω, we have h(x, uk) → h(x, u) a.e. in Ω. Then in view of
Vitali’s convergence theorem,

h(x, uk)→ h(x, u) in Lp1(Ω).



6 A. EL ATTAR, S. EL MANOUNI, O. SIDKI EJDE-2015/197

Hence, using Hölder inequality, we obtain∫
Ω

(h(x, uk)− h(x, u))v dx ≤
[ ∫

Ω

|h(x, uk)− h(x, u)|p1 dx
]1/p1[ ∫

Ω

|v|p
′
1 dx

]1/p′1
,

where p′1 is the conjugate of p1. This shows that N ′ is continuous. Similarly, we
prove that N ′ is a compact map from W to its dual W ∗. �

Proof of Theorem 3.2. It follows from (3.2) that for all u ∈ R,
1
2
M(|u|2) ≥ b1

2
|u|2 +

c1
p
|u|p

1
2
M(|u|2) ≤ b2

2
|u|2 +

c2
p
|u|p,

with p > 1. Furthermore the function h(u) = M(|u|2) is strictly convex. Conse-
quently, the functional Φ : W → R defined as

Φ(u) =
1
2

∫
Ω

M(|∇u|2) dx

is well defined, coercive, weakly lower semicontinuous, Gâteaux differentiable and
belongs to C1(W,R). Moreover Φ is bounded on each bounded subset of W . By
using [20, Theorem 26.A], we deduce that Φ′ admits a continuous inverse on W ∗

since the operator I : W →W ∗ defined by

I(u)v =
∫

Ω

m(|∇u|2)∇u∇v dx

is uniformly monotone. This implies that Φ ∈ WW . Let us prove that

lim sup
u→0

J(u)
Φ(u)

= 0.

Set
f(x, u) = β(x)(uqe

ηu2

ln(|u|+3) + γ|u|u)
for all (x, u) ∈ Ω× R and

J(u) =
∫

Ω

F (x, u) dx

for all u ∈W , where

F (x, u) = β(x)
∫ u

0

(tqe
ηt2

ln(|t|+3) + γ|t|t) dt.

It is easy to see that

F (x, u) ≤ β(x)(|u|q+1e
ηu2

ln(|u|+3) + γ
|u|3

3
)

≤ β(x)(|u|q+1eηu
2

+ γ
|u|3

3
)

for all (x, u) ∈ Ω×W . Then for some positive constants C6 and C7, we obtain

J(u)
Φ(u)

≤ C6 sup
x∈Ω

β(x)

∫
Ω

(
|u|q+1eηu

2
+ γ |u|

3

3

)
dx

C7

∫
Ω
|∇u|2 + |∇u|p dx

,

≤ C6 sup
x∈Ω

β(x)

( ∫
Ω
ez
′‖u‖2η(

|u|
‖u‖ )2

)1/z′( ∫
Ω
|u|z(q+1) dx

)1/z

+
∫

Ω
γ |u|

3

3 dx

C7

∫
Ω

(|∇u|2 + |∇u|p) dx
,
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with 1
z + 1

z′ = 1. Then, in view of Trudinger-Moser’s inequality and since W is
continuously embedded in Lz(q+1)(Ω), there exists a constant C8 > 0 such that

J(u)
Φ(u)

≤ C8 sup
x∈Ω

β(x)
‖u‖q+1 + ‖u‖3

‖u‖2
, (3.4)

for ‖u‖ small enough such that z′‖u‖2η < 4π. Hence, since q > 1, (3.4) implies that

lim sup
u→0

J(u)
Φ(u)

≤ 0. (3.5)

Using again the fact that F (x, u) ≤ β(x)(|u|q+1eηu
2

+ γ u
3

3 ) for all (x, u) ∈ Ω×W .
Then, applying again Trudinger-Moser inequality and by the same argument as in
the proof of Lemma 3.5, we deduce that

J(u) =
∫

Ω

F (x, u) dx

is well defined and continuously Gâteaux differentiable, with compact derivative,

J ′(u)v =
∫

Ω

f(x, u)v dx

for all u, v ∈W . Notice that the compactness of J ′ holds since f ∈ A. Let us prove
that

lim sup
‖u‖→∞

J(u)
Φ(u)

≤ 0.

On one hand, we have for all δ > 0,

lim sup
|t|→∞

supx∈Ω F (x, t)
eδt2

= 0,

and so for every ε > 0, there exists some positive ρ such that, for every x ∈ Ω and
|t| > ρ,

F (x, t) ≤ εeδt
2
.

On the other hand, we can easily see that for every M > 0, sup|t|≤M |f(x, t)| ∈
L∞(Ω). Hence, there exists some constant C9 > 0 such that, for every x ∈ Ω,

sup
|t|≤ρ
|f(x, t)| ≤ C9.

Then, for every x ∈ Ω and t ∈ R,

F (x, t) ≤ C9ρ+ εeδt
2

and so

J(u) ≤ C9ρmeas(Ω) + ε

∫
Ω

eδu
2
dx.

Since
(∫

Ω
eδu

2
dx
) 1

2 ≤ C ′‖u‖ for all δ > 0 and all u ∈W, we obtain

J(u)
Φ(u)

≤ 2
C9ρmeas(Ω)
‖u‖2

+ 2ε
C ′

2‖u‖2

‖u‖2
.

Therefore,

lim sup
‖u‖→+∞

J(u)
Φ(u)

≤ 2εC ′2. (3.6)
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Finally, for an arbitrary ε and in view of (3.5) and (3.6), we obtain

max
{

lim sup
‖x‖→+∞

J(x)
Φ(x)

, lim sup
x→0

J(x)
Φ(x)

}
≤ 0.

Hence, all the assumptions of Theorem 2.1 are satisfied (with x0 = 0). Moreover,
the functional

Ψ(u) =
1
s
‖u‖sLs(Ω)

is continuously Gâteaux differentiable onW, with compact derivative. Consequently
the result follows and the proof is complete. �

Remark 3.6. Consider the following general case of problems (3.1):

−div(m(|∇u|n)|∇|n−2∇u) = λf(x, u) + µg(x, u) in Ω
u = 0 on ∂Ω,

(3.7)

where Ω is a bounded domain of Rn and the nonlinearity f : Ω × R → R is a
continuous function having an exponential growth on Ω: i.e.,

(H0) For all δ > 0,

lim
|u|→∞

|f(x, u)|
eδ(|u|

n
n−1 )

= 0 uniformly in Ω,

with p = n 6= 2. g : Ω× R→ R is a Carathéodory function satisfying

|g(x, u)| ≤ a|u|s−1 + b,

for all (x, u) ∈ Ω×R with s > 1, a, b > 0. Regarding the function m, it is assumed
to satisfy the following conditions:

(M1) m : R+ → R is continuous;
(M2) there exist positive constants p ∈]1, n], b1, b2, c1, c2 such that

c1 + b1u
n−p ≤ un−pm(un) ≤ c2 + b2u

n−p ∀u ∈ R+;

(M3) the function k : R → R, k(u) = m(|u|n)|u|n−2u is strictly increasing and
k(u)→ 0 as u→ 0+.

The assertion in Theorem 3.2 concerning problem (3.7) should be a generalization
of problem (3.1) and the proof is substantively similar to the previous where we
adopt the variational principle of Ricceri [12].

4. Nonlinear elliptic systems with n > 2

Let Ω ⊂ Rn, with n > 2, be a bounded domain with smooth boundary ∂Ω. In
this section we shall be concerned with existence of solutions for the problem

−div
(
a(|∇u|n)|∇u|n−2∇u

)
= λFu(x, u, v) + µGu(x, u, v) in Ω

−div
(
a(|∇v|n)|∇v|n−2∇v

)
= λFv(x, u, v) + µGv(x, u, v) in Ω

u = v = 0 on ∂Ω,

(4.1)

where the nonlinearity F : Ω × R× R → R is assumed to be measurable in Ω and
C1 in R× R satisfying

(H1) For every M, sup|(t,s)|≤M (|Ft(x, t, s)|+ |Fs(x, t, s)|) ∈ L∞(Ω),
and having an exponential growth on Ω; i.e.,
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(H2) For all δ > 0

lim
|(t,s)|→∞

|Ft(x, t, s)|+ |Fs(x, t, s)|
eδ(|t|n+|s|n)1/(n−1) = 0 Uniformly in Ω,

with F (., 0, 0) ∈ L1(Ω).
Regarding the function G, it is assumed to be a measurable function with respect
to x in Ω for every (s, t) in R × R, and is a C1-function with respect to (s, t) in
R× R for almost every x in Ω and satisfies

(G1)
sup
|(t,s)|≤k

(|Gt(x, t, s)|+ |Gs(x, t, s)|) ≤ hk(x),

for all k > 0 and some hk ∈ L1(Ω) with G(., 0, 0) ∈ L1(Ω).
Finally, we make the following assumptions on the function a.

(A1) a : R+ → R is continuous;
(A2) There exist positive constants p ∈]1, n], b1, b2, c1, c2 such that

c1 + b1u
n−p ≤ un−pa(un) ≤ c2 + b2u

n−p ∀u ∈ R+;

(A3) The function k : R → R, k(u) = a(|u|n)|u|n−2u is strictly increasing and
k(u)→ 0 as u→ 0+.

We shall look for a weak-solution of (4.1) in the space W = W 1,n
0 (Ω) ×W 1,n

0 (Ω)
which is endowed with the norm

‖U‖nW =
∫

Ω

|∇U |n dx =
∫

Ω

(|∇u|n + |∇v|n) dx

where U = (u, v) ∈ W . Motivated by the following result due to Trudinger and
Moser (cf. [11], [18]) in the case where n 6= 2, we remark that the space W is
embeded in the class of Orlicz-Lebesgue space

Lφ = {U : Ω→ R2, measurable :
∫

Ω

φ(U) <∞},

where φ(s, t) = exp
(
s

n
n−1 + t

n
n−1
)
. Moreover, there exists a constant Cn depending

on n and on the measure of Ω such that

sup
‖(u,v)‖W≤1

∫
Ω

exp
(
δ(|u|

n
n−1 + |v|

n
n−1
)
dx ≤ Cn for every 0 < δ ≤ αn,

where αn = nω
1

n−1
n−1 , being ωn−1 the measure of the (n − 1) dimensional surface of

the unit sphere in Rn.

Remark 4.1. The operator considered here has been studied by Hirano [7] and
Ubilla [19] with nonlinearities having polynomial growth.

We shall denote by λ1 the smallest eigenvalue [17] for the problem

−∆nu = λ|u|α−1
u|v|β+1 in Ω ⊂ Rn

−∆nv = λ|u|α+1|v|β−1
v in Ω ⊂ Rn

u = v = 0 on ∂Ω;

i.e.,

λ1 = inf
{α+ 1

n

∫
Ω

|∇u|n dx+
β + 1
n

∫
Ω

|∇v|n dx :
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(u, v) ∈W,
∫

Ω

|u|α+1|v|β+1 dx = 1
}

where α+ β = n− 2 and α, β > −1.

Remark 4.2. Since α + β = n − 2 implies that α+1
n + β+1

n = 1, one has for all
(u, v) ∈W\{(0, 0)}

λ1 ≤
α+ 1
n

∫
Ω

|∇u1|n dx+
β + 1
n

∫
Ω

|∇v1|n dx and
∫

Ω

|u1|α+1|v1|β+1 dx = 1

with
u1 =

u

(
∫

Ω
|u|α+1|v|β+1 dx)1/n

, v1 =
v

(
∫

Ω
|u|α+1|v|β+1 dx)1/n

.

So that

λ1

∫
Ω

|u|α+1|v|β+1 dx ≤ α+ 1
n

∫
Ω

|∇u|n dx+
β + 1
n

∫
Ω

|∇v|n dx

for all (u, v) ∈W\{(0, 0)}.

Definition 4.3. We say that a pair (u, v) ∈W is a weak solution of (4.1) if for all
(ϕ,ψ) ∈W ,∫

Ω

a(|∇u|n)|∇u|n−2∇u∇ϕdx =
∫

Ω

(λFu(x, u, v) + µGu(x, u, v))ϕdx∫
Ω

a(|∇v|n)|∇v|n−2∇v∇ψ dx =
∫

Ω

(λFv(x, u, v) + µGv(x, u, v))ψ dx
(4.2)

Now we state our second main result.

Theorem 4.4. Suppose that Fu and Fv are continuous functions satisfying (H1)-
(H2) and that a satisfies (A1)-(A3). Furthermore, assume that

lim
|U |→0

sup
pF (x, U)

|u|α+1|v|β+1
< λ1, (4.3)

lim sup
|U |→∞

supx∈Ω F (x, U)
|U |n

≤ 0, (4.4)

uniformly on x ∈ Ω, and

sup
U∈W

∫
Ω

F (x, U) dx > 0,

with U = (u, v). Then, if we set

θ =
1
n

inf
{∫

Ω
A(|∇u|n) +A(|∇v|n) dx∫
Ω
F (x, u(x), v(x)) dx

: (u, v) ∈W,
∫

Ω

F (x, u(x), v(x)) dx > 0
}
,

(4.5)
with A(t) =

∫ t
0
a(τ) dτ , for each compact interval [a, b] ⊂]θ,+∞[, there exists r > 0

with the following property: for every λ ∈ [a, b] and for every function G satisfying
(G1) there exists σ > 0 such that for each µ ∈ [0, σ], problem (4.1) has at least
three weak solutions in W whose norms are less than r.

Remark 4.5. If a(u) = 1 + u
p−n
n and conditions (A2)–(A3) hold, then problem

(4.1) can be formulated as follows

−∆nu−∆pu = λFu(x, u, v) + µGu(x, u, v)

−∆nv −∆pv = λFv(x, u, v) + µGv(x, u, v),
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where ∆p ≡ div(|∇u|p−2∇u) is the p-Laplacian operator.

The maximal growth of Fu(x, u, v) and Fv(x, u, v) will allow us to treat varia-
tionally system (4.1) in the product Sobolev space W . This exponential growth is
relatively motivated by Trudinger-Moser inequality [11, 18]. Now, it follows from
the assumptions on the function a that for all t ∈ R,

1
n
A(|t|n) ≥ b1

n
|t|n +

c1
p
|t|p

1
n
A(|t|n) ≤ b2

n
|t|n +

c2
p
|t|p,

where A(t) =
∫ t

0
a(τ) dτ . Furthermore, the function l(t) = A(|t|n) is strictly convex.

Consequently, the functional Φ : W → R defined as

Φ(u, v) =
1
n

∫
Ω

A(|∇u|n) +A(|∇v|n) dx

is well defined, weakly lower semicontinuous, Frêchet differentiable and belongs to
C1(W,R).

Proposition 4.6. Let I : W →W ∗ be the operator defined by

I(u, v)(ϕ,ψ) =
∫

Ω

a(|∇u|n)|∇u|n−2∇u∇ϕ+ a(|∇v|n)|∇v|n−2∇v∇ψ dx

for all (u, v), (ϕ,ψ) ∈W . Then I admits a continuous inverse on W ∗.

Proof. Denoting by 〈·, ·〉 the usual inner product in Rn, for κ ≥ 2 there exists a
positive constants cκ such that the following inequality (see [16])

〈|x|κ−2x− |y|κ−2y, x− y〉 ≥ cκ|x− y|κ

holds for all x, y ∈ Rn. Thus, it is easy to see, using (A2), that

〈I(u1, v1)− I(u2, v2), (u1 − u2, v1 − v2)〉 ≥ cn(‖u1 − u2‖n1 + ‖v1 − v2‖n2 ),

for every (u1, v1) and (u2, v2) belonging to W . This means that I is an uniformly
monotone operator in W . Moreover I is coercive and hemicontinuous in W . There-
fore, the conclusion follows directly from [20, Theorem 26.A]. Moreover, Φ is co-
ercive, weakly lower semicontinuous, bounded on bounded subsets of W and it
belongs to WW . �

Lemma 4.7. Assume that F satisfies (H1)–(H2). Then the functional J : W → R
defined by

J(u, v) =
∫

Ω

F (x, u, v) dx

is continuously differentiable with compact derivative.

Proof. On one hand, if the functions Fu and Fv are continuous and have an expo-
nential growth, then there exists a positive constant C10 such that

|Fu(x, u, v)|+ |Fv(x, u, v)| ≤ C10 exp
(
δ(|u|

n
n−1 + |v|

n
n−1 )

)
, (4.6)

for all (x, u, v) ∈ Ω× R2. Consequently the functional J : W → R defined by

J(u, v) =
∫

Ω

F (x, u, v) dx
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is well defined. On the other hand, as in Lemma 3.5, we conclude that J is contin-
uously Gâteau differentiable with

J ′(u, v)(ϕ,ψ) =
∫

Ω

Fu(x, u, v)ϕ+ Fv(x, u, v)ψ dx

for all (u, v), (ψ,ϕ) ∈ W . Let us now show that J ′ is continuous from W to its
dual W ∗. Indeed, let {(uk, vk)}) be a sequence converging to a some {(u, v)} in W .
Thus, there exists a subsequence, denoted again by {(uk, vk)} such that

uk → u in Lq1(Ω),

vk → v in Lq2(Ω),

as n→∞ and for all q1, q2 > 1. On one hand, we have∫
Ω

|Fu(x, uk, vk)|q1 dx ≤ C11

∫
Ω

exp(q1δ(|uk|
n
n−1 + |vk|

n
n−1 )) dx

≤ C11(
∫

Ω

exp(ζq1δ|uk|
n
n−1 ))

1
ζ (
∫

Ω

exp(ζ ′q1δ|vk|
n
n−1 ))

1
ζ′

≤ C11

(∫
Ω

exp(ζq1δ‖uk‖
n
n−1

W 1,n
0 (Ω)

(
|uk|

n
n−1

‖uk‖W 1,n
0 (Ω)

))
)1/ζ

×
(∫

Ω

exp(ζ ′q1δ‖vk‖
n
n−1

W 1,n
0 (Ω)

(
|vk|

n
n−1

‖vk‖W 1,n
0 (Ω)

))
)1/ζ′

,

for some positive constant C11 and 1
ζ + 1

ζ′ = 1. Since {(uk, vk)} is a bounded
sequence, we may choose δ sufficiently small such that

ζq1δ‖uk‖
n
n−1

W 1,n
0 (Ω)

< αn and ζ ′q1δ‖vk‖
n
n−1

W 1,n
0 (Ω)

< αn.

Then ∫
Ω

|Fu(x, uk, vk)|q1 dx ≤ C12

for k large and some constant C12 > 0. By the same argument, we also have∫
Ω

|Fv(x, uk, vk)|q2 dx ≤ C13

for k large and some constant C13 > 0. The proof can now be completed following
the same steps as in the proof of Lemma 3.5. �

Proof of Theorem 4.4. Recall that the functionals Φ and J are defined on W as
follows

Φ(u, v) =
1
n

∫
Ω

A(|∇u|n) +A(|∇v|n) dx, and J(u, v) =
∫

Ω

F (x, u, v) dx,

for every (u, v) ∈ W . The goal is to apply Theorem 2.1 to the functionals Φ and
J to obtain multiple weak solutions of (4.1). It is well known that Φ is coercive,
weakly lower semicontinuous, bounded on bounded subsets of W and it belongs to
WW . Moreover Φ is continuously Gâteaux differentiable in X with derivative

Φ′(u, v)(ϕ,ψ) =
∫

Ω

a(|∇u|n)|∇u|n−2∇u∇ϕ+ a(|∇v|n)|∇v|n−2∇v∇ψ dx

for all (u, v), (ϕ,ψ) ∈ W and Φ′ admits a continuous inverse on W ∗ (see [20, The-
orem 26.A]).
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In view of Lemma 4.7, J is well defined and continuously Gâteaux differentiable
with compact derivative J ′ given by

J ′(u, v)(ϕ,ψ) =
∫

Ω

Fu(x, u, v)ϕ+ Fv(x, u, v)ψ dx

for all (u, v), (ϕ,ψ) ∈W . Let us prove now that

lim sup
(u,v)→(0,0)

J(u, v)
Φ(u, v)

≤ 0. (4.7)

By (4.3),

lim sup
|(t,s)|→(0,0)

supx∈Ω pF (x, t, s)
|t|α+1|s|β+1

≤ λ1,

and so for every ε > 0 there exists some positive ρ such that, for every x ∈ Ω and
|(u, v)| < ρ,

F (x, u, v) <
ε

p
λ1|u|α+1|v|β+1.

In view of (H2), for fixed δ > 0 and z > n there exists C14 > 0 such that, for every
x ∈ Ω and |(u, v)| ≥ ρ

F (x, u, v) ≤ C14(|u|z|v|zeδ(|u|
n
n−1 +|v|

n
n−1 )).

Then, for every x ∈ Ω and (u, v) ∈W , one has

F (x, u, v) ≤ ε

p
λ1|u|α+1|v|β+1 + C14(|u|z|v|zeδ(|u|

n
n−1 +|v|

n
n−1 )).

Let θ1, θ2, θ3, θ4 > 1 with
∑4
i=1

1
θi

= 1. Then in view of Remark 4.2 and by applying
Hölder’s inequality, we obtain

J(u, v) ≤ C15ε‖(u, v)‖n + C14

[ ∫
Ω

e

(
θ1δ‖u‖

n
n−1 (

|u|
‖u‖ )

n
n−1
)
dx
]1/θ1(∫

Ω

|u|θ2z dx
)1/θ2

×
[ ∫

Ω

e

(
θ3δ‖v‖

n
n−1 (

|v|
‖v‖ )

n
n−1
)
dx
]1/θ3(∫

Ω

|v|θ4z dx
)1/θ4

,

for some constant C15 > 0. By choosing δ sufficiently small such that

θ1δ‖u‖
n
n−1

W 1,n
0 (Ω)

< αn and θ3δ‖v‖
n
n−1

W 1,n
0 (Ω)

< αn,

and taking into account that W 1,n
0 (Ω) is continuously embedded in Lζ(Ω) for every

ζ ≥ 1, one has
J(u, v) ≤ C16(ε‖(u, v)‖n + ‖(u, v)‖2z),

for some constant C16 > 0. Therefore, in view of (A2), we obtain

J(u, v)
Φ(u, v)

≤ C16
ε‖(u, v)‖n + ‖(u, v)‖2z

‖(u, v‖n
.

Since z > n, claim (4.7) immediately follows.
Let us prove now that

lim sup
‖(u,v)‖→∞

J(u, v)
Φ(u, v)

≤ 0. (4.8)

By (4.4),

lim sup
|(t,s)|→∞

sup
x∈Ω

F (x, t, s)
|t|n + |s|n

≤ 0,
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and so for every ε > 0, there exists some positive ρ such that, for every x ∈ Ω and
|(t, s)| > ρ,

F (x, t, s) ≤ ε(|t|n + |s|n).

From condition (H1), there exists some constant C17 > 0 such that, for every x ∈ Ω,

sup
|(t,s)|≤ρ

(|Fu(x, t, s)|, |Fv(x, t, s)|) ≤ C17.

Then, for every x ∈ Ω and t, s ∈ R,

F (x, t, s) ≤ C17ρ+ ε(|t|n + |s|n)

and so

J(u, v) ≤ C17ρmeas(Ω) + ε(
∫

Ω

|u|n + |v|n dx).

Since W 1,n
0 (Ω) is continuously embedded into Ln(Ω), we obtain

J(u, v)
Φ(u, v)

≤ nC17ρmeas(Ω)
‖u‖n

+ εnC18,

for some constant C18 > 0. Hence, claim (4.8) follows at once. In view of (4.7) and
(4.8), we obtain

max
{

lim sup
‖(u,v)‖→+∞

J(u, v)
Φ(u, v)

, lim sup
(u,v)→(0,0)

J(u, v)
Φ(u, v)

}
≤ 0.

Now all the assumptions of Theorem 2.1 are satisfied with α = 0 and β = 1
θ ,

where θ is as in (4.5) and choose [a, b] ⊆]θ,+∞[. Moreover, since the function
G : Ω× R× R→ R is a measurable in Ω and C1 in R× R satisfying the condition
(G1), then by Lemma 4.7 the functional Ψ(u, v) =

∫
Ω
G(x, u, v) dx is well defined

and continuously Gâteaux differentiable in W , with compact derivative, and one
has

Ψ′(u, v)(ϕ,ψ) =
∫

Ω

Gu(x, u, v)ϕ+Gv(x, u, v)ψ dx

for all (u, v), (ϕ,ψ) ∈ W . Then, in view of Proposition 4.6 and Theorem 2.1 there
exists r > 0 such that for every λ ∈ [a, b], it is possible to find σ > 0 verifying the
following condition: for each µ ∈ [0, σ], the functional Φ−λJ−µΨ has at least three
critical points, which are precisely weak solutions of problem (4.1) whose norms are
less than r. The proof is complete. �

Example. Let

F (x, u, v) =
λ

p
|u|α+1|v|β+1 + (1− χ(u, v)) exp

(σ(|u|n + |v|n)
1

n−1

Log(|u|+ |v|+ 2)

)
where χ ∈ C1(R2, [0, 1]), χ ≡ 1 on some ball B(0, r) ⊂ R2 with r > 0 , and χ ≡ 0 on
R2\B(0, r+1). Thus, it follows immediately that (H1), (H2) and (4.3) are satisfied.
Then problem (4.1) has a three nontrivial weak solutions provided that λ < λ1.

Acknowledgements. The second author gratefully acknowledges the financial
support of Deutscher Akademischer Austausch Dienst.



EJDE-2015/197 n-LAPLACIAN PROBLEMS WITH MAXIMAL GROWTH 15

References

[1] G. Anello, G. Cordaro; An existence theorem for the Neumann problem involving the p-
Laplacian. J. Convex. Anal., (10)1: 185–198, 2003.

[2] G. Anello G. Cordaro; Existence of solutions of the Neumann problem involving the p-

Laplacian via variational principle of Ricceri. Arch. Math. (Basel), 79: 274–287, 2002.
[3] S. El Manouni; A study of nonlinear problems for the p-Laplacian in Rn via Ricceri’s principle.

Nonlinear Anal. 74, No. 5-6: 4496–4502, 2011.

[4] S. El Manouni, F. Faraci; Multiplicity results for some elliptic problems of n-Laplace type.
Taiwanese J. Math. 16, No. 3: 901–911, 2012.

[5] S. El Manouni, M. Kbiri Alaoui; A result on elliptic systems with Neumann conditions via
Ricceri’s three critical points theorem. Nonlinear Anal. 71, No. 5-6: 2343–2348, 2009.

[6] D. G. de Figueiredo, O. H. Miyagaki, B. Ruf; Elliptic equations in R2 with nonlinearities in

the critical growth range. Calc. Var. PDE., 3: 139–153, 1995.
[7] N. Hirano; Multiple solutions for quasilinear elliptic equations. Nonlinear Anal., 15, 625–638,

1990.
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